
Byzantine Fault Tolerance for the Cloud

Hans P. Reiser

University of Lisbon Faculty of Science, Portugal?

Abstract. CloudFIT is an ongoing project that designs an architecture for intrusion-
tolerant applications that can be deployed dynamically in the cloud. This position paper
presents an outline of the architecture that is being developed in the project, and discusses
the implications of the deployment in the cloud. We explore to what extent existing BFT
algorithms can be used for increasing security and availability in the proposed architec-
ture and what issues still need to be resolved in the future.

1 Motivation

Cloud computing has become a successful new paradigm in the IT industry. Computer infra-
structure, platforms, and applications can dynamically be provisioned remotely over a network.
In the future it is likely that many even mission-critical services with high security and avail-
ability requirements will move “to the cloud”.

For over a decade, Byzantine fault tolerance (BFT) has been studied as a mechanism to
improve availability and security of practical systems. It is appealing to use BFT for critical
services deployed in a cloud. For example, a service might be hosted by multiple independent
cloud providers, such that it tolerates faults in a subset of the clouds.

While improving the performance of BFT algorithms in practical systems has been at the
center of interest of many researchers, three important aspects relevant in cloud-based systems
are under-represented in previous work on BFT. First, BFT services need to be able to recover
automatically from faults (both crashes and malicious faults). Second, a cloud-based system
has a more complex architecture and potentially has multiple trust levels (for example, the
trust in the cloud infrastructure can be different from the trust in the service instance itself).
Third, the cloud makes it easy to dynamically change resources allocated to a service, and this
mechanism might also be used to improve the service quality.

In the CloudFIT project1, we investigate how to use BFT in order to develop fault and in-
trusion tolerant applications for the cloud. The goal is to define a modular architecture for BFT
replication, with building blocks for BFT consensus (configurable for various trust settings),
replica recovery, state synchronization, and resource allocation. This position paper presents
the system model and general over-all architecture for secure and fault-tolerant cloud applica-
tions in CloudFIT and sketches the contributions that we want to make to BFT research.

2 Byzantine Fault Tolerance in CloudFIT

2.1 System model

Fault model. We assume that a service is replicated on multiple virtual machines deployed in
the cloud, potentially across multiple cloud providers. Each replica may fail in arbitrary ways.
The number of replicas that are faulty at a given time is bounded. Furthermore, in a first variant

? starting from 2011-03-01: Institute of IT-Security and Security Law, University of Passau, Germany
1 http://cloudfit.di.fc.ul.pt

http://cloudfit.di.fc.ul.pt


of the architecture we assume that the cloud infrastructure itself is trusted, i.e., that it fails only
by crashing.

We are aware that assuming that the correctness of a virtualization infrastructure (typically,
several 100’000s of lines of code [6]) is a strong, potentially unrealistic assumption. A revised
variant of the architecture will use a model in which only part of the cloud infrastructure is
trusted. We expect that using nested virtualization [1] it will become feasible to have a small,
verified virtualization layer that is trustworthy, and on top of it run a traditional, fully-fledged
cloud infrastructure that does not need to be trusted.

Dynamic replication groups. One advantage of cloud computing is the dynamicity of re-
source provisioning. Our architecture makes use of this advantage by enabling dynamic run-
time modifications of replication groups. For example, in a replication group, increasing the
number of replicas typically reduces the cost of read-only operations, while increasing the cost
of modifying operations. Dynamically adapting the number of replicas may be used to increase
service quality, but requires careful modifications to the BFT protocols in use.

Recovery. Replicas that fail need to be recovered, either in reaction to the detection of a fault,
or proactively (e.g., triggered by time). One advantage of a computing cloud is that it is easy
to dynamically allocate new resources for replacing a faulty replica. In previous work [4,2] we
have shown that this mechanism can be used efficiently for instantiating new service replicas
for proactive recovery.

A disadvantage of proactive recovery is that it adds timing assumptions to BFT replica-
tion. Removing timing assumption from BFT algorithm has been a key motivation of a great
amount of research work in the area. However, it has been shown [5] that previously proposed
systems with asynchronous proactive recovery do not achieve the goal of tolerating any num-
ber of failures over system lifetime. Our approach to this problem is (a) the separation between
BFT replication and recovery and (b) weakening the timing assumptions used by the recovery
component.

2.2 Over-all architecture

Fig. 1(a) shows the basic interactions in the architecture of our system. Clients access ser-
vice replicas on the basis of a BFT library that is used for replication. As we assume that the
virtualization infrastructure of the cloud provider is trustworthy, it is possible to use trusted
functionality of the infrastructure (denoted “wormhole” in the figure).

CLIENT

BF
T 
VO
TE
R

BFT LIBRARY

HYPERVISOR

PHYSICAL MACHINE

VIRTUAL MACHINE

SERVICE
REPLICA

WORMHOLE

(a) Basic interaction between clients and replicas

PHYSICAL MACHINE

SIL

MIGRATION
SERVICE

RECOVERY
VM

HYPERVISOR KSS

SERVICE REPLICA

BFT ENGINE

GROUP MEMBERSHIP

BFT LIBRARY

SERVICE VM

BFT
ENGINEBFT

ENGINEBFT
ENGINE

CONFIG
STORAGE

(b) Internal composition of low-level building
blocks at each replica

Fig. 1: CloudFIT architecture



Fig. 1(b) illustrates in more detail the internal decomposition of a replica. The KSS (key
storage and signing service) is one of the trusted components and corresponds USIG service [7]
used in the EBAWA BFT algorithm. The config storage is a trusted component that is used
to coordinate reconfigurations. The SIL (secure image launcher) is responsible for creating
correct virtual machines, and is used initially and for all recovery operations. The recovery
VM is used to access state of an old service VM during a recovery operation.

2.3 BFT for the cloud

One major goal of our work is to define a more flexible architecture for BFT replication and
implement it as an extension to the BFT-SMaRt2 library. We decompose the system into the
following components:

– BFT atomic multicast is used for replication, on the basis of BFT consensus. Our current
prototype is based on the EBAWA algorithm [7], which uses a trusted component (USIG
– unique sequential identifier generator) and requires only 2f +1 replicas. We extend this
algorithm for recovery and reconfiguration.

– Initialization is required on startup and on recoveries for distributing keys and other initial
values. Specifically, for the EBAWA algorithm, an initial counter value for the USIG needs
to be communicated to all replicas. This functionality is specified as a separate component.

– Reconfiguration is a component that coordinates the reconfiguration of the BFT replica-
tion library (number of nodes, algorithm, and internal parameters), controlled by a trusted
CONFIG STORAGE, using an approach inspired by [3].

– Recovery is handled by a component that triggers proactive recoveries in a secure way, and
optionally also handles reactive recoveries (using an external fault detector, which is not
discussed here).

– BFT state migration handles the transfer of state between replicas during recovery opera-
tions, based on our previous work.

The key challenges that we address are the following: We want to find and formalize ade-
quate abstractions for the components that are just outlined informally above. Having the right
abstraction will make it easier to argue about the correctness of proactive recovery algorithms,
and also apply a recovery strategy to multiple BFT algorithms. Ideally, the same specification
of the recovery component can be used for multiple BFT algorithms.

Concluding, we are convinced that BFT is a key mechanism that can be used to increase
the availability and security of services in the cloud. In addition, BFT systems can benefit from
cloud computing through the cloud’s dynamic properties and the possibility of providing a
trusted component.

Acknowledgments

This position paper is based on joint work with Marcelo Pasin and Alysson Bessani (both
University of Lisbon, Portugal) and Christian Spann (University of Ulm, Germany). Part of the
work was supported by Fundação para a Ciência e a Tecnologia through the Carnegie Mellon
Portugal Program and the project PTDC/EIA-CCO/108299/2008.

2 http://code.google.com/p/bft-smart/

http://code.google.com/p/bft-smart/


References

1. Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, Abel Gordon, An-
thony Liguori, Orit Wasserman, and Ben-Ami Yassour. The turtles project: Design and implementa-
tion of nested virtualization. In OSDI ’10: 9th USENIX Symposium on Opearting Systems Design and
Implementation. USENIX Association, 2010.

2. Tobias Distler, Rüdiger Kapitza, Ivan Popov, Hans P. Reiser, and Wolfgang Schröder-Preikschat.
SPARE: Replicas on Hold. In Internet Society (ISOC), editor, Proceedings of the 18th Network and
Distributed System Security Symposium (NDSS ’11), 2011.

3. Leslie Lamport, Dahlia Malkhi, Lidong Zhou, and Microsoft Research. Vertical Paxos and Primary-
Backup Replication, 2009.

4. Hans P. Reiser and Rüdiger Kapitza. Hypervisor-Based Efficient Proactive Recovery. In IEEE, editor,
Proc. of the of the 26th IEEE Symposium on Reliable Distributed Systems - SRDS’07, 2007.

5. Paulo Sousa, Nuno Ferreira Neves, and Paulo Verissimo. Hidden problems of asynchronous proactive
recovery. In Proceedings of the 3rd workshop on on Hot Topics in System Dependability, Berkeley,
CA, USA, 2007. USENIX Association.

6. Udo Steinberg and Bernhard Kauer. Nova: a microhypervisor-based secure virtualization architecture.
In Proceedings of the 5th European conference on Computer systems, EuroSys ’10, pages 209–222,
New York, NY, USA, 2010. ACM.

7. Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. Ebawa:
Efficient byzantine agreement for wide-area networks. High-Assurance Systems Engineering, IEEE
International Symposium on, 0:10–19, 2010.


	Byzantine Fault Tolerance for the Cloud

