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Abstract

Cryptographic tools, such as secure computation or homomorphic encryption, are very computation-
ally expensive. This makes their use for confidentiality protection of client’s data against an untrusted
service provider uneconomical in most applications of cloud computing. In this paper we present tech-
niques for randomizing data using light-weight operations and then securely outsourcing the computation
to a server. We discuss how to formally assess the security of our approach and present linear program-
ming as a case study.

1 Introduction

Whit Diffie is commonly quoted with “cryptography will not be the solution for security of cloud computing”
due to economic reasons [9]. Cryptographic tools, such as secure computation [6, 11, 23] or homomorphic
encryption [10, 17] are computationally expensive. Recent results [5, 12, 14, 18] indicate that while they
are feasible for small computations they are orders of magnitude slower than non-secure computations. The
general argument is then that non-secure, local computation – even on computational weak devices such as
mobile phones – is more economical than cryptographically protected cloud computing.

In this paper we present an alternative approach based on randomization of input data. The clients
compute a lightweight function y = f(x, r) on their input x using random coin tosses r. The output y is
sent to the cloud service provider who computes – the usually unmodified – function z = g(y) and returns
it to the client. The client then de-randomizes using the function f ′(z, r). The idea is that for correctness

f ′(g(f(x, r)), r) = g(x)

Two performance objectives should be observed. First, the function f should be easy to compute. We
propose as a design principle to only use lightweight randomization operations. For scalar data only the
following operations should be used:

• addition of random numbers

• multiplication with random numbers

For vector data only the following operations should be used:

• permutation

• creation of new elements

• splitting of elements

All these operations can be performed much faster on current hardware than operations commonly used
in cryptographic protection, such as modular exponentiation.

The second performance objective is that computation of the function g should be remain efficient. Ideally
the function and consequently its complexity should remain unchanged to non-secure computation. Even a
constant increase in computational cost should be modest.
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We observe a fundamental difference to cryptographic protection, such as secure computation and homo-
morphic encryption. In the cryptographic methods the computation is expressed as a – Boolean or arithmetic
– circuit and then executed. The circuit nevertheless needs to be oblivious, i.e. its execution needs to be
independent of its input. Each gate of the circuit needs to be executed once and only once. This entails that
the complexity of the circuit is at least the worst-case complexity of the encoded algorithm. Nevertheless,
there are many algorithms which have very good average case complexity, but bad worst case complexity.
An instance is our use case of Simplex, which is exponential in the worst case, but O(n3) on average [19].
There are many more instances for the class of NP-hard problems.

Even if the cryptographic algorithms were implemented in hardware and executed at clock speed, without
overcoming this design many algorithms will remain uneconomical under cryptographic protection. Our
method of unchanged computation may, of course, take advantage of average case complexity.

Ultimately this approach should yield a performance increase of several orders of magnitude. With the
method we present in Section 2 the performance increase is more than 100.000. This performance increase
comes at the expense of security. We discuss how to assess security in Section 3. Related work is reviewed in
Section 4. We present the research challenges we foresee for our approach in Section 5 concluding the paper.

2 Example: Linear Programming

As a use case we present the example of Linear Programming. Linear Programming is a standard tool in
business optimization. A Linear Program (LP) consists of a set of unknown variables x, a linear target
function c(x) representing the costs which shall be minimized (or equivalently the gain which has to be
maximized) and a set of constraints (linear equalities or inequalities). As we will eventually transform all
inequalities into equalities and as in most business applications many of the input constraints are actually
equalities, we will treat them separately. This reduces the size of the problem as we need less slack-variables.
A slack-variable is used to express inequality constraints as equality constraints. The idea is to introduce an
additional variable for each constraint which takes up the “remainder” or “slack”. So let the input problem
- without loss of generality - be

min cTx

s.t. M1x = b1
M2x ≤ b2

x ≥ 0

We use a positive monomial matrix Q to hide c (as proposed by [22, 4]). A monomial matrix contains exactly
one non-zero entry per row and column. This corresponds to our randomization operations of multiplication
with a random number and permutation.

