
Security and Fault-tolerance in Distributed Systems ETHZ, Spring 2013
Christian Cachin & Pavel Raykov www.zurich.ibm.com/˜cca/

Exercise 6

1 Emulating a (1, N) Register from (1, 1) Registers
Consider the implementation in Algorithm 1 of a (1, N) register, instance onr, from an array of
N instances of so-called base registers. This algorithm sends no messages explicitly, it merely
reduces one abstraction to another one. It is an example of an algorithm in the so-called shared
memory-model.

The unique writer process of the (1, N) register is p. The base registers are (1, 1) registers,
denoted br.q for q ∈ Π, such that only process p may write to instance br.q and only process q
may read from it. (Recall that self denotes the process executing the algorithm. The consis-
tency property of the registers, whether they are safe, regular, or atomic, is specified later.)

Algorithm 1: Multi-Reader Emulation

Implements:
(1, N)-Register, instance onr. // the writer is p

Uses:
(1, 1)-Register (multiple instances).

upon event 〈 onr, Init 〉 do
writeset := ∅;
forall q ∈ Π do

Initialize a new instance br.q of (1, 1)-Register with writer p and reader q;

upon event 〈 onr, Read 〉 do
trigger 〈 br.self , Read 〉;

upon event 〈 br.self , ReadReturn | v 〉 do
trigger 〈 onr, ReadReturn | v 〉;

upon event 〈 onr, Write | v 〉 do // only the writer p
forall q ∈ Π do

trigger 〈 br.q, Write | v) 〉;

upon event 〈 br.q, WriteReturn 〉 do // only the writer p
writeset := writeset ∪ {q};
if writeset = Π then

writeset := ∅;
trigger 〈 onr, WriteReturn 〉;

1



Answer these questions and justify your answers:

(a) Let the array br.q for q ∈ Π be safe binary (1, 1)-registers. Show that the emulation
produces a safe binary (1, N)-register instance onr.

(b) If we replace the N safe registers br.q for q ∈ Π with an array of regular binary (1, 1)-
registers (i.e., registers that only store one bit), does the algorithm implement a regular
binary (1, N)-register?

(c) If we replace the N safe registers br.q for q ∈ Π with an array of regular multi-valued
(1, 1)-registers, does the algorithm implement a regular multi-valued (1, N)-register?

2 Reliable Storage with Crashes and Recoveries
In the fail-recovery model we consider crash-recovery process failures [CGR11, Section 2.2.4].
This means that also a correct process may crash, as long as it recovers later. To be more
precise, a correct process in this model is one that either never crashes or one that eventually
recovers and never crashes again. All other processes are faulty.

When a process recovers, a special 〈 Recovery 〉 event is triggered by the runtime system;
an algorithm can react accordingly. All local state of a process is lost after a crash, apart from
data in stable storage. A process has two operations, called store and retrieve, for writing to
and reading from stable storage. The content of stable storage is not affected by crashes.

Modify the “Majority Voting” algorithm for a (1, N) regular register, which was discussed
in class, so that it works in the fail-recovery model. Try to store as few variables in stable
storage as needed.

Your algorithm should use stubborn point-to-point links and stubborn best-effort broadcast
primitives [CGR11, Sections 2.4.3 and 3.5.1], which are defined just like point-to-point links
and best-effort broadcast primitives, except that they deliver every message sent on them not
only once (as usual) but over and over (infinitely many times). This is needed for the fail-
recovery model, and implies your algorithm should filter duplicate messages.

3 Flooding Uniform Consensus
Can we optimize Algorithm 5.3 [CGR11] (Flooding Uniform Consensus) to save one or more
communication rounds? More preicsely, can it be modified such that all correct processes
always decide after N − 1 or fewer rounds? (Consider a system of two processes only.)

2


