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Abstract

A group of mutually trusting clients outsources an arbitrary computation service to a remote provider,
which they do not fully trust and that may be subject to attacks. The clients do not communicate
with each other and would like to verify the integrity of the stored data, the correctness of the remote
computation process, and the consistency of the provider’s responses.

We present a novel protocol that guarantees atomic operations to all clients when the provider is
correct and fork-linearizable semantics when it is faulty; this means that all clients which observe
each other’s operations are consistent, in the sense that their own operations, plus those operations
whose effects they see, have occurred atomically in same sequence. This protocol generalizes pre-
vious approaches that provided such guarantees only for outsourced storage services.

1 Overview

Today many users outsource generic computing services to large-scale remote service providers and no
longer run them locally. Commonly called the cloud computing model, this approach carries inherent
risks concerning data security and service integrity.

Whereas data can be stored confidentially by encrypting it, ensuring the integrity of remote data and
outsourced computations is a much harder problem. A subtle change in the remote computation, whether
caused inadvertently by a bug or deliberately by a malicious adversary, may result in wrong responses
to the clients. Such deviations from a correct specification can be very difficult to spot manually.

Suppose a group of clients, whose members trust each other, relies on an untrusted remote server
for a collaboration task. For instance, the group stores its project data on a cloud service and accesses
it for coordination and document exchange. Although the server is usually correct and responds prop-
erly, it might become corrupted some day and respond wrongly. This work aims at discovering such
misbehavior, in order for the clients to take some compensation action.

When the service provides data storage (read and write operations only), some well-known methods
guarantee data integrity. With only one client, a memory checker [1] ensures that a read operation always
returns the most recently written value. If multiple clients access the remote storage, they can combine
a memory checker with an external trusted infrastructure (like a directory service or a key manager in a
cryptographic file system), and achieve the same guarantees for many clients.

But in the asynchronous network model without client-to-client communication considered here,
nothing prevents the server from mounting a forking attack, whereby it simply omits the operations of
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one client in its responses to other clients. Mazières and Shasha [14] put forward the notion of fork-
linearizability, which captures the optimal achievable consistency guarantee in this setting. It ensures
that whenever the server’s responses to a client A have ignored a write operation executed by a client B,
then A can never again read a value written by B afterwards and vice versa. With this notion, the clients
detect server misbehavior from a single inconsistent operation — this is much easier than comparing the
effects of all past operations one-by-one.

This paper makes the first step toward ensuring integrity and consistency for arbitrary computing
services running on an untrusted server. It does so by extending untrusted storage protocols providing
fork-linearizability to a generic service protocol with fork-linearizable semantics. Previous work in this
model only addressed integrity for a storage service, but could not check the consistency of more general
computations by the server.

Similar to the case of a storage service, the server can readily mount a forking attack by split-
ting the group of clients into subgroups and responding consistently within each subgroup, but not
making operations from one subgroup visible to others. Because the protocol presented here ensures
fork-linearizability, however, such violations become easy to discover. The method therefore protects
the integrity of arbitrary services in an end-to-end way, as opposed to existing techniques that aim at
ensuring the integrity of a computing platform (e.g., the trusted computing paradigm).

Our approach requires that (at least part of) the service implementation is known to the clients,
because they need to double-check crucial steps of an algorithm locally. In this sense, the notion of
fork-linearizable service integrity, as considered here, means that the clients have collaboratively verified
every single operation of the service. This strictly generalizes the established notion of fork-linearizable
storage integrity. A related notion for databases is ensured by the Blind Stone Tablet protocol [18].

2 Contributions

We present the first precise model for a group of mutually trusting clients to execute an arbitrary service
on an untrusted server S, with the following characteristics. It guarantees atomic operations to all clients
when S is correct and fork-linearizability when S is faulty; this means that all clients which observe each
other’s operations are consistent, in the sense that their own operations, plus those operations whose
effects they see, have occurred atomically in same sequence.

Furthermore, we generalize the concept of authenticated data structures [15] toward executing ar-
bitrary services in an authenticated manner with multiple clients. We present a protocol for consistent
service execution on an untrusted server, which adds O(n) communication overhead for a group of
n clients; it generalizes existing protocols that have addressed only the special case of storage on an
untrusted server.

3 Related work

Ensuring integrity and consistency for services outsourced to third parties is a very important problem,
particularly regarding security in cloud computing [8].

A common approach for tolerating faults, including adversarial actions by malicious, so-called
Byzantine servers, relies on replication [5]. All such methods, however, break down as soon as a major-
ity of servers becomes faulty. We are interested in consistency for only one server, which is potentially
Byzantine.

Our approach directly builds on authenticated data structures [15, 13, 17]; they generalize Merkle
hash trees for memory checking [1] to arbitrary search structures on general data sets. Authenticated
data structures consist of communication-efficient methods for authenticating database queries answered
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by an untrusted provider. In contrast to our setting, the two- and three-party models of authenticated
data structures allow only one client as a writer to modify the content. Our model allows any client to
issue arbitrary operations, including updates.

Previous work on untrusted storage has addressed the multi-writer model. Mazières and Shasha [14]
introduce untrusted storage protocols and the notion of fork-linearizability (under the name of fork
consistency), and demonstrate them with the SUNDR storage system [11]. Subsequent work of Cachin
et al. [4] improves the efficiency of untrusted storage protocols. A related work demonstrates how the
operations of a revision control system can be mapped to an untrusted storage primitive, such that the
resulting system protects integrity and consistency for revision control [2].

FAUST [3] and Venus [16] extend the model beyond the one considered here and let the clients
occasionally exchange messages among themselves. This allows FAUST and Venus to obtain stronger
semantics, in the sense that they eventually reach consistency (in the sense of linearizability) or detect
server misbehavior. In our model without client-to-client communication, fork-linearizability, or one of
the related “forking” consistency notions [3], is the best that can be achieved [14].

Several recent cloud-security mechanisms aim at a similar level of service consistency as guaranteed
by our protocol. They include the Blind Stone Tablet [18] for consistent and private database execution
using untrusted servers, the SPORC framework [9] for securing group collaboration tasks executed by
untrusted servers, and the Depot [12] storage system.

Orthogonal approaches impose correct behavior on a remote service indirectly, for instance through
accountability in a storage service [19] or distributed systems [10]. Yet other work relies on trusted
hardware modules at all parties [6, 7].
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