Verifiable Computation with Two or More Clouds

Ran Canetti Ben Riva Guy Rothblum
Tel Aviv University Princeton

February 23, 2011

Abstract

The current move to Cloud Computing raises the need for verifiable delegation of computations, where a weak
client delegates his computation to a powerful cloud, while maintaining the ability to verify that the result is correct.
Although there are prior solutions to this problem, none of them is yet both general and practical for real-world use.

We propose to extend the model as follows. Instead of using one cloud, the client uses two or more different
clouds to perform his computation. The client can verity the correct result of the computation, as long as at least one
of the clouds is honest. We believe that such extension suits the world of cloud computing where cloud providers
have incentives not to collude, and the client is free to use any set of clouds he wants.

Our results are twofold. First, we show two protocols in this model:

1. A computationally sound verifiable computation for any efficiently computable function, with logarithmically

many rounds, based on any collision-resistant hash family.
2. A 1-round (2-messages) unconditionally sound verifiable computation for any function computable in log-space
uniform N/C.

Second, we show that our first protocol works for essentially any sequential program, and we present an imple-
mentation of the protocol, called QUIN, for Windows executables. We describe its architecture and experiment with
several parameters on [ive clouds.

1 Introduction

These days, the IT world is moving towards the pay-per-use paradigm named Cloud Computing. Companies of all
sizes reduce their computing assets and shift to a use of computing resources in the clouds. One consequence of this
shift is that the IT world outside the clouds is moving to a use of weaker and smaller computer devices, like Virtualized
Thin Desktops and Smartphones. Whenever stronger resources are needed, those devices can use the cloud.

Since cloud services are given by an outsider entity, probably with different motivations than of the client’s, this
model has many security and integrity problems. However, one basic problem is inherent in the model: How can a
weak client verify the correctness of the cloud’s computation? Can the client be assured that the cloud server follows
its declared strategy? These questions are not easily answered by the existing tools of security and cryptography.

There are many possible reasons for a cloud to cheat on his answers. For instance, a cloud would like to improve
its revenue by computing things with minimal resources while charging for more. Or, a cloud might benefit somehow
from the output of the computations, and therefore it can try to maximize specific results. Or, a disgruntled employee
of the cloud provider could modify the executed program. Thus, the client must have some way of verifying the
cloud’s computation.

This problem of verifiable computation was tackled in many previous works in the theoretical computer science
community, most notably by using Probabilistically Checkable Proofs (e.g., [Kil92| MicO0]). Other recent works
(e.g., [GGP10,/ICKV10]]) use fully homomorphic encryption and get amortized performance advantages. However,
although those solutions are very efficient in terms of asymptotic complexity, they are currently unpractical.

A natural idea is to take the basic idea behind cloud computing, the pay-per-use paradigm, and extend it also for
integrity. If a client wants to get better assurance of the integrity of his cloud computations, he can pay a little more to
get such assurance. And if he already pays a little more, why should it be to the same cloud? He can split his payment
among several clouds. They are all accessible on the net anyhow.

One simple way of achieving this goal could be the following (this idea is used also in Grid Computing): Instead
of executing his program on one specific cloud provider, the client picks IV different cloud providers. Next, the client

asks each of those cloud providers to execute his program and return the output. Now, the client takes the majority
of those answers to be his answer. As long as there is a majority of honest cloud providers (even if the client does
not know which ones), the client gets the correct answer. The cost of this protocol is /NV*[cost of running one instance
of the program]. The main downside of the this protocol is, of course, the need for an honest majority of clouds. In
particular, this method requires at least three clouds to be viable. We would prefer a weaker assumption.

2 Our Contributions

A closely related model to ours is the Refereed Games (RG) model of Feige and Kilian [FK97||, where two unbounded
players make contradictory claims and “play” against each other in a protocol where a weak referee can efficiently
determine the true claim. This is precisely the same soundness guarantee we require from our protocols for verifiable
computation. However, they focus on unbounded players, whereas we are faced with the additional challenge of
building protocols where the computational requirements from the servers (i.e., the players) are not much more than
those required to compute the function in the first place. In this work we will be interested in refereed games where
the complexity of the referee is small (specifically, quasi-linear in the input size), and the complexity of the players is
polynomial in the complexity of deciding L. We call such protocols efficient-players refereed games (epRG).

