
Private and Perennial Distributed Computation∗

Shlomi Dolev1 Juan Garay2 Niv Gilboa3 Vladimir Kolesnikov4

1Dept. of Computer Science, Ben-Gurion University
2AT&T Labs – Research

3Dept. of Computer Science, Ben-Gurion University and Deutsche Telekom Laboratories
4Bell Laboratories

dolev@cs.bgu.ac.il garay@research.att.com niv.gilboa@gmail.com
kolesnikov@research.bell-labs.com

Abstract: In this paper we consider the problem of n agents (servers) wishing to perform a given computation
on behalf of a user, on common inputs and in a privacy preserving manner, in the sense that even if the entire
memory contents of some of them are exposed, no information is revealed about the state of the computation, and
where there is no a priori bound on the number of inputs. The problem has received ample attention recently in
several domains, including cloud computing as well as swarm computing and Unmanned Aerial Vehicles (UAV)
that collaborate in a common mission, and schemes have been proposed that achieve this notion of privacy for
arbitrary computations, at the expense of one round of communication per input among the n agents.

In this work we show how to avoid communication altogether during the course of the computation, with the
trade-off of computing a smaller class of functions, namely, those carried out by finite-state automata. Our scheme,
which is based on a novel combination of secret-sharing techniques and the Krohn-Rhodes decomposition of finite
state automata, achieves the above goal in an information-theoretically secure manner, and, furthermore, does not
require randomness during its execution.

Keywords: Secure outsourcing of computation; Information-theoretic security; Finite-state automata; Krohn-
Rhodes decomposition.

∗A preliminary version of this paper appeared in Proc. Second Symposium on Innovations in Computer Science (ICS ’11)
under the title “Secret Sharing Krohn-Rhodes: Private and Perennial Distributed Computation.”



1 Setting and Goal
Hiding the state of a computation performed by

n agents from exposure of some of the agents’
states has recently received attention from sev-
eral application domains, in particular those where
the sequence of inputs to the computation is po-
tentially unbounded. Such is the case of cloud
computing and ad hoc and “swarm” computing
(see [4, 6, 18] and references therein). In this
work we make progress in this area, by showing
the feasibility of non-interactive private distributed
computation on such unbounded input sequences.

Recently, Dolev et al. [4] presented schemes
that support the type of “infinite” private compu-
tation mentioned above by implementing a dis-
tributed version of a so-called strongly oblivious
universal Turing machine (TM)1. However, this is
done at the expense of one round of communica-
tion per received input amongst the participants.
In contrast, in this work we show how to avoid
communication altogether during the course of the
computation, with the trade-off of computing a
smaller class of functions.

Specifically, we consider a distributed compu-
tation setting in which a party, which we refer to
as the user (sometimes as the dealer), has a fi-
nite state automaton (FSA) A which accepts an (a
priori unbounded) stream of inputs x1, x2, . . . re-
ceived from an external source. We are interested
in situations in which the user cannot perform the
required computation, but instead delegates the re-
sponsibility to agents (servers) P1, . . . , Pn. Each
of the agents receives all the inputs destined to A
during its execution. The agents execute their dis-
tributed implementation of A (without communi-
cation!) and, at a given signal from the user, termi-
nate the execution, compute the current state of A,
and return it as output.

Furthermore, there is an additional entity, called
the adversary Adv, who is able to adaptively “cor-
rupt” a subset of the agents (i.e., inspect their in-
ternal state) during the execution phase, up to a
threshold2 t < n, and our objective is to ensure

1An oblivious TM moves the tape heads through the same
sequence of cells; a strongly oblivious TM is a Turing machine
in which the movement of tape heads is a function only of the
cell indices that the heads point to. Not every oblivious TM is
strongly oblivious, since the movement of the tape heads may
be a function of time, not only of space.

2We note that more general access structures may be natu-

that the agents’ computation is as private as pos-
sible. We do not aim to maintain the privacy of
the automaton A; however, we wish to protect
the secrecy of the state of A and the inputs’ his-
tory. We note that Adv may have external infor-
mation about the computation, such as partial in-
puts or length of the input sequence, state informa-
tion, etc. This auxiliary information, together with
the knowledge ofA, may exclude the protection of
certain configurations, or even fully determineA’s
state. We stress that this cannot be avoided in any
implementation, and we do not consider this an in-
security. Thus, our goal is to prevent the leakage
or derivation by Adv of any knowledge from see-
ing the execution traces which Adv did not already
possess.

