Security and Fault-tolerance in Distributed Systems Christian Cachin & Pavel Raykov ETHZ, Spring 2013 www.zurich.ibm.com/~cca/

Exercise 8

This text has been updated on 3 May 2013.

1 Group Key Agreement

The well-known *Diffie-Hellman* protocol provides a protocol for two parties to agree on a secret key by exchanging public messages. Recall the mathematical setting of ElGamal encryption. Parties P_1 and P_2 have public keys $y_1 = g^{x_1}$ and $y_2 = g^{x_2}$, respectively, where $x_1 \in_R \mathbb{Z}_q$ and $x_2 \in_R \mathbb{Z}_q$ are the respective secret keys. P_1 sends y_1 to P_2 and P_2 computes $c_2 = y_1^{x_2}$. Analogously, P_2 sends y_2 to P_1 and P_1 computes $c_1 = y_2^{x_1}$. Note that $c_1 = c_2$. This value can now serve as their secret key, since no adversary who overheard the public messages gains any useful information about c_1 . (In real life, one must use $H(c_1)$ for the secret key and take several further measures to secure the protocol against man-in-the-middle attacks.)

We want to generalize the Diffie-Hellman protocol to n > 2 parties, which should all obtain the same secret key.

A simple 3-party key agreement protocol for P_1, P_2, P_3 proceeds in three steps:

- 1. P_i (for i = 1, ..., 3) chooses $x_i \in_R \mathbb{Z}_q$ and sends $a_i = g^{x_i}$ to all;
- 2. P_i computes $b_{j,i} = a_j^{x_i}$ for $j \neq i$ and sends the *b* values to all; and
- 3. P_i computes $c_i = b_{j,l}x_i$ for the pair (j, l) such that $j \neq i$ and $l \neq i$. Note that $c_1 = c_2 = c_3$.

At the end, every party obtains the same secret key c_1 , but an adversary who observes all messages does not learn any useful information about c_1 .

- a) This protocol incurs a cost of O(n) all-to-all messages and communicates $\Omega(2^n)$ group elements overall. Improve the algorithm such that only $O(n^2)$ group elements are communicated. More specifically, have the parties send messages in a ring for O(n) steps; it should take O(n) messages and the size of each message should be O(n) elements of G.
- b) How can the size of each message be reduced to a constant number of group elements from G? In total, this optimization should communicate only O(n) group elements. Exploit the knowledge of the group order; therefore, for given $x \in \mathbb{Z}_q$, a party can compute an inverse y such that $g^{xy} = 1$.
- c) This family of protocols assumes a model where all parties are correct, no party may even crash. The protocol protects them against an outside eavesdropper. In this model, the following *canonical* protocol would also achieve the goal of establishing a common key: one designated party chooses the group key at random; every party generates its own key pair and sends the public key to the designated party; finally, the designated party encrypts the group key

Discuss differences between the group key-agreement protocol and the canonical protocol.