We adapt the model of refereed games to the setting of verifiable computation. Stick to the [FK97|] notation, we
call the cloud’s client the referee and the cloud servers the players. Those names are morally aligned with the verifier
and the provers in the interactive-proof model. Also, for the description here we restrict attention to the case when
there are exactly two players, one honest and one malicious (but the referee does not know which is honest). Our
protocols can be extended for more than two players using a simple “tournament” among the servers (see Section[3.2).

We show two new protocols in this model for polynomial-time computations. Both of these protocols have
servers/players that are polynomial in the time to compute the function in question, and clients/referees that are guasi-
linear in the input size. More specifically, we show:

A Practical Computationally-Sound epRG for any L € P. The game requires logarithmically many rounds, and
is based on any collision-resistant hash family. The players’ work scales only quasi-linearly with the complexity of
the computation. This protocol is highly generic and can work with any reasonable computation model. Specifically,
we describe it with Turing Machines (TM) but it can be easily adapted for real-world models.

This new protocol seems to be qualitatively more practical than known techniques for delegating computation
in the single-prover setting. In particular, all known protocols rely either on arithmetization and PCP techniques
[Mic00,|GKROS]|, or provide only amortized performance advantages and rely on fully homomorphic encryption
[GGP10,|/CKV10]. Current constructions of both PCP and fully homomorphic encryption are far from being prac-
tical. Moreover, all known protocols work with the (arguably less practical) circuit representation of the computation.

Implementation of This Protocol for Windows environment running on X86 CPU. Our implementation, which
we call QUIN, works directly with assembly instructions (instead of TM transitions), and we do not require the
programmer to write his code in assembly. The programmer can write his code in C language and later on build the
program to run with our framework. This is an important feature, since the implementation is almost transparent for
the application programmer. We experiment with this prototype on live clouds and show that the overhead is almost
reasonable for real-world applications. For some applications we get a slowdown factor of “only” 7, compared to the
original application. See Section [5|for further details regarding the overheads.

A 1-round (2-message) unconditionally-sound epRG for any function computable in L-uniform AVC. To the
best of our knowledge, all previous single-round protocols for reliably delegating computation in the single server
model [Mic00, GKROS8}/GGP10,/CKV10] require cryptographic assumptions and provide only computational sound-
ness.

Our protocol adapts techniques from the work of Feige and Kilian [[FK97]], which construct a refereed game but
with inefficient servers (even, for as low as log-space computations) along with ideas and techniques from the work of
Goldwasser, Kalai and Rothblum [[GKRO8]], and some new techniques.

3 Computationally Sound epRG for Any Polynomial Time Computation

We scale down the result of Feige and Kilian [FK97]] to get a poly-logarithmic time referee (the client) for any poly-
nomial time program, with unconditionally soundness. Then, we replace their use of arithmetization with Merkle
Hash Trees. Although it gives us only computational soundness, replacing arithmetization with Merkle Hash Trees
has several advantages. First, hash functions are very efficient, both in software and in general hardware. Second,
using Merkle Hash Tree gives us negligible soundness error probability for one execution of the protocol, as opposed
to a relatively high (constant) soundness error probability the previous solution has. Third, the resulting protocol is
arguably easier to understand and to implement, and therefore might be adopted for real-world uses. Last, [FK97|]
requires private channels between the referee and the two players. Our protocol uses only public communication.

Given a TM configuration (state, head, tape), let the tuple (state, head, tape[head], MHT (tape, head)) be
a reduced-configuration, where MHT (tape, head) is the Merkle Hash Tree hash values along the path to head and
their siblings (this is a Merkle Hash Tree consistency proof). Note that the size of a reduced configuration is poly-
logarithmic in the time of the computation.

