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2 Dependability

2.1 Terminology
Systems. A specification describes the ideal behavior of a system at its interfaces. A system
is called dependable if it follows the specification as closely as possible, even if faults occur.
Typical faults are when some of parts of the system fail or when the environment behaves
differently than assumed.

Three causally related terms have been defined to describe dependable systems [ALRL04]:

Fault −→ Error −→ Failure

Fault: (Hypothetic) Cause of an error.

Error: Internal system state that does not correspond to specification, not visible at interfaces.

Failure: Deviation of system from specification at interfaces.

Recursive!

Example 1. In a computer system, fan in power supply congested by dust, airflow massively
reduced, fan not effective, power supply overheats, some part burns out, system loses power,
computer stops working.

• Fan system: dust = fault, reduced airflow = error, no cooling = failure.

• Power supply system: no cooling = fault, overheating = error, loss of power = failure.

• Computer system: broken power supply = fault, no power on mainboard = error, com-
puter stopping = failure.

Example 2. RAID storage system (bits with ECC, disks with RAID mirroring).

Example 3. Typical software vulnerability, buffer-overflow attack exploited by a worm.

2.2 Attributes
• Availability — readiness for correct service

• Reliability — continuity of correct service

• Safety — absence of catastrophic failures

• Confidentiality — no unauthorized disclosure

• Integrity — no improper states or state changes
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2.3 Techniques

Prevention: Formal design, access control, good engineering.

Tolerance:

• Error & fault detection — Failure detectors, intrusion detection systems.

• Recovery — Isolation, rollback, compensation, fail-over, database transactions (ACID).

• Redundancy — Replication, voting (ECC, RAID), diversity.

Removal:

• Formal verification of implementation w.r.t. specification

• Validation of specification w.r.t. real environment

• Fault injection and testing

Forecasting:

• Modeling, prediction

• Evaluation, testing (fault trees, attack graphs)

Commercial fault-tolerant systems employ a combination of the above techniques, but fo-
cus on sophisticated designs for fault-tolerance through hardware redundancy, combined with
isolation and recovery methods for software [BS04]. Examples include the HP Integrity Non-
Stop servers (formerly built by Tandem Corp.) [BBV+05] and IBM’s System z mainframe
servers and z/OS operating system (successors of S/390 servers and OS/390) [Hof97].
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2.4 Measures
[This section corrects mistakes in the originally distributed version.]

The reliability function R(t) of a system denotes the probability that the system runs cor-
rectly from time 0 until time t. The reliability function is monotonically decreasing with time,
starting from R(0) = 1.

We assume that the failure of any elementary system considered here occurs with exponen-
tial (or Poisson) distribution,

R(t) = Pr[ System works correctly from time 0 until t ] = e−λt,

where λ denotes the failure rate. When considering multiple systems, we assume they fail
independently of each other.

Serial combination. Consider a system Ser that consists of a “serial” combination (without
redundancy) of the components C1, . . . , Cn that have failure rates λ1, . . . , λn, respectively. The
system functions only if all components function properly. The reliability of Ser is the product
of the component reliabilities,

RSer(t) =
∏
i

RCi
(t) =

∏
i

e−λit.

Note that the failure probability of Ser is also modeled by an exponential distribution with
failure rate

λSer =
∑
i

λi.

Parallel combination. Consider a system Par in which components C1, . . . , Cn are redun-
dant and used “in parallel,” such that Par fails only if all components have failed. The compo-
nent failure rates are again λ1, . . . , λn. Then reliability function of Par is

RPar(t) = 1−
∏
i

(
1−RCi

(t)
)
= 1−

∏
i

(
1− e−λit

)
.

Note that the failure probability of Par is not an exponential distribution.

k-out-of-n combination. More generally, suppose a system Thresh consists of n components
C1, . . . , Cn that have equal reliability function R(t), of which at least k are needed for Thresh
to function (k represents a “threshold”). It holds

RThresh(t) =
n∑
i=k

(
n

i

)
R(t)i

(
1−R(t)n−i

)
.

MTTF and MTTR. As described so far, our model allowed a system to fail only once and
it would remain inoperable forever afterwards. If we include repair actions as well, a system
may now continuously transition between the operational and the failed state. More precisely,
such a system either works as intended (A) or it is being repaired (B). The transition from (A)
to (B) corresponds to a failure and the transition from (B) to (A) models a repair.
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The mean time to failure (MTTF) is computed as1MTTF =
∫∞
0
R(t)dt. Assuming an expo-

nential failure distribution with rate λ, the MTTF has a closed form,

MTTF =
1

λ
.

Analogously to the probabilistic occurrence of failures, one may assume that repairs occur
with random delays according to a given error functionE(t), which denotes the probability that
the system remains in a failed state from time 0 until time t. If repairs occur with exponential
distribution just like failures, then

E(t) = e−µt

for a repair rate µ. Analogously to failures, the mean time to repair (MTTR) is defined by
MTTR =

∫∞
0
E(t)dt, and for an exponential distribution of repair actions, we get

MTTR =
1

µ
.

Availability. One uses the availability as an overall measure for how likely a system is to per-
form its service corretly. Formally, it is defined as the probability that the system is operational
at any instant and can be expressed as

Availability =
MTTF

MTTF + MTTR
.

Note that if the MTTF is already large, system availability can be further increased by
reducing the MTTR — this is important for large-scale online services, where components that
may fail are optimized to recover fast.

High availability is usually measured in “nines,” expressed as a percentage of uptime in a
year and counting the number of nines in the resulting expression. For example, 99.999% or
“five nines” of availability denotes up to 5.26 minutes of downtime per year.

Problems of MTTF & MTTR. How can the notions of MTTF and MTTR in the hundred-
thousands of hours be interpreted for a system that runs only for a fraction of this time [Pat02]?

There are 8760h per year. Does a system with MTTF of 500’000h on average run for 57
years without failures, even though its manufacturer specifies a system lifetime of 5 years? No.
MTTF and MTTR are only statistical measures that are relevant in a large population of sam-
ples, i.e., if you have 100 systems expect a faulty one every 0.57 years. Note the fundamental
assumption that failures are independent.

For introductions to reliability theory, see the textbooks of Siewiorek and Swarz [SS98] or
Ross [Ros09, Chapter 9].

2.5 Redundancy in storage systems — RAID
• RAID (Redundant Arrays of Inexpensive Disks) [CLG+94];

• RAID-5;

• MDS erasure codes, RAID-6 [Pla05], EVENODD [BBBM95];

• Generalized RAID-6 codes [PBVZ11].
1Consult the literature [SS98, Ros09] for a complete explanation of this statement.
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