min cTQQ−1x

M1QQ−1x = b1
M2QQ−1x ≤ b2

Q−1x ≥ 0

We also use a positive vector r to hide x. This corresponds to our randomization operation of adding a
random number.

min cTQ(Q−1x+ r)
M1Q(Q−1x+ r) = b1 +M1Qr

M2Q(Q−1x+ r) ≤ b2 +M2Qr

(Q−1x+ r) ≥ r

For z = Q−1x+ r and a strictly positive diagonal matrix S we have

min cTQz

M1Qz = b1 +M1Qr

M2Qz ≤ b2 +M2Qr

Sz ≥ Sr
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Then we define c′T = cTQ,

M ′ =





M1Q 0
M2Q A
−S



 and b′ =





b1 +M1Qr

b2 +M2Qr

−Sr





where A is a permutation matrix representing slack-variables. This allows us to rewrite the program as
follows:

min c′Ts zs
s.t. M ′zs = b′

zs ≥ 0

where c′s is c′ with added zeros for the slack-variables and zs is the variable vector (z with added slack-
variables). To hide the contents ofM ′ and b′ we use a nonsingular (invertible) matrix P and withM ′′ = P∗M ′

and b′′ = P ′ ∗ b′ we have
min c′Ts z

s.t. M ′′zs = b′′

zs ≥ 0

This transformed LP can then be sent to the cloud service provider. It can still be solved using the same
algorithms as any LP, but it hides the input LP and its optimized result.

The cloud service provider returns the result z to the transformed LP. As z = Q−1x+ r, the result x of
the original LP can be obtained from z by calculating x = Q(z − r).

3 Security

Before evaluating the security of our approach, we highlight its enormous performance improvement potential.
When running a secure computation for Linear Programming by Toft [21] we estimate the running time for
282 variable textbook problem to be roughly 7 years for 3 servers. When running it using our protocol the
running is roughly 6 seconds for a single client. A more than 107 time increase in performance. Clearly this
brings new types of problems into the practically feasible range and makes secure cloud computing a viable
alternative.

In secure computation we distinguish between the ideal model where all inputs are sent to a trusted
server and the real model of executing the protocol. The ideal model in cloud computing would be a client
and a cloud service provider where the client submits data to the trusted server and receives the output. The
cloud service provider remains oblivious despite playing an important role in the real model. This could be
implemented using secure two-party computation. Also multi-party computation could be used by splitting
the cloud service provider into mutually distrustful entities.

The basic security model of secure computation is semi-honest security. In semi-honest security the view
V IEW IDEAL

f for a function f in the ideal model is compared to the view V IEWREAL
p for a protocol p in

the real model. We call a protocol secure in the semi-honest model if those two views are indistinguishable.
Cryptographers distinguish between different types of security. In the information-theoretic setting with

perfect security [6] the views are statistically indistinguishable without security parameter.

V IEW IDEAL
f

s
= V IEWREAL

p

In the computational setting [11] the views are computationally indistinguishable negligible in a security
parameter k.

V IEW IDEAL
f

c
= V IEWREAL

p +
1

poly(k)

In our setting the views are information-theoretically comparable, but not indistinguishable in the tradi-
tional sense. The transformed problem allows a partial inference about the input depending on the amount

3



of randomness and its security parameter k. Furthermore, this inference is no longer negligible in k, but
polynomial in k.

V IEW IDEAL
f

s
=

1

poly(k)
· V IEWREAL

p

Different from security negligible in the security parameter, determining the polynomial poly(k) now
becomes quite important. We propose to use the method of leakage quantification [7, 20]. The adversary
knows the transform and the distribution of the input variable X . He is observing the transformed variable
Y = T (X) and then tries to guess X . Intuitively, the leakage LX(T ) of T with respect to X measures how
much observing the output of T increases the ability of the adversary to guess the input. It is defined as
the ratio between the ability of the adversary to guess the input before observing the transformed input and
after observing the transformed input. The probability that the adversary can guess the right input without
observing the transformed input (the a priori probability of a right guess) is

PRpriori(X) = max
x∈X

p(X = x)

The probability that the adversary can guess the right input after observing the transformed input (the
a posteriori probability of a right guess) is

PRposteriori(X) =
∑

y∈Y

max
x∈X

(p(X = x)p(y|x))

Then the leakage of T with respect to X is defined as

LX(T ) =
PRposteriori(X)

PRpriori(X)
.