2 Our Approach
We present a scheme that achieves the above

goal in an information-theoretically secure man-
ner (i.e., there are no bounds imposed on Adv’s
computational power), and does not require ran-
domness during the execution of A. Our scheme
is based on a novel combination of secret-sharing
techniques [17] and the Krohn-Rhodes decomposi-
tion of finite automata [12, 13]. Informally, Krohn-
Rhodes theory states that any finite state automa-
ton can be emulated by a combination (cascade
product) of permutation automata and flip-flop au-
tomata. (A permutation automaton is any automa-
ton such that each of its possible input symbols
induces a permutation of the automaton’s states.)
The computation complexity per each received in-
put symbol, and the storage complexity required
by our scheme are a function only of (the decom-
position of) A, and not of the number of symbols
processed. A trade-off for this is that, depending
on A, the number of components of its Krohn-
Rhodes decomposition might be exponential in its
number of states. We note, however, that for many
interesting and relevant automata, there is a small
Krohn-Rhodes decomposition. In the full paper we
present examples of such automata families with a
small Krohn-Rhodes representation.

For ease of exposition, in this presentation we
concentrate on the case of passive corruptions—
i.e., Adv is considered “honest but curious.” How-

rally employed with our constructions.

2



ever, since our construction does not require com-
munication among parties at the time when cor-
ruptions are allowed, it can be readily strengthened
to handle active corruptions by employing secret-
sharing schemes (e.g., unverified secret sharing [5,
16]) that are robust against disruptive behavior,
and suitable for our scenario.

As noted earlier, swarms and sensor networks
(e.g., [4, 6]) are areas that can potentially benefit
from our scheme. Another area of great current
interest where user privacy is critical is that of out-
sourcing computation and storage to the “cloud.”
Yet, a big challenge in making the shift in comput-
ing to the cloud infrastructure is finding a way to
ensure the privacy of the computation. One pos-
sible approach is for the users to run the program
distributively on several computing clouds in such
a way that even if some of them collude and ex-
change information they still will not be able to
learn the program and/or the data they use for the
computation. Furthermore, the type of computa-
tion may be of a “never-ending” nature, such as
ongoing sequence of tasks performed by an oper-
ating system; the output of a given task or state of
an on-going system can then be revealed by receiv-
ing information from all or a sufficient number of
cloud suppliers participating in the computation—
very much like a terminal client is used to interface
with remote computers. Our work addresses this
scenario.

3 Related Work
Reactive k-secret sharing with no communica-

tion among agents participating in a swarm has
been suggested in [6]. Several solutions that
are able to withstand limited memory corruptions
were presented, some of them based on the lin-
earity of secret sharing, supporting addition and
multiplication by constants. The last solution is
based on maintenance of the vector of possible
states by each agent, masking the actual state of
the swarm (defined to be the one with a majority
of copies) by redundant states (with fewer copies).
In general, two states maintained by an agent may
yield the same next state when a certain input is
received, thus redundancy of states may be elimi-
nated over time. Randomization is used in [6] in
order to cope with such a convergence, randomly
choosing a state for the extra copies in the vec-

tor when two or more states become equal. In
contrast, in this work we show that it is possible
to solve the problem of convergence to the same
state in a deterministic way using Krohn-Rhodes
decomposition. Furthermore, the scheme in this
work is information-theoretically secure.

As mentioned above, the authors recently pre-
sented schemes that support the same type of
perennial private computation considered here by
implementing a universal Turing machine pri-
vately, with one round of communication per tran-
sition [4]. In this work we show how to avoid
communication completely during the course of
the actual execution, at the expense of computing
a smaller class of functions.

The type of private computation we consider
is also related to the problem of (information-
theoretic, or unconditional) secure multi-party
computation (MPC) [1, 3]. We perform a detailed
comparison below.

Unbounded-input private computation vis-à-vis
MPC. Recall that in secure multi-party computa-
tion, n parties (“players”), some of which might be
corrupted, are to compute an n-ary (public) func-
tion on their inputs, in such a way that no infor-
mation is revealed about them beyond what is re-
vealed by the function’s output. At a high level, we
similarly aim in our context to ensure the correct-
ness and privacy of the distributed computation.
However, as we now argue, our setting is signifi-
cantly different from that of MPC, and MPC solu-
tions cannot be directly applied here.

Firstly, MPC aims to solve a different problem,
that of protecting the players’ individual inputs
from Adv, who can corrupt some of them, learn
their input and observe the communication they re-
ceive. In contrast, in our problem the inputs are
common to all the players (but not a priori known
to Adv, or revealed in case of corruption), and the
goal is to protect the state of, as well as the in-
puts to the computation. (Therefore, we cannot in
particular treat the common input as public infor-
mation, and the shares received from the dealer as
MPC input.)

