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6 Distributed Cryptography

6.1 Motivation
Distributed cryptography [Des94] spreads the operation of a cryptosystem in a fault-tolerant
way among a group of parties, which may correspond to processes or servers. We consider the
threshold failure model with n parties, of which up to f are faulty; such distributed cryptosys-
tems are called threshold cryptosystems.

Distributed cryptosystems are based on secret sharing and constitue distributed protocols
that tolerate faulty parties. They are typically known only for public-key cryptosystems because
of their “nice” algebraic properties. Here we consider a public-key cryptosystem and a digital
signature scheme.

For cryptographic protocols, one distinguishes between a passive and an active adversary
that may corrupt some parties. In protocols tolerating a passive adversary, the corrupted parties
follow the protocol, but they try to obtain more information than they are entitled, by leaking
secret information and by combining their knowledge. With an active adversary, the corrupted
parties may behave arbitrarily and protocols must be robust such that the faulty parties cannot
prevent the correct parties from achieving their goal.

The necessary cryptographic background for this section can be found in standard text-
books [PP09, Sma04, KL07].

6.2 Secret Sharing
Secret sharing forms the basis of threshold cryptography. In a (f + 1)-out-of-n secret sharing
scheme, a secret s, element of a finite field Fq, is shared among n parties such that the cooper-
ation of at least f + 1 parties is needed to recover s. Any group of f or fewer parties should
not get any information about s.

Algorithm 1. To share s ∈ Fq, a dealer D 6∈ {P1, . . . , Pn} chooses uniformly at random a
polynomial a(X) ∈ Fq[X] of degree f subject to a(0) = s, generates shares si = a(i), and
sends si to Pi for i = 1, . . . , n. To reconstruct s among a group of f +1 parties with indices in
a set S, every party reveals its share and they publicly recover the secret by computing

s = a(0) =
∑
i∈S

λS0,i si,

where
λS0,i =

∏
j∈S,j 6=i

j

j − i

are the (easy-to-compute) Lagrange coefficients. The scheme has perfect security, i.e., the
shares held by every group of f or fewer parties are statistically independent of s (as in a
one-time pad).

1



Verifiable Secret Sharing. If the dealer D may also be faulty (i.e., suffer from crashes, devi-
ate from the protocol, or corrupted by an adversary), we need a verifiable secret sharing (VSS)
scheme. This is a fault-tolerant protocol that ensures two goals: First D should distribute con-
sistent shares such that every group of parties qualified to recover the secret will recover the
same value and, second, there should be agreement in the sense that if some party terminates
the sharing successfully, then every other correct party eventually also terminates successfully.
VSS is an important building block for more complex distributed cryptographic protocols, for
instance, in secure multi-party computation [Fel87, Ped92].

Distributed Key Generation. There are also distributed key-generation (DKG) protocols for
generating a public key and a sharing of the corresponding secret key in the presence of cor-
rupted parties. These protocols ensure that the corrupted parties cannot bias the selection of
the key and that they learn no information about the secret key. DKG protocols have been
designed and implemented for the common public-key cryptosystems, those based on discrete
logarithms and on RSA. Most of these protocols have been developed for synchronous net-
works and tolerate a passive adversary, but some work also under weaker assumptions, i.e., in
an asynchronous model and with an active adversary.

6.3 Threshold ElGamal Cryptosystem
Discrete Logarithms. Let G =< g > be a group of prime order q, such that g is a generator
of G. The discrete logarithm problem (DLP) means, for a random y ∈ G, to compute x ∈ Zq
such that y = gx. The Diffie-Hellman problem (DHP) is to compute gx1x2 from two random
values y1 = gx1 and y2 = gx2 .

It is conjectured that there exist groups in which solving the DLP and DHP is hard, for
example, the multiplicative subgroup G ⊂ Z∗p of order q, for some prime p = mq + 1 (recall
that q is prime). For example, |p| = 2048 and |q| = 256 for 2048-bit discrete-logarithm-based
cryptosystems, which is considered secure today. Using the language of complexity theory,
to say that a problem is hard means that any efficient algorithm solves it only with negligible
probability. (Formally, this is defined using complexity-theoretic notions [Gol04, KL07]: there
is a security parameter k, an efficient algorithm is probabilistic and runs in time bounded by a
fixed polynomial in k, and a negligible function is smaller than any polynomial fraction.)

