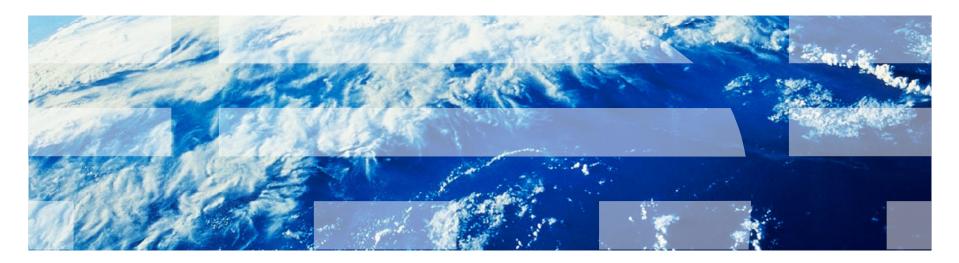


Distributed Cryptography



Overview

Distributed Crypto

- Used to distribute the ability to perform crypto operations among *n* parties s.t.
 - -Any *t*+1 parties can perform the operation
 - -*t* parties cannot (provably) perform the operation
 - So up to *t* parties can be malicious or compromised
- Mostly asymmetric crypto operations

Secret Sharing

- Introduced by Shamir
- Algorithm that allows a dealer to share a secret s among n parties s.t.
 - -Any *t*+1 parties can recompute *s*
 - -Any *t* parties cannot learn absolutely anything about *s*

Secret Sharing (cont'd)

- Secret Sharing; 2 protocols: Share and Recover
- Share
 - -Trusted dealer picks a random *t*-degree polynomial $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_t x^t$ -s = f(0) is the secret -The *i*-th party (*i* = 0, ..., *n*-1) receives $s_i = f(i)$
- Recover

-*t*+1 parties can reconstruct *s*

$$s = f(0) = \sum_{i \in S} \lambda_{0,i}^{S} s_i$$
 where $\lambda_{0,i}^{S} = \prod_{j \in S, j \neq i} \frac{j}{j-i}$

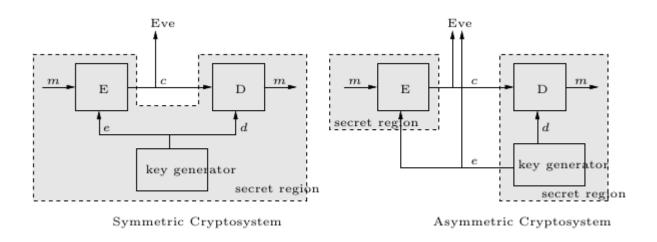
Secret Sharing (cont'd)

Some observations

- -Scheme is information-theoretically secure
- -Some parties can be given more "power"
- -Can create complex access structures to a secret
- -Given (t+1)-out-of-*n* dealer can construct (t+1)-out-of-*m*, *m*>*n*
- -(less than t) malicious parties may still cause problems
 - VSS (other parties cannot lie about the value of their shares)
- –Dealer knows the secret
 - May be ok (e.g. company delegation)
- -What if I don't trust the dealer?
- -Shares are as large as the secret (good and bad)

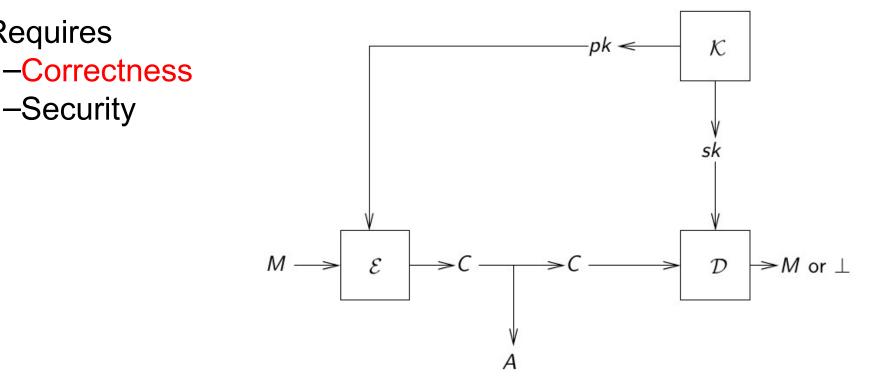
Public Key Encryption

- Symmetric encryption requires shared secret
- Asymmetric encryption "splits" the key in two
 - -Encryption (public) known to everyone
 - -Decryption (private) known to owner only



Public Key Encryption (cont'd)

A public-key (or asymmetric) encryption scheme consists of three algorithms



Requires

-Security

Security

-Generally defined for crypto protocols as

Attacker breaks the scheme with negligible probability

- Who's the attacker?
- What is a negligible probability?
- What does it mean to "break" the scheme?

Who's the attacker?

- Attacker modeled as a probabilistic poly-time Turing machine (p.p.t.)
 - –Has access to randomness, can guess and be lucky ③
 - -Has limited resources (no information-theoretical security but computational)
 - Runs in $T(n) = n^{c}$ (poly-time, same for space)

What is a negligible probability?