This is referred to as the multiplicative leakage in [7].
We define the leakage L(T ) of a transform T as the supremum of the leakages with respect to X , where

X ∈ Var(X ) runs over all random variables independent from the transform.

L(T ) = sup
X

LX(T ).

As it was already observed in [7] one has

L(T ) =
∑

y∈Y

max
x∈X

p(y|x)

for uniformly distributed X .
For transform for Linear Programming in Section 2 we establish the following bounds:

L(c) ≤ min

(

(

n+ l

l + 1
+ 1

)k

,
(A(n, l) + k)!

k! ∗ (A(n, l))!

)

L(z) ≤ min

(

2 log(xm + 2),
(xm + k)!

k! ∗ xm!

)

L(M) ≤

∏k

i=1
((n+ 1)k+l − i)

k!
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4 Related Work

Similar ideas to ours have been proposed a long time before cloud computing. In [3] several methods for
outsourcing scientific computations are proposed. Atallah et al. already propose similar transformations
(including non-linear ones for non-linear problems) and describe a number of algorithms. They call their
transforms “disguise” in order to distinguish them from encryption and consider their same parameters –
performance and security. We differ by our method of evaluation. First, we implement and measure the
running time of the transforms, such that comparisons between different operations of the same complexity
are possible. And second, we use the more formal framework of leakage quantification in order to assess the
security of our transforms.

Later additional secure outsourcing techniques for different problems have been added [1, 2]. In [1] a
method for sequence comparison using two mutually distrustful servers has been proposed. In [2] a provably
secure technique outsourcing matrix multiplication is described.

A transform for secure linear programming was long sought after [4, 22, 15, 16]. The proposal in [22] has
been proven incorrect in [4]. Similar approaches, but less general than ours, have been made in [15, 16].

Secure linear programming has also been considered in the cryptographic setting [8, 13, 21]. A multi-
party solution has been proposed in [21] and a two-party solution in [13]. An efficiency improvement for
smaller multi-party problems has been made in [8]. As our implementation results show these proposals are
not economical for cloud deployment.

5 Conclusions and Future Work

We have shown that using simple randomizations it is possible to transform an input, such that it is still
possible to execute the same algorithm for obtaining the transformed result. Our implementation results fur-
thermore underpin the enormous performance improvement potential compared to cryptographic techniques.
We also made the first step towards a formal assessment of security of such transforms.

This paper is supposed to initiate a discussion and is far from complete work. We have made some initial
steps and hope to gather some feedback before proceeding.

Two major challenges remain: The first challenge is an automatic derivation algorithm for a transform
given a function f . All approaches so far – including this paper – are somewhat ad-hoc, in the sense that
they manually analyze the function f and then propose a transform T . Ideally, as in secure computation,
there should be an algorithm that given f outputs T . For secure computation, such algorithm have been
implemented, e.g. FairPlay [14] and FairPlayMP [5]. There f is specified in a programming language and
then translated into a circuit.

It is not quite clear whether a specification in a traditional programming language is sufficient for devising
a secure transform as proposed in this paper. It rather seems that these transforms are designed around
invariants of the function that are hard to deduce from the program text. E.g. all randomizations applied in
our linear programming transform have the property that they do not change the minimum solution except
by a known constant.

The second challenge is an automatic security assessment for a given T . The leakage bounds we established
in Section 2 are all derived and proven manually. Ideally there should be an algorithm – a logic – that given
T outputs or at least verifies these bounds. There are several approaches for combining formal methods
with cryptographic assumptions and these produce wonderful results. A similar approach should exists for
randomized transforms.

Given a performance model of the transforms it would then be possible to tune a derivation algorithm,
such that it optimizes the performance vs. security trade-off. The cloud consumer could choose its appro-
priate level and a resulting transform would be derived. This gives the cloud consumer even more choices
and the opportunity to match the business and security needs.
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