Public-key Cryptosystem. A public-key cryptosystem is a triple (K,E,D) of efficient algo-
rithms. Algorithm K generates a pair of keys (pk , sk) and is probabilistic. The encryption
algorithm E is probabilistic and the decryption algorithm D is (usually) deterministic; they
have the property that for all (pk , sk) generated by K and for any plaintext message m, the
probability that D(sk ,E(pk ,m)) 6= m is negligible.

A public-key cryptosystem is semantically secure if no efficient adversary A can find two
messages m0 and m1 such that A can distinguish their encryptions. More precisely, A runs
in two stages and first outputs m0 and m1; then a random bit b is chosen and A is given
c = E(pk ,mb); A can distinguish encryptions if it can guess b from c correctly with more than
negligible probability. Semantic security provides security against a passive adversary, but not
against an active one.
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ElGamal Cryptosystem. The ElGamal cryptosystem is based on the Diffie-Hellman prob-
lem: Key generation chooses a random secret key x ∈ Zq and computes the public key as y =
gx. The encryption of m ∈ {0, 1}k under public-key y is the tuple (c1, c2) = (gr,m⊕H(yr)),
computed using a randomly chosen r ∈ Zq and a hash function H : G→ {0, 1}k. The decryp-
tion of a ciphertext (c1, c2) is m̂ = H(c1

x) ⊕ c2. One can easily verify that m̂ = m because
c1
x = grx = gxr = yr, and therefore, the argument to H is the same in encryption and de-

cryption. The scheme is considered secure against passive adversaries. (For actually proving
that breaking semantic security is as hard as solving the DHP, one has to use the random-oracle
model.)

Threshold ElGamal Cryptosystem. The following (f + 1)-out-of-n threshold ElGamal
cryptosystem tolerates the passive corruption of f < n/2 parties.

Let the secret key x be shared among P1, . . . , Pn using a polynomial a of degree f over Zq
such that Pi holds a share xi = a(i). The global public key y = gx is known to all parties, and
encryption proceeds as in standard ElGamal above. For decryption, a client sends a decryption
request containing c1, c2 to all parties. Upon receiving a decryption request, party Pi computes
a decryption share di = c1

xi and sends it to the client. Upon receiving decryption shares from
a set of f + 1 parties with indices S, the client computes the message as

m = H
(∏
i∈S

di
λS0,i

)
⊕ c2.

This works because ∏
i∈S

di
λS0,i =

∏
i∈S

c1
xiλ

S
0,i = c1

∑
i∈S xiλ

S
0,i = c1

x

from the properties of Algorithm 1. Note that the decryption operation only requires the co-
operation of f + 1 ≤ n − t parties, therefore it succeeds even if the faulty parties do not
participate.

This is an example of a non-interactive threshold cryptosystem, as no interaction among the
parties is needed. It can also be made robust, i.e., secure against an active adversary [SG02].
Non-interactive threshold cryptosystems can easily be integrated in asynchronous distributed
systems; other threshold cryptosystems are only known under the stronger assumption of syn-
chronous networks with broadcast.

6.4 Threshold RSA Signature Scheme
Threshold versions of the RSA cryptosystem and the RSA signature scheme are more difficult
to obtain than for discrete-logarithm-based schemes. The reason is that the order of the group,
from which the secret exponents are drawn, must not be revealed.