3.1 The Protocol

We describe the protocol in the Turing Machine model. Given a Collision-Resistant Hash Function, our protocol is
the following. The players and the referee have a TM for a language L. The referee sends x to both players and asks
whether x € L or not. In case they answer the same, by the assumption that one of them is honest, the answer is the
correct one (and they both declared as winners). Else, the referee continues to a binary-search phase. The referee asks
the players to send him the number of steps it takes to compute TM(z), takes the smaller answer as the current bad row
variable, ny, and sets to 1 the current good row variable, n,. Now, the referee asks for the reduced configuration of the
(ny — ng)/2 + ngy configuration. If one of the answers is not a valid reduced configuration, he trivially declares the
other player as the winner. If answers match, he sets ngy = (ny —ng)/2+ng4, otherwise, he sets ny = (ny—ng)/2+n,.
The referee continues the binary search in that way till he gets n, + 1 = n;. Note that the players do not have to
remember all the configurations, instead, they can remember only two configurations, one for the last n, and one for
the last (n, — ny)/2 4+ ngy. Then, when asked for the next configuration, the player can continue the TM execution
from one of those configurations. Overall, in worst case scenario, the players execution time is not much more than
executing the program twice.

Now, the referee takes the reduced configuration n, and the reduced configuration that player 1 sent for row n; and
checks whether those two reduced configurations are consecutive. This can be done in logarithmic time by simulating
a single TM transition and checking the path in the Merkle Hash Tree. If they are the consecutive, he declares player
1 as the winner. Otherwise, he declares player 2 as the winner.

Theorem 1 Assume the hash function in use is collision resistant. Then the above protocol is a computationally
sound, full-information, efficient-players refereed game for any language in P. For languages decidable by TMs
taking T (n) steps and S(n) space on input x with |x| = n, the protocol takes log T (n) rounds, the referee runs in
time O(n + klog T(n)log S(n) + klog S(n)) and the players run in time O(T'(n) + kS(n)logT(n)), where & is a
security parameter.

We have several extensions to the basic protocol, such that we can reduce the number of rounds and the communi-
cation size.

3.2 More than Two Players

Although we presented our protocol only for two players, this protocol can be extended to any number of players using
a Tournament, where the referee executes the protocol between each pair of players, in parallel. The winner will be
the player that won all of his “games”. This solution keeps the number of sequential rounds the same but requires

W different executions of the protocol, and increases the players’ running time quadratically.

4 One-round epRG for Any L-uniform A'C Computation

Due to space limitations we only describe the intuition behind our protocol. [GKRO8| shows a way to check the entire
computation of a circuit C' in depth(C) steps, where in each step they reduce the correctness of a lower circuit layer to

the correctness of an higher layer. When they reach the input layer, the verifier can check the correctness of the layer
by himself. The protocol uses the standard sum-check protocol as a sub-protocol, and therefore is highly interactive
and requires depth(C) steps, each one with depth(C') rounds of interaction. [FK97], shows a one-round refereed
game for the sum-check task, but with inefficient players. Our idea is to combine those two protocols and run the
protocol of [GKROS] for all layers together, where we use the protocol from [FK97|| instead of the standard sum-check
protocol. However, there are many subtle difficulties with this idea. Moreover, in order to get a refereed game for
L-uniform N'C languages, [GKROS]] runs sequentially the basic protocol for several different circuits (that depend on
(). Since our goal is one-round refereed game, we show how to compose the basic refereed game in several parallel
executions. For a L-uniform NC circuit C, our refereed game (P, Py, R) requires polynomial time (in |C|) players
and quasi-linear time referee.

Theorem 2 Let L be a language in L-uniform NC. For any input x, the protocol (Py(z), Ps(z), R(x)) is an efficient-
players refereed game.

5 Quin: Implementation of the Protocol

We show an implementation of the protocol from Section [3] that enables delegation of X86 executables for Windows
environments. Note that Windows is a closed-source OS, and our implementation does not require any changes to the
OS. Everything runs in User-Mode.

