
Cryptography for
storage systems

10 May 2013

IBM Research - Zurich

Christian Cachin

Overview

● Encryption in storage systems

● Tweakable encryption

● Integrity protection

● Key management

Encryption in
storage systems

Traditional storage systems:
Inside the box

app

inode

fs

blk

hba

Direct-attached storage

Networked storage systems

NAS
(Network-attached Storage)

net

NFS, CIFS
(TCP/IP)

net

fs

hba

inode

blk

fs

app

SAN
(Storage-area Network)

blk

FC, iSCSI

net

blk

hbanet

inode

fs

app

OBS
(Object Storage)

inode

net

OBS-SCSI
(T10)

net

inode

blk

hba

fs

app

Storage-device models

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access

control
 - space allocation
 - backup ops

Tweakable encryption

Block cipher

● Deterministic, key-dependent transformation
– One input block to one output block
– AES, DES, Blowfish ...
– Blocks size: typically 128 bits (16 bytes)
– Key size: typically 128 bits and more

● Formally block cipher implements a pseudo-
random permutation (PRP)
– Appears like a random permutation to any

computationally bounded observer (who does not
have the key)

● Mode of operation ("chaining" mode) required
– Electronic-codebook mode (ECB) means no chaining

Why a block-cipher mode of
operation?

Plaintext as
bitmap picture

Encrypted in
ECB mode

Encrypted in
secure mode of

operation

Encryption at the block layer

● “Device-level” encryption of 512-byte sectors
● Transparent to storage system → no extra

space available to chaining mode
● IEEE SISW standardization: P1619/ .1 / .2

app

inode

fs

blk

E

Using CBC mode

● Random IV required, but there is no space to store
● → Derive IV from sector address

– IV = EK(disk id || sector address)
– IV = EHash(K)(disk id || sector address)

● Leaks location of first updated block within sector
● Attack possible if adversary may invoke decryption for

some sectors, but not for others

P1

E

C1

K

IV P2

E

C2

K . . .

IV

Tweakable encryption (TwE)

● EK() is a PRP, deterministic after picking K
– Same permutation in every instance

● Tweakable EK,T() is a family of independent
permutations, indexed by T [Liskov, Rivest, Wagner, CRYPTO '02]

– T = address of block

P

E

C

K
(secret)

P

E

C

K T
(public)

EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable

Narrow-block TwE

● Every block in sector encrypted independently
– Tweak is sector address s plus block index i

● Leaks only that block has been updated
● "Better" security against active attacks

Ciphertext in disk sector s

P1

. . .

Pi Pn

EK

s || i

. . .

C1 Ci Cn

Plaintext

Tweaked block
=

 cipher block
(16 bytes)

● XTS-AES mode based on XEX [Rogaway, ASIACRYPT '04]

– Tweak = sector s || block index i
– Key K = K1 || K2
– α in GF(2128), primitive element, αi efficient for i=0,1,2...

● Standardized by IEEE P1619 and NIST SP 800-38E
● Used in practice (e.g., Truecrypt, FDE for disk drives)

Narrow-block TwE mode

Pi

EK1

s

EK2

Pi

•iα

● One tweaked blockcipher encryption per sector
● Tweak is sector address s
● Leaks only that sector has been updated

Wide-block TwE

Ciphertext in disk sector s

P1 Pn

E s

C1 Cn

Plaintext

K

Tweaked block
=

disk sector
(512 bytes)

Wide-block TwE

● Proposed implementations are slower
than AES
– EME2-AES: 2x AES
– XCB-AES: 1x AES + 2x GF(2128)-mult.

● Standardized as IEEE P1619.2 (2010)

● Overhead considered to be (too) costly
– No practical deployment so far

Comparison
CBC mode TwE narrow TwE wide

Passive adversary
- Localize changes First changed All blocks Whole sector
 in encrypted file block in sector that changed (best possible)

Active adversary
- Trigger controlled Change one block None None
 change of plaintext & move blocks

Situation in practice
Deployed Deployed Not used

How realistic are active attacks?
- Encryption in OS kernel, attack requires access to stored bits
- Unlikely for laptops
- More plausible for virtual disk images on cloud storage

Integrity protection

Integrity protection for one
client

● Storage consists of n data items
x1, ..., xn

● Client accesses storage via integrity-
protection layer
– Uses small trusted memory to

store short reference hash value v
(together with encryption keys)

● Integrity layer operations
– Read item and verify w.r.t. v
– Write item and update v

accordingly
Integrity

Client

Trusted
memory

Hash trees for integrity
checking (Merkle trees)

● Parent node is hash of its
children

● Root hash value commits all
data blocks
– Root hash in trusted

memory
– Tree is on extra untrusted

storage

● To verify xi, recompute path
from xi to root with sibling
nodes and compare to trusted
root hash

● To update xi, recompute new
root hash and nodes along path
from xi to root

root

H0 H1

H00 H01 H10 H11

x1 x2 x3 x4

Read & write operations need work
 O(log n)

● Hash operations
● Extra storage accesses

Multi-client integrity
protection

● Single-client solution
– Relies on hash value v
– Stored locally in trusted memory
– Changes after every update operation