Digital Signature Scheme. A digital signature scheme is a triple (K,S,V) of efficient al-
gorithms. The key generation algorithm K outputs a public key/private key pair (pk, sk). The
signing algorithm S takes as input the private key and a messagem, and produces a signature σ.
The verification algorithm V takes the public key, a message m, and a putative signature σ, and
outputs a bit that indicates whether it accepts or rejects the signature. The signature is valid for
the message when V accepts. All signatures produced by the signing algorithm must be valid.
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A digital signature scheme is secure against existential forgery if no efficient adversary A
can output any message together with a valid signature that was not produced by the legitimate
signer. More formally, A is given pk and is allowed to request signatures on a sequence of
messages of its choice, where any message may depend on previously obtained signatures. If
A can output a message whose signature it never requested, then the adversary has successfully
forged a signature. A signature scheme is secure if any efficient A can forge a signature only
with negligible probability.

RSA Signature Scheme. Let N = pq be the product of two primes of approximately equal
length. For example, |p| = |q| ≈ 1024 in the case of RSA with 2048 bits, which is considered
secure today. The group Z∗N has order ϕ(N) = (p− 1)(q − 1); it is believed that the only way
to compute ϕ(N) requires knowledge of the prime factorization of N . RSA also uses a hash
function H : {0, 1}∗ → Z∗N .

Algorithm K chooses two random primes p and q and a (potentially fixed) prime e. Then it
computes N = pq and d ≡ e−1 mod ϕ(N), and outputs sk = d and pk = (N, e).

To sign a message m, algorithm S computes σ = H(m)d in Z∗N , i.e., modulo N . The
verification algorithm V tests if a signature σ is valid for a message m by checking whether
σe

?
= H(m) in Z∗N .

Threshold RSA Signature Scheme. Given the number-theoretic structure of RSA, one can-
not perform interpolation “in the exponent” as in the discrete-log setting because the order of
the group, ϕ(N), must remain secret.

A simple n-out-of-n threshold signature scheme can be obtained nevertheless, by using
additive sharing of the private key over the integers. It provides security against a passive
adversary. The dealer chooses random values di ∈ Z for i = 1, . . . , n such that d ≡

∑n
i=1 di

mod ϕ(N). In order not to reveal information about d or ϕ(N), the di are chosen with bit
length significantly larger than d, e.g., |di| ≈ |d|+ 160. This method hides d statistically.

To set up the scheme, the dealer generates an RSA key pair and shares d among P1, . . . , Pn
over the integers, such that Pi receives di.

To sign a message m, a client sends the request to all parties; a party Pi computes a sig-
nature share σi = H(m)di and returns σi to the client. From n received signature shares, the
client computes the signature σ =

∏n
i=1 σi in ZN . Note that

σ =
n∏
i=1

σi =
n∏
i=1

H(m)di = H(m)
∑n

i=1 di = H(m)d

because d ≡
∑n

i=1 di mod ϕ(N). Verification is the same as with ordinary RSA signatures.
The drawback of this scheme is that the cooperation of all n parties is required for sign-

ing because additive sharing is used. Nevertheless, it is also possible to use a polynomial
sharing and to obtain a truly fault-tolerant RSA-based threshold signature scheme. Shoup’s
scheme [Sho00, GHKR08], for example, is robust, i.e., secure against an active adversary, and
is also non-interactive, which makes it suitable for use in asynchronous distributed systems.

6.5 A Distributed Pseudo-Random Function
A pseudo-random function (PRF) Fx : {0, 1}∗ → {0, 1}k is parameterized by a secret key x
(called the seed) and maps an arbitrary-length input string to a fixed-length, k-bit output string
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that looks random to anyone who does not know the secret key. More formally, the PRF is
secure if any efficient adversary who queries an oracle with distinct inputs cannot tell, with
better than negligible probability, whether the oracle responds to the queries by evaluating the
PRF on a random seed (known only to the oracle) or whether the oracle responds every time
with a k-bit string freshly chosen at random with uniform distribution [Gol04].

In practice one often implements a PRF by a block cipher with a secret key; distributed
implementations, however, are only known for functions based on public-key cryptosystems.
Cachin et al. [CKS05] describe the following threshold PRF, which is suitable for integration
in distributed protocols.

