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Overview

● Encryption in storage systems

● Tweakable encryption

● Integrity protection

● Key management

Encryption in
storage systems
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Storage-device models

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access 

control
 - space allocation
 - backup ops 



Tweakable encryption

Block cipher

● Deterministic, key-dependent transformation 
– One input block to one output block 
– AES, DES, Blowfish ...
– Blocks size: typically 128 bits (16 bytes)
– Key size: typically 128 bits and more

● Formally block cipher implements a pseudo-
random permutation (PRP)
– Appears like a random permutation to any 

computationally bounded observer (who does not 
have the key)

● Mode of operation ("chaining" mode) required
– Electronic-codebook mode (ECB) means no chaining

Why a block-cipher mode of 
operation?

Plaintext as 
bitmap picture

Encrypted in 
ECB mode

Encrypted in 
secure mode of

operation

Encryption at the block layer

● “Device-level” encryption of 512-byte sectors
● Transparent to storage system → no extra 

space available to chaining mode
● IEEE SISW standardization: P1619/ .1 / .2
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Using CBC mode

● Random IV required, but there is no space to store
●  → Derive IV from sector address

– IV = EK( disk id || sector address )
– IV = EHash(K)( disk id || sector address )

● Leaks location of first updated block within sector
● Attack possible if adversary may invoke decryption for 

some sectors, but not for others
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Tweakable encryption (TwE)

● EK() is a PRP, deterministic after picking K
– Same permutation in every instance

● Tweakable EK,T() is a family of independent 
permutations, indexed by T [Liskov, Rivest, Wagner, CRYPTO '02]

– T = address of block
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EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable



Narrow-block TwE

● Every block in sector encrypted independently 
– Tweak is sector address s plus block index i

● Leaks only that block has been updated
● "Better" security against active attacks
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(16 bytes)

● XTS-AES mode based on XEX [Rogaway, ASIACRYPT '04]

– Tweak = sector s || block index i
– Key K = K1 || K2
– α in GF(2128), primitive element, αi efficient for i=0,1,2...

● Standardized by IEEE P1619 and NIST SP 800-38E
● Used in practice (e.g., Truecrypt, FDE for disk drives)

Narrow-block TwE mode
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● One tweaked blockcipher encryption per sector
● Tweak is sector address s
● Leaks only that sector has been updated

Wide-block TwE

Ciphertext in disk sector s
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Wide-block TwE

● Proposed implementations are slower
than AES
– EME2-AES: 2x AES
– XCB-AES: 1x AES + 2x GF(2128)-mult.

● Standardized as IEEE P1619.2 (2010)

● Overhead considered to be (too) costly
– No practical deployment so far

Comparison
CBC mode TwE narrow TwE wide

Passive adversary
- Localize changes First changed All blocks Whole sector
  in encrypted file block in sector that changed (best possible)

Active adversary
- Trigger controlled Change one block None None
  change of plaintext & move blocks

Situation in practice
Deployed Deployed Not used

How realistic are active attacks?
- Encryption in OS kernel, attack requires access to stored bits
- Unlikely for laptops
- More plausible for virtual disk images on cloud storage

Integrity protection



Integrity protection for one 
client

● Storage consists of n data items 
x1, ..., xn 

● Client accesses storage via integrity- 
protection layer
– Uses small trusted memory to 

store short reference hash value v
(together with encryption keys)

● Integrity layer operations
– Read item and verify w.r.t. v 
– Write item and update v 

accordingly
Integrity

Client

Trusted
memory

Hash trees for integrity 
checking (Merkle trees)

● Parent node is hash of its 
children 

● Root hash value commits all
data blocks
– Root hash in trusted 

memory
– Tree is on extra untrusted 

storage

● To verify xi, recompute path 
from xi to root with sibling 
nodes and compare to trusted 
root hash

● To update xi, recompute new 
root hash and nodes along path 
from xi to root

root
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H00 H01 H10 H11

x1 x2 x3 x4

Read & write operations need work
 O(log n)

● Hash operations
● Extra storage accesses

Multi-client integrity 
protection

● Single-client solution
– Relies on hash value v 
– Stored locally in trusted memory
– Changes after every update operation

● Multiple clients?
– Need to synchronize trusted memories

● Solution with digital signatures
– Every client associated with a

public/private key pair
– Write operation produces signature σ on 

hash v
– Client stores signature and hash ( , v)σ  on 

cloud
● Replay attacks

– This approach permits replay attacks ...
– Prevented using trusted coord. service

Integrity

Client Client Client

Multi-client integrity protec-
tion and forking attacks

● Server may present different views to separated clients
– E.g., not show the most recent WRITE operation to a reader
– Creates a "fork" between their histories
– Clients cannot prevent this without communication

● Use fork linearizability [Mazieres, Shasha, PODC '02]:

– If malicious server forks the views of two clients once, then
 their views are forked ever after→
 they never again see each others updates→

● Every inconsistency or integrity violation results in a fork
– Best achievable guarantee for storage on untrusted server
– Forks can be detected on a "cheap" low-security external 

channel
● Use only a semi-trusted coordinator [Cachin et al., SIAM J. Comput, 2011]

– Prototype implementation in VENUS [Shraer et al., CCSW 2011]

Key management Today - Proprietary key mgmt.
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Future - Standardized key 
management
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OASIS Key Management Inter-
operability Protocol (KMIP)
● OASIS...? XML

● Client-server protocol

● Defines objects with attributes, plus operations

– Objects: symmetric keys, public/private keys, 
certificates, threshold key-shares ...

– Attributes: identifiers, type, length, lifecycle-state, 
lifecycle dates, links to other objects ...

– Operations: create, register, attribute handling ...

OASIS KMIP

● KMIP draft spec prepared by industry group
– HP, IBM, RSA-EMC, nCipher/Thales, Brocade, 

Seagate, LSI, NetApp
– IBM- and IBM Zurich-led (editor and TC co-chair)

● OASIS KMIP Technical Committee (2009)
– KMIP v1.0 released in Oct. 2010
– KMIP v1.1 released in Feb. 2013

● http://www.oasis-open.org/committees/kmip/

● Today deployed by multiple vendors in storage-
encryption context

KMIP objects and attributes

● Objects of four types
– Symmetric keys, public keys, private keys,  

certificates

● ~50 attributes
– Identifier, state, initialization time, activation time, 

deactivation time ...

● Access-control specific attributes
– ACL, usage ...

● KMS accessed by remote users over network

KMIP operations
● Create(id, parameters)  → OK
● Derive(id, parent_id, aux_data)  → OK

● Store(id, clear_key)  → OK
● Import(unwrapping_key_id, wrapped_key)  → OK

● Read(id)  → clear_key
● Export(id, wrapping_key_id)  → wrapped_key

● Read attributes(id)  → {attributes}
● Set attributes(id, {new_attributes})  → OK

● Search(id, condition)  → {ids}
● Destroy(id)  → OK -- deletes key, but leaves attributes intact
● Delete(id)  → OK -- deletes key and attributes (if possible)

Most ops. are straightforward, but some involve cryptography.

Access control model for KMIP

● Users
– Determined by user registry (e.g., LDAP)
– Special users: any, creator

● Permissions
– Per-object

● Admin, Derive, Destroy, Export, Read, 
ReadAttributes, Unwrap, Wrap

– Per-user
● Create, Store

● Ever object o has an acl attribute
    o.acl ⊂ {(u, p) | u ∈ Users, p ∈ Permissions}



A key server is a crypto API

● Key server executes cryptographic operations

● So far, cryptographic security APIs have been 
linked to secure hardware tokens (IBM CCA, 
PKCS #11 ...)

● We extend the study of cryptographic security 
APIs to
– Key-management systems on a network
– Accessed by multiple users

Cryptographic tokens?
Cryptographic processors
Hardware security modules (HSM)

● Crypto co-processor in
tamper-proof enclosure

● Keys never leave
token in clear

● Executes all
cryptographic
operations with keys

Token

User

Admin

User
User

Commercial crypto tokens 

HP Atalla Ax160

Tamper-resistant and -responsive according to FIPS 140-2, up to Level 4

IBM 4765

Infineon TPMnCipher/Thales netHSM

Why cryptographic tokens?

"Cryptographic keys must not leave secure HW."

● Introduce a separation between:
– Administration of keys  security officer→
– Administration of servers  server operator→

 Fewer opportunities for insider attacks→

● Found in many corporate environments
– Government, finance, telecom ...

● But also in your pocket
– Smartcards, SIM cards, transport tickets ...

Interacting with a token

● User u authenticates to token
u ∈ {security-officer, application}

● u invokes operations through Crypto API
– Operations on payload

● Encrypt, decrypt, sign, verify ...
– Key-management operations

● Create, store, read*, update* key
● Derive key from a parent key
● Wrap key / export
● Unwrap key / import 

* Restricted to admin!

● Standardized interfaces
– PKCS #11 [EMC/RSA]
– Common cryptographic architecture (CCA) [IBM]

Problems with crypto APIs (1)

● Legacy API policies are often "underspecified"
– Nevertheless, they aim to protect keys

● Purely logical attacks → API attacks
– Expose a protected key [Anderson, Bond, Clulow]

● Example attack on PKCS #11
– Sensitive keys must not be exposed in clear
– PKCS #11 denies read operation by user u ≠ admin 

if key k is sensitive
– But allows u to wrap k under a non-sensitive key d
→ user u wraps k under d and reads d
→ this exposes k in clear



Problems with crypto APIs (2)

● Why?

● Why is access control with simple read/write 
permissions not enough to protect keys?

● Because keys may depend cryptographically on 
other keys
– Only cryptographic operations create such 

dependencies

● Propose to keep track of dependencies with a 
model for strict access control [Cachin, Chandran, CSF '09]

Dependencies among keys

● Key k depends on a key p ⇔
– Key k was derived from p

● derive(a,c), derive(a,d), derive(a,e) ...
– Key k was wrapped under p

● wrap(c,g), wrap(b,e) ...
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New attributes for keys

● strict  {false, true}∈
– Determines if object governed by "strict policy"

● dependents  Objects⊆
– Other objects whose cryptographic value can be 

computed from the cryptographic value of the object

● ancestors  Objects⊆
– Other objects on which the object depends

● readers  Users⊆
– Users who have executed read(k) for

some key k such that object  k.dependents∈

Basic and strict policies

● If o.strict = true, then o benefits from
strict security policy

● Otherwise, o underlies basic access-control 
policy

● Strict security policy respects dependencies 
between keys in access decisions

Basic authorization

Basic authorization rule of permission p 
for user u on object o:

BASICAUTH(u, p, o) = 
(any, p) ∈ o.acl or
(u = o.creator and (creator, p) , p) ∈ o.acl or
(u, p) ∈ o.acl.

Implementation of read

Condition for user u to execute read(o):
o.strict = false and BASICAUTH(u, Read, o) or
o.strict = true and

∀ q ∈ o.dependents, BASICAUTH(u, Read, q)

Effect:
if o.strict = true then 

∀ q ∈ o.dependents, q.readers ← q.readers  {u}∪



Implementation of export

Condition for user u to execute export(o, w):
o.strict = false and BASICAUTH(u, Export, o) or
o.strict = true and w.strict = true and

BASICAUTH(u, Export, o) and BASICAUTH(u, Wrap, w) and
∀ v ∈ w.readers, ∀ q ∈ o.dependents, 

BASICAUTH(v, Read, q) and
w  o.dependents∉

Effect:
if o.strict = true then

∀ v ∈ w.readers, o.readers ← o.readers  {v}∪
w.dependents  w.dependents  o.dependents← ∪
o.ancestors  o.ancestors  w.ancestors← ∪

Use authenticated encryption for key wrapping

Implementation of import

Condition for u to execute import(w, wrapped) in 
strict mode:
BASICAUTH(u, Unwrap, w) and 

w.readers =  ∅ and
w.strict = true and
!  key in DB with same digest as o,∃

where o = unwrap(wrapped)

Effect:
w.dependents  w.dependents  o.dependents← ∪
o.ancestors  o.ancestors  w.ancestors← ∪

Imported key must not yet exist in the system

Destroy and delete

Condition for u to execute destroy(o):
BASICAUTH(u, Destroy, w)

Destroys only the cryptographic material, leaves the 
object attributes in DB

Condition for u to execute delete(o):
BASICAUTH(u, Admin, w)

Destroys the object and its attributes, but 
only if o.dependents = ∅.

Notes

● Model of Cachin-Chandran (CSF '09) has only 
one key server
– Server should keep a global history
– Multiple servers need to synchronize state

● Prototype implementation at IBM Zurich
– All keys and dependency data stored in DB
– Compact representation, independent of history

● Requires system to track all operations

● Experience with prototype shows it is efficient
– No exposure to real world yet
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