● Multiple clients?
– Need to synchronize trusted memories

● Solution with digital signatures
– Every client associated with a

public/private key pair
– Write operation produces signature σ on

hash v
– Client stores signature and hash (, v)σ on

cloud
● Replay attacks

– This approach permits replay attacks ...
– Prevented using trusted coord. service

Integrity

Client Client Client

Multi-client integrity protec-
tion and forking attacks

● Server may present different views to separated clients
– E.g., not show the most recent WRITE operation to a reader
– Creates a "fork" between their histories
– Clients cannot prevent this without communication

● Use fork linearizability [Mazieres, Shasha, PODC '02]:

– If malicious server forks the views of two clients once, then
 their views are forked ever after→
 they never again see each others updates→

● Every inconsistency or integrity violation results in a fork
– Best achievable guarantee for storage on untrusted server
– Forks can be detected on a "cheap" low-security external

channel
● Use only a semi-trusted coordinator [Cachin et al., SIAM J. Comput, 2011]

– Prototype implementation in VENUS [Shraer et al., CCSW 2011]

Key management Today - Proprietary key mgmt.

Enterprise Cryptographic Environments

Key
Management

System

Disk
Arrays

Backup
Disk

Backup
Tape

Backup
System

Collaboration &
Content Mgmt

Systems

File Server
Portals

Production
Database

Replica

Staging

Enterprise
Applications

eCommerce
Applications

Business
Analytics

Dev/Test
Obfuscation

WANLAN
VPN

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

CRM

Email

Future - Standardized key
management

Enterprise Cryptographic Environments

Enterprise Key
Management

Disk
Arrays

Backup
Disk

Backup
Tape

Backup
System

Collaboration &
Content Mgmt

Systems

File ServerPortals

Production
Database

Replica

Staging

Key Management Interoperability Protocol

Enterprise
Applications

Email

eCommerce
Applications

Business
Analytics

Dev/Test
Obfuscation

WANLANVPN

CRM

OASIS Key Management Inter-
operability Protocol (KMIP)
● OASIS...? XML

● Client-server protocol

● Defines objects with attributes, plus operations

– Objects: symmetric keys, public/private keys,
certificates, threshold key-shares ...

– Attributes: identifiers, type, length, lifecycle-state,
lifecycle dates, links to other objects ...

– Operations: create, register, attribute handling ...

OASIS KMIP

● KMIP draft spec prepared by industry group
– HP, IBM, RSA-EMC, nCipher/Thales, Brocade,

Seagate, LSI, NetApp
– IBM- and IBM Zurich-led (editor and TC co-chair)

● OASIS KMIP Technical Committee (2009)
– KMIP v1.0 released in Oct. 2010
– KMIP v1.1 released in Feb. 2013

● http://www.oasis-open.org/committees/kmip/

● Today deployed by multiple vendors in storage-
encryption context

KMIP objects and attributes

● Objects of four types
– Symmetric keys, public keys, private keys,

certificates

● ~50 attributes
– Identifier, state, initialization time, activation time,

deactivation time ...

● Access-control specific attributes
– ACL, usage ...

● KMS accessed by remote users over network

KMIP operations
● Create(id, parameters) → OK
● Derive(id, parent_id, aux_data) → OK

● Store(id, clear_key) → OK
● Import(unwrapping_key_id, wrapped_key) → OK

● Read(id) → clear_key
● Export(id, wrapping_key_id) → wrapped_key

● Read attributes(id) → {attributes}
● Set attributes(id, {new_attributes}) → OK

● Search(id, condition) → {ids}
● Destroy(id) → OK -- deletes key, but leaves attributes intact
● Delete(id) → OK -- deletes key and attributes (if possible)

Most ops. are straightforward, but some involve cryptography.

Access control model for KMIP

● Users
– Determined by user registry (e.g., LDAP)
– Special users: any, creator

● Permissions
– Per-object

● Admin, Derive, Destroy, Export, Read,
ReadAttributes, Unwrap, Wrap

– Per-user
● Create, Store

● Ever object o has an acl attribute
 o.acl ⊂ {(u, p) | u ∈ Users, p ∈ Permissions}

A key server is a crypto API

● Key server executes cryptographic operations

● So far, cryptographic security APIs have been
linked to secure hardware tokens (IBM CCA,
PKCS #11 ...)

● We extend the study of cryptographic security
APIs to
– Key-management systems on a network
– Accessed by multiple users

Cryptographic tokens?
Cryptographic processors
Hardware security modules (HSM)

● Crypto co-processor in
tamper-proof enclosure

● Keys never leave
token in clear

● Executes all
cryptographic
operations with keys

Token

User

Admin

User
User

Commercial crypto tokens

HP Atalla Ax160

Tamper-resistant and -responsive according to FIPS 140-2, up to Level 4

IBM 4765

Infineon TPMnCipher/Thales netHSM

Why cryptographic tokens?

"Cryptographic keys must not leave secure HW."

● Introduce a separation between:
– Administration of keys security officer→
– Administration of servers server operator→

 Fewer opportunities for insider attacks→

● Found in many corporate environments
– Government, finance, telecom ...