Algorithm 2. The scheme uses a group G = < g >, in which the DLP is hard; Let x be a
randomly chosen seed and define a Fx : {0, 1}∗ → {0, 1}k as

Fx(v) = H ′
(
H(v)x

)
,

where H : {0, 1}∗ → G and H ′ : G → {0, 1}k are two hash functions. The family F = {Fx}
is a pseudorandom function, assuming the hardness of the DLP (which can proven formally
when H is modeled as a so-called random oracle).

A threshold PRF can be obtained analogously to threshold ElGamal encryption. Let a
trusted dealer choose the seed x and share it among the parties with (f+1)-out-of-n polynomial
secret sharing, such that party Pi holds share xi. When it is time to compute Fx(v), every
correct party Pi computes a function share di =

(
H(v)

)xi and releases di according to the
protocol. Any f + 1 correctly computed function shares, from parties with indices in a set S ,
yield the value of the PRF,

Fx(v) = H ′
(∏
i∈S

di
λS0,i

)
.

Writing h = H(v), this is correct because (computed in G)∏
i∈S

di
λS0,i =

∏
i∈S

hxiλ
S
0,i = h

∑
i∈S xiλ

S
0,i = hx.

One can show that this does not leak information about x, under the assumption that the DLP
is hard.

This threshold PRF can implement many instances of a common coin primitive, in order
to output a sequence of shared coins coin.0, coin.1, . . . , as needed by randomized (Byzantine)
consensus protocols [CGR11, Sections 5.5 and 5.7]. Concretely, one sets the output length
of the PRF to k = 1 and lets the input string v for the coin instance of round r be equal to
v = coin.r, where the identifier of the instance is represented as a bit string. As usual, the
identifier coin must be unique for all such protocol instances, and it must also be contained in
every message and included in all signatures.

The threshold pseudorandom function is non-interactive. This means that no interaction
among the parties is needed to compute the function value. To implement the release operation
of the common coin instance coin.r, every party computes its function share (di) and sends it
to all others; then every party collects f + 1 such shares and combines them to the coin output
value b = Fx(coin.r).

The threshold PRF as described here tolerates only a passive adversary, but one can make it
robust against an active adversary by adding zero-knowledge proofs for the correctness of the
function shares generated by the parties [CKS05].
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6.6 Proactive Security
6.6.1 Model

A proactively secure cryptosystem is a threshold cryptosystem using a group of n parties, where
the shares of the parties are periodically refreshed [HJJ+97]. Recall that in an (f + 1)-out-of-
n-threshold (public-key) cryptosystem, every party holds a share of the private key, which is
generated using secret sharing with a polynomial of degree f . In order to execute a crypto-
graphic operation, at least f + 1 parties must collaborate, and up to f parties may be faulty.
Moreover, executing the operation does not leak any information about one party’s share to
another party or require the parties to pool their shares.

For high-value keys with a long lifetime, however, there is a risk that an attack spreads
through the system and over time affects all parties, although not all of them simultaneously.
For instance, an adversary may slowly break into one party after another over time. Even when
such break-ins can be detected, the exposure of a key share to the adversary cannot be undone.

Proactively secure systems perform system rejuvenation steps periodically, in anticipation
of successful break-ins, and render leaked key shares harmless, in order to eliminate the long-
time exposure problem. To implement this, proactive cryptosystems periodically refresh the
shares held by the parties, such that a share exposed in a particular period is useless to an
adversary in subsequent periods. The renewed shares still correspond to the same long-term
private key, so that the long-term public key can remain unchanged.

In this section we assume for simplicity that the parties are synchronized and have access
to a common clock and to a synchronous broadcast channel (in contrast to the rest of the
course, which uses an asynchronous system). Furthermore, the parties are connected by secure
channels, i.e., they can send private and authenticated point-to-point messages.

Time is divided into periods, determined by the common clock (for example, one day).
Each time period consists of two phases: (1) a short refresh phase, during which the parties
carry out the refresh protocol so that they hold fresh shares afterwards; and (2) a long compu-
tation phase, where the parties execute operations of the cryptosystem.

