
Cryptography for
storage systems

10 May 2013

IBM Research - Zurich

Christian Cachin

Overview

● Encryption in storage systems

● Tweakable encryption

● Integrity protection

● Key management

Encryption in
storage systems

Traditional storage systems:
Inside the box

app

inode

fs

blk

hba

Direct-attached storage

Networked storage systems

NAS
(Network-attached Storage)

net

NFS, CIFS
(TCP/IP)

net

fs

hba

inode

blk

fs

app

SAN
(Storage-area Network)

blk

FC, iSCSI

net

blk

hbanet

inode

fs

app

OBS
(Object Storage)

inode

net

OBS-SCSI
(T10)

net

inode

blk

hba

fs

app

Storage-device models

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access

control
 - space allocation
 - backup ops

Tweakable encryption

Block cipher

● Deterministic, key-dependent transformation
– One input block to one output block
– AES, DES, Blowfish ...
– Blocks size: typically 128 bits (16 bytes)
– Key size: typically 128 bits and more

● Formally block cipher implements a pseudo-
random permutation (PRP)
– Appears like a random permutation to any

computationally bounded observer (who does not
have the key)

● Mode of operation ("chaining" mode) required
– Electronic-codebook mode (ECB) means no chaining

Why a block-cipher mode of
operation?

Plaintext as
bitmap picture

Encrypted in
ECB mode

Encrypted in
secure mode of

operation

Encryption at the block layer

● “Device-level” encryption of 512-byte sectors
● Transparent to storage system → no extra

space available to chaining mode
● IEEE SISW standardization: P1619/ .1 / .2

app

inode

fs

blk

E

Using CBC mode

● Random IV required, but there is no space to store
● → Derive IV from sector address

– IV = EK(disk id || sector address)
– IV = EHash(K)(disk id || sector address)

● Leaks location of first updated block within sector
● Attack possible if adversary may invoke decryption for

some sectors, but not for others

P1

E

C1

K

IV P2

E

C2

K . . .

IV

Tweakable encryption (TwE)

● EK() is a PRP, deterministic after picking K
– Same permutation in every instance

● Tweakable EK,T() is a family of independent
permutations, indexed by T [Liskov, Rivest, Wagner, CRYPTO '02]

– T = address of block

P

E

C

K
(secret)

P

E

C

K T
(public)

EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable

Narrow-block TwE

● Every block in sector encrypted independently
– Tweak is sector address s plus block index i

● Leaks only that block has been updated
● "Better" security against active attacks

Ciphertext in disk sector s

P1

. . .

Pi Pn

EK

s || i

. . .

C1 Ci Cn

Plaintext

Tweaked block
=

 cipher block
(16 bytes)

● XTS-AES mode based on XEX [Rogaway, ASIACRYPT '04]

– Tweak = sector s || block index i
– Key K = K1 || K2
– α in GF(2128), primitive element, αi efficient for i=0,1,2...

● Standardized by IEEE P1619 and NIST SP 800-38E
● Used in practice (e.g., Truecrypt, FDE for disk drives)

Narrow-block TwE mode

Pi

EK1

s

EK2

Pi

•iα

● One tweaked blockcipher encryption per sector
● Tweak is sector address s
● Leaks only that sector has been updated

Wide-block TwE

Ciphertext in disk sector s

P1 Pn

E s

C1 Cn

Plaintext

K

Tweaked block
=

disk sector
(512 bytes)

Wide-block TwE

● Proposed implementations are slower
than AES
– EME2-AES: 2x AES
– XCB-AES: 1x AES + 2x GF(2128)-mult.

● Standardized as IEEE P1619.2 (2010)

● Overhead considered to be (too) costly
– No practical deployment so far

Comparison
CBC mode TwE narrow TwE wide

Passive adversary
- Localize changes First changed All blocks Whole sector
 in encrypted file block in sector that changed (best possible)

Active adversary
- Trigger controlled Change one block None None
 change of plaintext & move blocks

Situation in practice
Deployed Deployed Not used

How realistic are active attacks?
- Encryption in OS kernel, attack requires access to stored bits
- Unlikely for laptops
- More plausible for virtual disk images on cloud storage

Integrity protection

Integrity protection for one
client

● Storage consists of n data items
x1, ..., xn

● Client accesses storage via integrity-
protection layer
– Uses small trusted memory to

store short reference hash value v
(together with encryption keys)

● Integrity layer operations
– Read item and verify w.r.t. v
– Write item and update v

accordingly
Integrity

Client

Trusted
memory

Hash trees for integrity
checking (Merkle trees)

● Parent node is hash of its
children

● Root hash value commits all
data blocks
– Root hash in trusted

memory
– Tree is on extra untrusted

storage

● To verify xi, recompute path
from xi to root with sibling
nodes and compare to trusted
root hash

● To update xi, recompute new
root hash and nodes along path
from xi to root

root

H0 H1

H00 H01 H10 H11

x1 x2 x3 x4

Read & write operations need work
 O(log n)

● Hash operations
● Extra storage accesses

Multi-client integrity
protection

● Single-client solution
– Relies on hash value v
– Stored locally in trusted memory
– Changes after every update operation

● Multiple clients?
– Need to synchronize trusted memories

● Solution with digital signatures
– Every client associated with a

public/private key pair
– Write operation produces signature σ on

hash v
– Client stores signature and hash (, v)σ on

cloud
● Replay attacks

– This approach permits replay attacks ...
– Prevented using trusted coord. service

Integrity

Client Client Client

Multi-client integrity protec-
tion and forking attacks

● Server may present different views to separated clients
– E.g., not show the most recent WRITE operation to a reader
– Creates a "fork" between their histories
– Clients cannot prevent this without communication

● Use fork linearizability [Mazieres, Shasha, PODC '02]:

– If malicious server forks the views of two clients once, then
 their views are forked ever after→
 they never again see each others updates→

● Every inconsistency or integrity violation results in a fork
– Best achievable guarantee for storage on untrusted server
– Forks can be detected on a "cheap" low-security external

channel
● Use only a semi-trusted coordinator [Cachin et al., SIAM J. Comput, 2011]

– Prototype implementation in VENUS [Shraer et al., CCSW 2011]

Key management

Today - Proprietary key mgmt.

Enterprise Cryptographic Environments

Key
Management

System

Disk
Arrays

Backup
Disk

Backup
Tape

Backup
System

Collaboration &
Content Mgmt

Systems

File Server
Portals

Production
Database

Replica

Staging

Enterprise
Applications

eCommerce
Applications

Business
Analytics

Dev/Test
Obfuscation

WANLAN
VPN

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

Key
Management

System

CRM

Email

Future - Standardized key
management

Enterprise Cryptographic Environments

Enterprise Key
Management

Disk
Arrays

Backup
Disk

Backup
Tape

Backup
System

Collaboration &
Content Mgmt

Systems

File ServerPortals

Production
Database

Replica

Staging

Key Management Interoperability Protocol

Enterprise
Applications

Email

eCommerce
Applications

Business
Analytics

Dev/Test
Obfuscation

WANLANVPN

CRM

OASIS Key Management Inter-
operability Protocol (KMIP)
● OASIS...? XML

● Client-server protocol

● Defines objects with attributes, plus operations

– Objects: symmetric keys, public/private keys,
certificates, threshold key-shares ...

– Attributes: identifiers, type, length, lifecycle-state,
lifecycle dates, links to other objects ...

– Operations: create, register, attribute handling ...