Of course, an adequate representation (circuit-
based, for example) of the MPC computation
would be able to evaluateA, with respect to a sub-
set of corrupted players, and at least for the basic
MPC setting, where there is a single (tuple of se-

3



cret) input(s) out of which an output (tuple) is pro-
duced. But then comes our main feature, of mul-
tiple, possibly unbounded number of input sym-
bols. This is reminiscent of secure reactive sys-
tems (e.g., [15]), where the computation is not lim-
ited to “one shot” as above, but instead processes
inputs “in blocks” throughout several rounds of
interaction. However, because all MPC solutions
(and definitions) are explicitly tied to the length of
the input, being able to handle unbounded number
of inputs without communication does not seem
immediate. This is what our Krohn-Rhodes-based
approach achieves, at the expense of solving a nar-
rower problem.

Looking at the relationship with MPC from
another perspective, we note that it is the com-
bination of our requirements of non-interactivity
during the input-processing phase, information-
theoretic security, and computation on inputs of
unbounded length, that precludes the use of known
MPC techniques. That is, with any of the three re-
quirements removed, known techniques would al-
low stronger results to be achieved.

Indeed, we have discussed above the possibil-
ity of solutions in the setting where the inputs are
bounded. Alternatively, if we only required com-
putational secrecy, then the players could use fully
homomorphic encryption [9] to maintain under en-
cryption the current state of the computation on un-
bounded inputs (and carry shares of the scheme’s
private key). Further, if an a priori bound on
the input length existed, players could simply en-
crypt their inputs with any public-key encryption
scheme, again keeping shares of the decryption
key. Finally, allowing interaction during the in-
put processing phase can effectively bring us to the
bounded-input setting, since interaction—and thus
share updates using MPC—could occur after a cer-
tain fixed number of inputs has been processed.

References
[1] M. Ben-OR, S. Goldwasser, and A. Wigder-

son. Completeness theorems for non-
cryptographic fault-tolerant distributed com-
putation. In STOC, pages 1–10, 1988.

[2] R. Canetti, U. Feige, O. Goldreich, and M.
Naor. Adaptively Secure Multi-Party Com-
putation. In STOC, pages 639–648, 1996.

[3] D. Chaum, C. Crépeau, and I. Damgård.

Multiparty unconditionally secure proto-
cols(extended abstract). In STOC, pages 11–
19, 1988.

[4] S. Dolev, J. Garay, N. Gilboa, and
V. Kolesnikov. Swarming secrets. In 47th
Annual Allerton Conference on Communica-
tion, Control, and Computing, 2009.

[5] D. Dolev, C. Dwork, O. Waarts, and M.
Yung. Perfectly secure message transmis-
sion. J. ACM, 40:1, pages 17–47, 1993.

[6] S. Dolev, L. Lahiani, and M. Yung. Secret
swarm unit reactive k-secret sharing. In IN-
DOCRYPT, pages 123–137, 2007.

[7] P. Domosi and C.L. Nehaniv. Algebraic
Theory of Automata Networks (SIAM Mono-
graphs on Discrete Mathematics and Appli-
cations, 11). Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA,
2004.

[8] S. Eilenberg. Automata, Languages, and Ma-
chines, Vol. B. Academic Press, London,
New York, NY, USA, 1976.

[9] C. Gentry. Fully Homomorphic Encryption
Using Ideal Lattices. In 41st ACM Sympo-
sium on Theory of Computing (STOC), pages
169-178, 2009.

[10] F. Higgins, A. Tomlinson and K. Martin.
Survey on Security Challenges for Swarm
Robotics. ICAS 2009, pages 307–312.

[11] M. Ito, A. Saito, and T. Nishizeki. Se-
cret sharing scheme realizing general access
structure. In IEEE Globecom, pages 99–102,
1987.

[12] K.R. Krohn and J. L. Rhodes. Algebraic the-
ory of machines, 1962.

[13] K.R. Krohn and J. L. Rhodes. Algebraic the-
ory of machines i: prime decomposition the-
orems for finite semigroups and machines.
Transactions of the American Mathematical
Society, 116:450–464, 1965.

[14] S. Margolis Complexity of holonomy de-
composition. Private communication, Febru-
ary, 2010.

[15] B. Pfitzmann and M. Waidner. Composition
and integrity preservation of secure reactive
systems. In CCS ’00: Proceedings of the 7th
ACM conference on Computer and Commu-
nications Security, pages 245–254, 2000.

[16] T. Rabin and M. Ben-Or. Verifiable secret

4



sharing and multiparty protocols with honest
majority. In STOC, pages 73–85, 1989.

[17] A. Shamir. How to share a secret. Communi-
cations of the ACM, 22:612–613, 1979.

[18] M. Weiser. The Computer for the 21th Cen-
tury. Scientific American, September, 1991.

[19] H.P. Zeiger. Cascade synthesis of finite state
machines. Information and Control, 10:419–
433, 1967. Erratum: Information and Control
11(4): 471 (1967).

5