Infected parties should be rebooted and re-initialized by a trusted agent (e.g., from a read-
only device) after a corruption has been discovered. We assume the adversary cannot imper-
sonate a disinfected party, and may no longer send messages in its name or receive messages
addressed to it. Proactive cryptosystems tolerate up to f corrupted parties during every period,
but all parties may be corrupted over the lifetime of the system. A corrupted party that has been
disinfected in one period will be correct in the subsequent period, and a corrupted party that
has not been disinfected remains corrupted also in the subsequent period (in particular, it may
participate in the refresh protocol). In order not to leak secrets from past periods, it must be
possible for a party to erase information permanently.

6.6.2 Proactive Refresh Tolerating Passive Attacks

Suppose the n parties hold a polynomial sharing of the private key x for a discrete logarithm-
based cryptosystem with public key y = gx. The following proactive resharing protocol
achieves privacy against a passive adversary.

Algorithm 3 (Proactive refresh [HJKY95]). At the begin of the refresh phase, every party Pi
holds a share xi = a(i) =

∑t
k=0 aki

k from the previous period. The refresh protocol consists
of two steps:
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1. Every party Pi chooses uniformly at random a polynomial b(i)(X) ∈ Fq[X] of degree f
subject to b(i)(0) = 0. It generates shares rij = b(i)(j) for j = 1, . . . , n, and sends rij
to Pj as a private point-to-point message. (Essentially, Pi acts as the dealer to share the
value 0 using polynomial secret sharing.)

2. After receiving n shares rji, for j = 1, . . . , n, party Pi computes its new share in Zq as

x′i = xi +
n∑
j=1

rji.

Then it erases all variables except x′i.

At the end of the refresh phase, Pi uses x′i as its fresh share for the computation phase of the
period.

Theorem 4. Provided n > 2t, Algorithm 3 ensures that:

1. When the input shares x1, . . . , xn are a (f + 1)-out-of-n sharing of x, then the output
shares x′1, . . . , x

′
n are also a (f + 1)-out-of-n sharing of x.

2. An adversary that observes the secrets of at most f parties in every period learns no
information about the private key x.

Proof (sketch). To show the first condition (correctness), note that Pi basically shares the value
0 in a polynomial secret sharing scheme using b(i)(X). Given the sharing polynomial f(X) of
the previous period, the addition of all shares produces a new sharing polynomial

a′(X) = a(X) +
n∑
j=1

b(j)(X).

And since b(j)(0) = 0 for all j = 1, . . . , n, it holds a′(0) = a(0).
In other words, suppose that there is a group S of f+1 parties that could recover the private

key from the previous sharing as x = a(0) =
∑

i∈S λ
S
0,ixi, with Lagrange coefficients λS0,i for

i ∈ S. Then, the recover operation from the new shares gives

∑
i∈S

λS0,ix
′
i =

∑
i∈S

λS0,i

(
xi +

n∑
j=1

rji

)

=
∑
i∈S

λS0,ixi +
∑
i∈S

λS0,i

n∑
j=1

b(j)(i) = x+
n∑
j=1

b(j)(0) = x.

To show the second condition (secrecy), suppose the adversary corrupts fprev parties in the
previous period but not in the current period (these parties have been disinfected), fboth parties
in the previous period and in the current period (they remain corrupted during the refresh
protocol), and fcurr parties only in the current period (they may be corrupted already during
the refresh protocol). The assumption means that fprev + fboth ≤ f and fboth + fcurr ≤ f .

For every possible value of x, since the shares rij are sent privately and the adversary
never learns more than f shares of any polynomial a(i) that is generated by a correct Pi, all
information that it observes is consistent with x. Hence, it learns no information about x.
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6.6.3 More Robust Proactive Refresh

Algorithm 3 can be made robust so that it tolerates a Byzantine-faulty parties. One problem
with the above protocol is that a corrupted party in step 1 may send inconsistent share values rij
or simply “share” a value 6= 0, so that the parties no longer hold a correct sharing of the private
key. The extensions described by Herzberg et al. [HJKY95] and Gennaro et al. [GJKR07] use
the mechanisms of VSS to prevent this attack.

Proactive cryptosystems for asynchronous networks also build on the principles presented
here [CKLS02, KG09].
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