OASIS KMIP

● KMIP draft spec prepared by industry group
– HP, IBM, RSA-EMC, nCipher/Thales, Brocade,

Seagate, LSI, NetApp
– IBM- and IBM Zurich-led (editor and TC co-chair)

● OASIS KMIP Technical Committee (2009)
– KMIP v1.0 released in Oct. 2010
– KMIP v1.1 released in Feb. 2013

● http://www.oasis-open.org/committees/kmip/

● Today deployed by multiple vendors in storage-
encryption context

KMIP objects and attributes

● Objects of four types
– Symmetric keys, public keys, private keys,

certificates

● ~50 attributes
– Identifier, state, initialization time, activation time,

deactivation time ...

● Access-control specific attributes
– ACL, usage ...

● KMS accessed by remote users over network

KMIP operations
● Create(id, parameters) → OK
● Derive(id, parent_id, aux_data) → OK

● Store(id, clear_key) → OK
● Import(unwrapping_key_id, wrapped_key) → OK

● Read(id) → clear_key
● Export(id, wrapping_key_id) → wrapped_key

● Read attributes(id) → {attributes}
● Set attributes(id, {new_attributes}) → OK

● Search(id, condition) → {ids}
● Destroy(id) → OK -- deletes key, but leaves attributes intact
● Delete(id) → OK -- deletes key and attributes (if possible)

Most ops. are straightforward, but some involve cryptography.

Access control model for KMIP

● Users
– Determined by user registry (e.g., LDAP)
– Special users: any, creator

● Permissions
– Per-object

● Admin, Derive, Destroy, Export, Read,
ReadAttributes, Unwrap, Wrap

– Per-user
● Create, Store

● Ever object o has an acl attribute
 o.acl ⊂ {(u, p) | u ∈ Users, p ∈ Permissions}

A key server is a crypto API

● Key server executes cryptographic operations

● So far, cryptographic security APIs have been
linked to secure hardware tokens (IBM CCA,
PKCS #11 ...)

● We extend the study of cryptographic security
APIs to
– Key-management systems on a network
– Accessed by multiple users

Cryptographic tokens?
Cryptographic processors
Hardware security modules (HSM)

● Crypto co-processor in
tamper-proof enclosure

● Keys never leave
token in clear

● Executes all
cryptographic
operations with keys

Token

User

Admin

User
User

Commercial crypto tokens

HP Atalla Ax160

Tamper-resistant and -responsive according to FIPS 140-2, up to Level 4

IBM 4765

Infineon TPMnCipher/Thales netHSM

Why cryptographic tokens?

"Cryptographic keys must not leave secure HW."

● Introduce a separation between:
– Administration of keys security officer→
– Administration of servers server operator→

 Fewer opportunities for insider attacks→

● Found in many corporate environments
– Government, finance, telecom ...

● But also in your pocket
– Smartcards, SIM cards, transport tickets ...

Interacting with a token

● User u authenticates to token
u ∈ {security-officer, application}

● u invokes operations through Crypto API
– Operations on payload

● Encrypt, decrypt, sign, verify ...
– Key-management operations

● Create, store, read*, update* key
● Derive key from a parent key
● Wrap key / export
● Unwrap key / import

* Restricted to admin!

● Standardized interfaces
– PKCS #11 [EMC/RSA]
– Common cryptographic architecture (CCA) [IBM]

Problems with crypto APIs (1)

● Legacy API policies are often "underspecified"
– Nevertheless, they aim to protect keys

● Purely logical attacks → API attacks
– Expose a protected key [Anderson, Bond, Clulow]

● Example attack on PKCS #11
– Sensitive keys must not be exposed in clear
– PKCS #11 denies read operation by user u ≠ admin

if key k is sensitive
– But allows u to wrap k under a non-sensitive key d
→ user u wraps k under d and reads d
→ this exposes k in clear

Problems with crypto APIs (2)

● Why?

● Why is access control with simple read/write
permissions not enough to protect keys?

● Because keys may depend cryptographically on
other keys
– Only cryptographic operations create such

dependencies

● Propose to keep track of dependencies with a
model for strict access control [Cachin, Chandran, CSF '09]

Dependencies among keys

● Key k depends on a key p ⇔
– Key k was derived from p

● derive(a,c), derive(a,d), derive(a,e) ...
– Key k was wrapped under p

● wrap(c,g), wrap(b,e) ...

i

c
d

ba

e f

g
h

New attributes for keys

● strict {false, true}∈
– Determines if object governed by "strict policy"

● dependents Objects⊆
– Other objects whose cryptographic value can be

computed from the cryptographic value of the object

● ancestors Objects⊆
– Other objects on which the object depends

● readers Users⊆
– Users who have executed read(k) for

some key k such that object k.dependents∈

Basic and strict policies

● If o.strict = true, then o benefits from
strict security policy

● Otherwise, o underlies basic access-control
policy

● Strict security policy respects dependencies
between keys in access decisions

Basic authorization

Basic authorization rule of permission p
for user u on object o:

BASICAUTH(u, p, o) =
(any, p) ∈ o.acl or
(u = o.creator and (creator, p) , p) ∈ o.acl or
(u, p) ∈ o.acl.

Implementation of read

Condition for user u to execute read(o):
o.strict = false and BASICAUTH(u, Read, o) or
o.strict = true and

∀ q ∈ o.dependents, BASICAUTH(u, Read, q)

Effect:
if o.strict = true then

∀ q ∈ o.dependents, q.readers ← q.readers {u}∪

Implementation of export

Condition for user u to execute export(o, w):
o.strict = false and BASICAUTH(u, Export, o) or
o.strict = true and w.strict = true and

BASICAUTH(u, Export, o) and BASICAUTH(u, Wrap, w) and
∀ v ∈ w.readers, ∀ q ∈ o.dependents,

BASICAUTH(v, Read, q) and
w o.dependents∉

Effect:
if o.strict = true then

∀ v ∈ w.readers, o.readers ← o.readers {v}∪
w.dependents w.dependents o.dependents← ∪
o.ancestors o.ancestors w.ancestors← ∪

Use authenticated encryption for key wrapping

Implementation of import

Condition for u to execute import(w, wrapped) in
strict mode:
BASICAUTH(u, Unwrap, w) and

w.readers = ∅ and
w.strict = true and
! key in DB with same digest as o,∃

where o = unwrap(wrapped)

Effect:
w.dependents w.dependents o.dependents← ∪
o.ancestors o.ancestors w.ancestors← ∪

Imported key must not yet exist in the system

Destroy and delete

Condition for u to execute destroy(o):
BASICAUTH(u, Destroy, w)

Destroys only the cryptographic material, leaves the
object attributes in DB

Condition for u to execute delete(o):
BASICAUTH(u, Admin, w)

Destroys the object and its attributes, but
only if o.dependents = ∅.

Notes

● Model of Cachin-Chandran (CSF '09) has only
one key server
– Server should keep a global history
– Multiple servers need to synchronize state

● Prototype implementation at IBM Zurich
– All keys and dependency data stored in DB
– Compact representation, independent of history

● Requires system to track all operations

● Experience with prototype shows it is efficient
– No exposure to real world yet

References

● Christian Cachin, Nishanth Chandran. "A secure
cryptographic token interface." In Proc. Computer Security
Foundations (CSF), 2009.

● Mathias Björkqvist, Christian Cachin, Robert Haas, Xiao-Yu
Hu, Anil Kurmus, René Pawlitzek, and Marko Vukolic. "Design
and implementation of a key-lifecycle management system."
In Proc. Financial Cryptography, 2010.

● OASIS Key Management Interoperability Protocol (KMIP)
Technical Committee, "Key Management Interoperability
Protocol Version 1.1" OASIS Standard, 2013.
https://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip

	Slide 1
	Slide 2
	Slide 3
	DAS
	NAS, OBS, SAN
	NAS-, OBS-, SAN-Devices
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