Negligible function (given the security parameter k)

Definition 3 (Negligible in terms of k (negl(k))) An arbitrary function v(k) (possibly a type of probability function) is negl(k) if:

$$(\forall c > 0) (\exists k') (\forall k \ge k') \quad \left[v(k) \le \frac{1}{k^c}\right]$$

• P(attacker breaks scheme) < negl(k)

-Interested in the average case!

- –In practice, $P < 2^{-80}$ is considered secure today
- $-P < 2^{-64}$ is insecure

–DES broken because key could be guessed with P ~ 2^{-56}

Stays negligible if multiplied by any polynomial

What should be "broken"?

- Attacker does not learn anything about the plaintext by seeing the ciphertext
 - -Information-theoretical security;
 - Too strong!
- Whatever function the attacker can compute on the plaintext given the ciphertext, it can compute without it –Semantic security (computational)

How do we prove semantic security?

It's been proven identical to "testing" the attacker in the following way:

IND-CPA (Indistinguishability under chosen-plaintext attack) –Attacker is given the public key

- Can generate encryption of any message
- –Attacker chooses two messages m_0 and m_1
- -A fair coin *b* is flipped and $E(m_{h})$ is given to the attacker
- -The attacker guesses the value of b

Putting it all together

"A public-key cryptosytem is semantically secure if any probabilistic poly-time Turing machine wins the IND-CPA game with negligible probability"

Wait, but how do we prove that?

By reduction to well-known "intractable problems"

- -Problems that are widely believed to be solved by p.p.t. Turing machine with negligible probability
- Examples

Problem	Given	Figure out
Discrete logarithm (DL)	g^x	x
Computational Diffie-Hellman (CDH)	g^x, g^y	g^{xy}
Decisional Diffie-Hellman (DDH)	g^x, g^y, g^z	Is $z \equiv xy \pmod{ G }$?

where G is a particular cyclic group of prime order p; g is a generator of G; x, y and z are random integers in Z_p

Wait, but how do we prove that?

- By reduction to well-known "intractable problems"
 - -Cipher is built on intractable problem
 - -Let's assume an attacker that can break the cipher exists
 - -Then another p.p.t. Turing machine can "use" the attacker to solve the intractable problem
 - -But the problem is intractable (by p.p.t. Turing machines)
 - -Ergo attacker cannot exist

El-Gamal cryptosystem

- Three algorithms (K, E, D)
- K(k)

–Pick "suitable" group G of prime order p and a generator g –Pick a random integer x in Z_p

-Output $pk = \{G, p, g, y=g^x\}; sk = \{x\}$

■*E(m, pk)*

–Pick a random integer r in Z_p and compute the "key" $K = y^r$

-Output $c = (c_1, c_2) = (g^r, K \cdot m) = (g^r, g^{xr} \cdot m)$

• $D((c_1, c_2), sk)$ -Compute $K = c_1^{x}$ -Output $m = c_2 \cdot K^{-1}$

EI-Gamal cryptosystem – security

Intuitively, attacker cannot decrypt

-Attacker doesn't know x

–Needs to compute $K = g^{rx}$ from $c_1 = g^r$ and $y = g^x$

~ breaking CDH

Is that enough?

-NO

-Semantic security requires indistinguishability

-Need to resort to DDH to prove semantic security

Theorem 1. The above cryptosystem is polynomially secure under the DDH assumption.

The proof, which is not presented in full detail here, is by hybrid argument: one proves that encryption of any message m is indistinguishable from a random pair (g^c, g^b) . This follows easily from the DDH assumption. Therefore, encryptions of m_0 and m_1 are indistinguishable.

Threshold El-Gamal

- Share the power of decryption
- Three algorithms (K, E, D)
- K(k)

-As before, except that $sk = \{x\}$ is now (t+1)-out-of-*n* secretshared among *n* "decryptors" who receive $sk_i = \{x_i\}$

- E(m, pk) unchanged
- D((c₁, c₂), sk)

-Decryptors receive (c_1, c_2)

-i-th decryptor computes a decryption share $d_i = c_1^{xi}$

 $i \in S$

-Given *t*+1 decryption shares, one can recompute $K = c_1^x$ and decrypt $\prod d_i^{\lambda_{0,i}^S} = \prod c_1^{x_i \lambda_{0,i}^S} = c_1^{\sum_{i \in S} x_i \lambda_{0,i}^S} = c_1^x$

 $i \in S$

Threshold El-Gamal (cont'd)

- Some observations
 - -Non-interactive
 - -Use-cases
 - -Dealer knows $sk = \{x\}$
 - -Dealer can give more "power" to some decryptors
 - -Given (t+1)-out-of-*n* dealer can construct (t+1)-out-of-*m*, *m*>*n*

Other "flavours" of threshold crypto

- Proactive schemes
 - -Given (t+1)-out-of-n, t+1 parties can generate a new scheme which is (t'+1)-out-of-n'
 - -Presently-untrusted parties are "left out"
- Verifiable schemes