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From Cloud to Intercloud

■ Cloud-based object storage systems is a success story
– Prices and scale which can’t be met with traditional architectures
– Popular and successful (Amazon S3 already stores 762 billion objects)
– Simple APIs (KVS)

■ Cheap

■ Simplicity however goes hand in hand with lack of enterprise features

Cloud 9
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KVS
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ICStore
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 A Java-based intercloud storage client developed in ZRL
– Can “talk” to 20+ (and counting) KVS-based storage services
– No modification to remote clouds

 Modular, layered library, offering encryption, integrity and resilience
– Layers are configurable and switchable
– Lightweight, asynchronous, multi-threaded architecture
– Streamed object operations (no buffering required)
– Buffering of unsuccessful operations for “slow” clouds

 Transparent to client (e.g. proxy, gw)

 Exposes KVS APIs
– De-facto standard for “web 2.0” data storage
– Easy interoperability with existing applications/appliances
– May be turned into file-based storage (e.g. using s3fs)

 Can scale up or scale down very easily
– No client-to-client communication
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ICStore – Encryption 

 Encryption with standard block cipher

 Where do we store keys?

Integrity

Resilience

Encryption

Client

M
et

ad
a t

a

K
ey

s



© 2012 IBM Corporation7

ICStore – Encryption 

 Encryption with standard block cipher

 Multiple key management options
– Local keystore
– Attached to key server (OASIS KMIP)
– In the intercloud

• Uses secret sharing
• Keys are split and stored across multiple clouds
• No local keys
• Qualified set of clouds necessary to recover key
• Non-qualified set of clouds cannot access data
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Reliability

Most KVS providers do internal replication, so they are 
already reliable

Or are they?
–Gmail temporary mail loss, May 2011
–Amazon S3 Availability Event: July 20, 2008
–“Amazon gets 'black eye' from cloud outage” Analysts say 
downtime hurts Amazon, and cloud computing April 2011
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Reliability (cont'd)

 "Many academics will confess to have made the assumption 
that failures of components are not correlated. This 
absolutely unrealistic assumption will come back to haunt you 
in real life (...)." Werner Vogels, CTO Amazon.com

Replication is not too effective if
–Physical failures are correlated (crazy-guy-blows-up-
datacentre)

–What if the same software runs on 100000 nodes (and it 
has the same bug?)

–Same security domain (vulnerability)

Optimal replication across multiple cloud providers
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Reliability (cont'd)

Objective: 

use replication across multiple KVS 
objects (e.g. Amazon S3 AND Microsoft 
Azure AND Cloudspace) to obtain a more 
reliable MRMW register 

Read/Write from/to n clouds instead of 
one

–Is it that simple?
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Reliability (cont'd)

Let's focus our attention on a single “key”, and see how 
subsequent replicated put/get operations over 3 KVSes 
interact with one another

Working assumptions
–2f+1 KVSes, f can crash
–Arbitrary (finite) number of readers/writers
–Readers/writers can crash

We will build a solution step-by-step
–Showing how intermediate solutions are bogus
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Reliability (cont'd)

Take 1

write(key, val) 
–execute put(key, val) on all KVSes and return when f+1 
have returned

 read(key)
–execute read get(key) on all KVSes and return the value 
returned by f+1 clouds

Problems?
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Reliability (cont'd)

Take 2

Use timestamps (sequence numbers); put on multiple keys

write(key, val) 
–list() and set t0 equal to the highest timestamp seen on a 
majority of KVSes (or 0 if none)

–execute put(key.t0+1, val) on all KVSes and return when 
f+1 have returned

 read(key)
–list() and set t0 = the highest timestamp seen on a majority
–execute read get(key.t0) on all KVSes and return the value 
returned by the fastest cloud (clouds are honest)

Problems?
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Reliability (cont'd)

Take 3

Use version = <timestamp, writer IDs>

write(key, val) 
–list() and set t0 equal to the highest timestamp seen on a 
majority (or 0 if none)

–execute put(key.t0+1.wid, val) on all KVSes and return 
when f+1 have returned

 read(key)
–List(), set ver0 = the “highest version” seen on a majority
–execute read get(key.ver0) on all KVSes and return the 
value returned by the fastest cloud (clouds are honest)

Problems?
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Reliability (cont'd)

Take 4

Garbage collection
–Who performs it?
–When?
–writers may crash but it's ok
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Reliability (cont'd)

Take 4

Garbage collection

write(key, val) 
–list() and set ver0 = to highest version seen on a majority
–GC all versions that are there and are < ver0
–Write (as before)
–GC ver0

 read(key)
–As before

Problems?
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Reliability (cont'd)

Take 5

Reader signaling works
–“block” GC while reads are in progress
–Readers need to write, not optimal

Other ideas?
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Reliability (cont'd)

Take 6

Write twice
–Once under “temporary” key (with version number)
–Once under “eternal” key (without version number)
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Reliability (cont'd)
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Reliability (cont'd)
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Reliability (cont'd)
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Reliability (cont'd)
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Reliability (cont'd)

Some observations
–Regular semantics
–Wait-freedom
–Cannot write the temporary before the eternal
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Reliability (cont'd)

Achieving atomicity
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