● But also in your pocket
– Smartcards, SIM cards, transport tickets ...

Interacting with a token

● User u authenticates to token
u ∈ {security-officer, application}

● u invokes operations through Crypto API
– Operations on payload

● Encrypt, decrypt, sign, verify ...
– Key-management operations

● Create, store, read*, update* key
● Derive key from a parent key
● Wrap key / export
● Unwrap key / import

* Restricted to admin!

● Standardized interfaces
– PKCS #11 [EMC/RSA]
– Common cryptographic architecture (CCA) [IBM]

Problems with crypto APIs (1)

● Legacy API policies are often "underspecified"
– Nevertheless, they aim to protect keys

● Purely logical attacks → API attacks
– Expose a protected key [Anderson, Bond, Clulow]

● Example attack on PKCS #11
– Sensitive keys must not be exposed in clear
– PKCS #11 denies read operation by user u ≠ admin

if key k is sensitive
– But allows u to wrap k under a non-sensitive key d
→ user u wraps k under d and reads d
→ this exposes k in clear

Problems with crypto APIs (2)

● Why?

● Why is access control with simple read/write
permissions not enough to protect keys?

● Because keys may depend cryptographically on
other keys
– Only cryptographic operations create such

dependencies

● Propose to keep track of dependencies with a
model for strict access control [Cachin, Chandran, CSF '09]

Dependencies among keys

● Key k depends on a key p ⇔
– Key k was derived from p

● derive(a,c), derive(a,d), derive(a,e) ...
– Key k was wrapped under p

● wrap(c,g), wrap(b,e) ...

i

c
d

ba

e f

g
h

New attributes for keys

● strict {false, true}∈
– Determines if object governed by "strict policy"

● dependents Objects⊆
– Other objects whose cryptographic value can be

computed from the cryptographic value of the object

● ancestors Objects⊆
– Other objects on which the object depends

● readers Users⊆
– Users who have executed read(k) for

some key k such that object k.dependents∈

Basic and strict policies

● If o.strict = true, then o benefits from
strict security policy

● Otherwise, o underlies basic access-control
policy

● Strict security policy respects dependencies
between keys in access decisions

Basic authorization

Basic authorization rule of permission p
for user u on object o:

BASICAUTH(u, p, o) =
(any, p) ∈ o.acl or
(u = o.creator and (creator, p) , p) ∈ o.acl or
(u, p) ∈ o.acl.

Implementation of read

Condition for user u to execute read(o):
o.strict = false and BASICAUTH(u, Read, o) or
o.strict = true and

∀ q ∈ o.dependents, BASICAUTH(u, Read, q)

Effect:
if o.strict = true then

∀ q ∈ o.dependents, q.readers ← q.readers {u}∪

Implementation of export

Condition for user u to execute export(o, w):
o.strict = false and BASICAUTH(u, Export, o) or
o.strict = true and w.strict = true and

BASICAUTH(u, Export, o) and BASICAUTH(u, Wrap, w) and
∀ v ∈ w.readers, ∀ q ∈ o.dependents,

BASICAUTH(v, Read, q) and
w o.dependents∉

Effect:
if o.strict = true then

∀ v ∈ w.readers, o.readers ← o.readers {v}∪
w.dependents w.dependents o.dependents← ∪
o.ancestors o.ancestors w.ancestors← ∪

Use authenticated encryption for key wrapping

Implementation of import

Condition for u to execute import(w, wrapped) in
strict mode:
BASICAUTH(u, Unwrap, w) and

w.readers = ∅ and
w.strict = true and
! key in DB with same digest as o,∃

where o = unwrap(wrapped)

Effect:
w.dependents w.dependents o.dependents← ∪
o.ancestors o.ancestors w.ancestors← ∪

Imported key must not yet exist in the system

Destroy and delete

Condition for u to execute destroy(o):
BASICAUTH(u, Destroy, w)

Destroys only the cryptographic material, leaves the
object attributes in DB

Condition for u to execute delete(o):
BASICAUTH(u, Admin, w)

Destroys the object and its attributes, but
only if o.dependents = ∅.

Notes

● Model of Cachin-Chandran (CSF '09) has only
one key server
– Server should keep a global history
– Multiple servers need to synchronize state

● Prototype implementation at IBM Zurich
– All keys and dependency data stored in DB
– Compact representation, independent of history

● Requires system to track all operations

● Experience with prototype shows it is efficient
– No exposure to real world yet

References

● Christian Cachin, Nishanth Chandran. "A secure
cryptographic token interface." In Proc. Computer Security
Foundations (CSF), 2009.

● Mathias Björkqvist, Christian Cachin, Robert Haas, Xiao-Yu
Hu, Anil Kurmus, René Pawlitzek, and Marko Vukolic. "Design
and implementation of a key-lifecycle management system."
In Proc. Financial Cryptography, 2010.

● OASIS Key Management Interoperability Protocol (KMIP)
Technical Committee, "Key Management Interoperability
Protocol Version 1.1" OASIS Standard, 2013.
https://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip

