
© 2012 IBM Corporation

Cloud and intercloud Storage

Alessandro Sorniotti

© 2012 IBM Corporation2

Overview

3 © 2011 IBM
Corporation

From Cloud to Intercloud

■ Cloud-based object storage systems is a success story
– Prices and scale which can’t be met with traditional architectures
– Popular and successful (Amazon S3 already stores 762 billion objects)
– Simple APIs (KVS)

■ Cheap

■ Simplicity however goes hand in hand with lack of enterprise features

Cloud 9

© 2012 IBM Corporation4

KVS

© 2012 IBM Corporation5

ICStore

Integrity

Resilience

Encryption

Client

M
et

ad
a t

a

K
ey

s

 A Java-based intercloud storage client developed in ZRL
– Can “talk” to 20+ (and counting) KVS-based storage services
– No modification to remote clouds

 Modular, layered library, offering encryption, integrity and resilience
– Layers are configurable and switchable
– Lightweight, asynchronous, multi-threaded architecture
– Streamed object operations (no buffering required)
– Buffering of unsuccessful operations for “slow” clouds

 Transparent to client (e.g. proxy, gw)

 Exposes KVS APIs
– De-facto standard for “web 2.0” data storage
– Easy interoperability with existing applications/appliances
– May be turned into file-based storage (e.g. using s3fs)

 Can scale up or scale down very easily
– No client-to-client communication

© 2012 IBM Corporation6

ICStore – Encryption

 Encryption with standard block cipher

 Where do we store keys?

Integrity

Resilience

Encryption

Client

M
et

ad
a t

a

K
ey

s

© 2012 IBM Corporation7

ICStore – Encryption

 Encryption with standard block cipher

 Multiple key management options
– Local keystore
– Attached to key server (OASIS KMIP)
– In the intercloud

• Uses secret sharing
• Keys are split and stored across multiple clouds
• No local keys
• Qualified set of clouds necessary to recover key
• Non-qualified set of clouds cannot access data

Integrity

Resilience

Encryption

Client

M
et

ad
a t

a

K
ey

s

© 2012 IBM Corporation8

Reliability

Most KVS providers do internal replication, so they are
already reliable

Or are they?
–Gmail temporary mail loss, May 2011
–Amazon S3 Availability Event: July 20, 2008
–“Amazon gets 'black eye' from cloud outage” Analysts say
downtime hurts Amazon, and cloud computing April 2011

© 2012 IBM Corporation9

Reliability (cont'd)

 "Many academics will confess to have made the assumption
that failures of components are not correlated. This
absolutely unrealistic assumption will come back to haunt you
in real life (...)." Werner Vogels, CTO Amazon.com

Replication is not too effective if
–Physical failures are correlated (crazy-guy-blows-up-
datacentre)

–What if the same software runs on 100000 nodes (and it
has the same bug?)

–Same security domain (vulnerability)

Optimal replication across multiple cloud providers

© 2012 IBM Corporation10

Reliability (cont'd)

Objective:

use replication across multiple KVS
objects (e.g. Amazon S3 AND Microsoft
Azure AND Cloudspace) to obtain a more
reliable MRMW register

Read/Write from/to n clouds instead of
one

–Is it that simple?

Integrity

Resilience

Encryption

Client

M
et

ad
a t

a

K
ey

s

© 2012 IBM Corporation11

Reliability (cont'd)

Let's focus our attention on a single “key”, and see how
subsequent replicated put/get operations over 3 KVSes
interact with one another

Working assumptions
–2f+1 KVSes, f can crash
–Arbitrary (finite) number of readers/writers
–Readers/writers can crash

We will build a solution step-by-step
–Showing how intermediate solutions are bogus

© 2012 IBM Corporation12

Reliability (cont'd)

Take 1

write(key, val)
–execute put(key, val) on all KVSes and return when f+1
have returned

 read(key)
–execute read get(key) on all KVSes and return the value
returned by f+1 clouds

Problems?

© 2012 IBM Corporation13

Reliability (cont'd)

Take 2

Use timestamps (sequence numbers); put on multiple keys

write(key, val)
–list() and set t0 equal to the highest timestamp seen on a
majority of KVSes (or 0 if none)

–execute put(key.t0+1, val) on all KVSes and return when
f+1 have returned

 read(key)
–list() and set t0 = the highest timestamp seen on a majority
–execute read get(key.t0) on all KVSes and return the value
returned by the fastest cloud (clouds are honest)

Problems?

© 2012 IBM Corporation14

Reliability (cont'd)

Take 3

Use version = <timestamp, writer IDs>

write(key, val)
–list() and set t0 equal to the highest timestamp seen on a
majority (or 0 if none)

–execute put(key.t0+1.wid, val) on all KVSes and return
when f+1 have returned

 read(key)
–List(), set ver0 = the “highest version” seen on a majority
–execute read get(key.ver0) on all KVSes and return the
value returned by the fastest cloud (clouds are honest)

Problems?

© 2012 IBM Corporation15

Reliability (cont'd)

Take 4

Garbage collection
–Who performs it?
–When?
–writers may crash but it's ok

© 2012 IBM Corporation16

Reliability (cont'd)

Take 4

Garbage collection

write(key, val)
–list() and set ver0 = to highest version seen on a majority
–GC all versions that are there and are < ver0
–Write (as before)
–GC ver0

 read(key)
–As before

Problems?

© 2012 IBM Corporation17

Reliability (cont'd)

Take 5

Reader signaling works
–“block” GC while reads are in progress
–Readers need to write, not optimal

Other ideas?

© 2012 IBM Corporation18

Reliability (cont'd)

Take 6

Write twice
–Once under “temporary” key (with version number)
–Once under “eternal” key (without version number)

© 2012 IBM Corporation19

Reliability (cont'd)

© 2012 IBM Corporation20

Reliability (cont'd)

© 2012 IBM Corporation21

Reliability (cont'd)

© 2012 IBM Corporation22

Reliability (cont'd)

© 2012 IBM Corporation23

Reliability (cont'd)

Some observations
–Regular semantics
–Wait-freedom
–Cannot write the temporary before the eternal

© 2012 IBM Corporation24

Reliability (cont'd)

Achieving atomicity

	IBM Research - Zurich Presentation template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

