1 Introduction

Goals

- Explain principles behind reliable and secure distributed systems.
- Exploit replication as the primary means to tolerate faults.
- Describe some real-world applications in cluster computing and cloud computing.

Overview of topics

- 1. Dependability
- 2. Reliable broadcast
- 3. Distributed storage
- 4. Consensus
- 5. System examples
- 6. Distributed cryptography and proactive recovery
- 7. Integrity and confidentiality for data stored by untrusted servers
- 8. Confidentiality for computation on untrusted servers

Models

Components: processes/parties, network channels, message passing.

Time: synchronous, partially synchronous, asynchronous.

Channels: point-to-point, broadcast, reliable, authenticated, secret.

Failures: fail-stop, crash, omission, crash/recovery, arbitrary (Byzantine).

Formal models: I/O automata, non-determinism, unbounded time (for distributed systems),

Turing machines, polynomially-bounded time (for cryptography).

Techniques

Distributed communication: reliable broadcast, causality, view-synchrony, view-based group communication; consensus, impossibility of asynchronous consensus; failure detectors; consensus, atomic broadcast, atomic commit; service replication.

Distributed cryptography: secret sharing; threshold cryptography, threshold encryption, threshold signatures, and threshold pseudorandomness; proactive security.

Service replication: primary-backup, state machine-replication, atomic broadcast.

Data replication: quorums, distributed storage, erasure coding.

Applications

Cluster computing: Group communication, Yahoo!'s ZooKeeper group synchonization service.

Distributed services: Cloud platforms, Domain Name System (DNS) security.

Distributed storage: Amazon's Dynamo, Windows Azure storage, IBM's GPFS distributed file system.

Literature

References are posted on the course website:

http://www.zurich.ibm.com/~cca/sft13/