5.1 The Difficulties and Design Choices

Although the protocol in Section [3| seems easy to describe with Turing Machines, its adaptation for real-world use is
quite delicate. An implementation of it must have the following key properties: 1) The framework should be able to
execute the program in a completely deterministic way, independently of the OS. 2) We need to be able to execute a
program for a given number of steps, stop its execution and store its current state to a file. Later, we need to be able to
continue the program execution from any previously stored state. 3) In order to implement the last step of the protocol
the client should be able to simulate any instruction given the instruction’s operands.

When we were looking for candidate high-level languages we had two key observations: 1) Since our client has
to simulate one instruction by itself, we prefer to work with a language that has simple instructions. By simple we
mean that any single instruction takes a small and bounded amount of time to compute, as opposed to, for example, a
single line of Java code which can theoretically hide a very heavy computation. Ideally, we would like to work with
something that is similar to RISC assembly or Java Bytecode. 2) Interpreted languages like Java and Python have
complex interpreters that have their own internal states, which are usually not deterministic. E.g., their native code
cache or their internal memory management processes like the Garbage Collector. Therefore, storing a state of an
interpreted-language program requires subtle changes of its interpreter to somehow make it more deterministic.

In addition, there are many non deterministic events that depend on the operating system, e.g., many OS interfaces
return handles to some of the OS internal structures like a pointer to an opened file. Since most operating system
calls are also non-deterministic, we require that the program will not make any operating system calls (or at least not
non-deterministic ones). We remark that this restriction can be bypassed by writing function stubs that preserve that
determinism of the program. Currently, we implemented such stubs only for the essential malloc () and free ()
functions. Similarly, multi-threading could ruin the determinism, so we require that our delegated program use only
one thread.

We decided to implement a prototype directly with X86 assembly, for stand-alone programs. Under reasonable
assumptions on the cloud operating system we can achieve all the above functionalities. The atomic instructions are
assembly instructions. We believe that using X86 assembly is both cleaner to use and general for further development
(e.g., using C++ programs instead of only C).

5.2 System Architecture

The client has a source code in C of a program prog . exe that he wishes to delegate. The programmer does not have
to write his program in some new or restricted language, he can write his program in the same way he writes any C
program. For simplicity of the description we assume that the input to the program is part of the program itself (hard-
coded) and that the result of the program is an integer. Specifically, we assume there is a function with the prototype

int client_main (). Those restrictions can be easily eliminated if needed (e.g., by using a pre-allocated buffers
for input/output before/after the program execution).

Given the source code, the client builds the program using a supplied makefile. This makefile basically links the
program with a wrapper code, sets the code base-address to be static and statically links all libraries. We set the code
base-address to be static so the loader will load the program to the same memory address for all executions. Similarly,
since shared libraries can be loaded to any memory address, we statically link all libraries so they will be (again)
loaded to specific memory addresses.

The wrapper code corresponds to the TM initialization. It initializes to zero all the general use registers and the re-
quired stack memory, it allocates a large amount of memory to be used as the program heap and calls client_program().
Also, the makefile links a code formalloc () and free () that uses the pre-allocated memory instead of the regular
heap. Here we use the fact that Windows allocates large memory segments (e.g. 2 GB) in almost deterministic ad-
dresses. After the client builds his program with the supplied makefile, he sends the executable to each of the clouds.
Now, the protocol itself starts.

The prototype consists of three main tools: QuinExecuter, QuinClient and QuinServer. The client
runs the QuinClient on his machine and the clouds run QuinServer and QuinExecuter on their machines.
QuinExecuter is a tool for executing a program for a given number of instructions. It can store the program state or
continue execution from a previously stored state, it uses a dynamic instrumentation tool named Intel’s PIN [LCM™05]]
and is able to count the number of executed instruction, stop execution and store the state to a file, and, restore a state
from a file and continue execution. QuinClient and QuinServer are python implementations of the protocol
itself. The reduced-configuration equivalence in this implementation would be the values of all CPU registers and two
hash values. Those hash values are the root values of the Merkle Hash Trees of the current stack memory and the
current heap memory. Last, QuinClient uses an open-source X86 emulator called PyEmu [PyE] in order simulate
X86 instructions.

5.3 Evaluation

Since our goal is to check practicality of the protocol in real-world scenarios, we experimented with live cloud
providers, Amazon EC2 and Rackspace Cloud, which are currently among the largest cloud providers. As for the
delegated program, we used a simple but very useful program, Determinant . exe, that computes the determinant
of a given matrix. Although there are algorithms for computing determinant that run in time O(n?) (for n * n matrix),
we used the naive algorithm that runs in time O(n!), and uses O(n?) space.

We executed several experiments of the full protocol. For each experiment we ran the protocol several times with
one cheating cloud that cheats on one out of three randomly chosen states. Those states were chosen to be close to
the end of the computation (around 85% of the total number of steps). We added to QuinServer a code that, when
asked, tries to cheat on all configurations from some given step.

Since there are performance differences between Amazon EC2 and Rackspace Cloud, we conducted two different
experiments. In the first (AR), we used one virtual machine on each cloud provider, and in the second (RR), we used
two virtual machines that run on the same cloud provider (specifically, Rackspace Cloud). We used a simple laptop as
our client.

In Table [5.3] we show the average running times of the protocol for the program Determinant.exe. The
numbers in the left part of the table represent the running times in seconds on Amazon EC2 and Rackspace Cloud,
respectively, separated by slashes. BS-PT denotes the QuinExecuter overhead during the binary search and MHT
denotes the computation time of the Merkle Hash Tree roots. The overhead factors are over original running times of
Determinant_quin.exe.

Matrix Size BS-PT ‘ MHT H AR Total | AR Overhead Factor H RR Total | RR Overhead Factor

10 230/145 121/27 381 190 188 188
11 487/358 165/42 694 33 439 23
12 2017/1773 | 181/43 2243 8 1676 7

Table 1: QUIN performance for three different matrix sizes, using Amazon EC2 and Rackspace Cloud (AR), and using
only Rackspace Cloud (RR).

We can observe that the overhead of the protocol is reduced when the original computation time grows. This
suggests that the overhead of the protocol itself is lower, and there are many implementation overheads, mainly from
QuinExecuter (e.g., because of the internal PIN VM). We believe that a product-level implementation can get
much smaller overheads, presumably a factor of 10-20 times slower on average for all computations.

References

[CKV10]

[FK97]

[GGP10]

[GKROS]
[Kil92]

[LCMT05]

[Mic00]
[PyE]

Kai Min Chung, Yael Kalai, and Salil Vadhan, Improved delegation of computation using fully homomorphic encryp-
tion, CRYPTO ’10: Proceedings of the 30th annual conference on Advances in cryptology, Springer-Verlag, 2010,
pp. 483-501.

Uriel Feige and Joe Kilian, Making games short (extended abstract), STOC *97: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, ACM, 1997, pp. 506-516.

Rosario Gennaro, Craig Gentry, and Bryan Parno, Non-interactive verifiable computing: outsourcing computation to
untrusted workers, CRYPTO *10: Proceedings of the 30th annual conference on Advances in cryptology, Springer-
Verlag, 2010, pp. 465—482.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum, Delegating computation: interactive proofs for muggles,
STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of computing, ACM, 2008, pp. 113-122.

Joe Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), STOC *92: Proceedings of
the twenty-fourth annual ACM symposium on Theory of computing, ACM, 1992, pp. 723-732.

Chi Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood, Pin: building customized program analysis tools with dynamic instrumentation, PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation,
ACM, 2005, pp. 190-200.

Silvio Micali, Computationally sound proofs, SIAM J. Comput. 30 (2000), 1253-1298.
PyEmu, a python IA-32 emulator, http://code.google.com/p/pyemu.

http://code.google.com/p/pyemu

	Introduction
	Our Contributions
	Computationally Sound epRG for Any Polynomial Time Computation
	The Protocol
	More than Two Players

	One-round epRG for Any L-uniform NCComputation
	Quin: Implementation of the Protocol
	The Difficulties and Design Choices
	System Architecture
	Evaluation

