
Towards Multi-Layer Autonomic Isolation of Cloud
Computing and Networking Resources

Aurélien Wailly, Marc Lacoste
Orange Labs, France

{aurelien.wailly, marc.lacoste}@

orange-ftgroup.com

Hervé Debar
Télécom SudParis

herve.debar@telecom-sudparis.eu

Despite its many foreseen benefits, the main barrier to
adoption of cloud computing remains security. Vulnerabili-
ties introduced by virtualization of computing resources, and
unclear effectiveness of traditional security architectures in
fully virtualized networks raise many security challenges [5].
The most critical issue remains resource sharing in a multi-
tenant environment, which creates new attack vectors. The
question is thus how to guarantee strong resource isolation,
both on the computing and networking side. System and
network complexity make manual security maintenance im-
possible by human administrators. Computing and network-
ing isolation over virtualized environments should thus be
achieved and automated.

Unfortunately, current solutions fail to achieve that goal:
hugely fragmented, they tackle the problem only from one
side and at a given layer, thus without end-to-end guaran-
tees. Moreover, they remain difficult to administer. A new
integrated and more flexible approach is therefore needed.

This paper describes a unified autonomic management
framework for IaaS resource isolation, at different layers,
and from both computing and networking perspectives. A
nested architecture is proposed to orchestrate multiple au-
tonomic security loops, both over views and layers, resulting
in very flexible self-managed cloud resource isolation. A first
design for the corresponding framework is also specified for
a simple IaaS infrastructure.

1. CLOUD RESOURCE ISOLATION
In the cloud, pooled networking and computing resources

may be seen from two different but complementary views.
The networking view abstracts the network resources, i.e.,
the successive protocol layers that encapsulate the data to
be transmitted in the cloud. Orthogonally, the computing
view captures the computational and storage resources of
each machine at different abstraction levels (software and
hardware), e.g., processor, memory, devices. Ensuring end-
to-end isolation requires a fine-grained control of information
manipulated in each layer crossed along the data path.

.

To simplify, we consider three main layers in an IaaS
infrastructure: physical, OS (hypervisor), and application
and/or middleware (VM-level), broadly corresponding to
OSI network layers 1 and 2, 2 to 4, and 3 to 7.

Virtualization opens totally new attack vectors, as shown
recently by many loopholes exploited in each layer. Compro-
mising the hypervisor by a side-channel attack may leak in-
formation between VM sharing resources [10]. Layer spoof-
ing is also possible as in the BluePill rootkit [11]. Another
possibility is to fully bypass intermediate layer controls. For
instance, the guest OS might directly access virtualized de-
vices. Similarly, the applicative layer could attempt to spoof
ARP requests to break physical isolation (e.g., MAC filter-
ing). Next, we provide a brief overview of some existing
isolation mechanisms in each layer.

Physical Layer. At this level, network isolation relies
on dedicated network equipments like switches, routers, and
firewalls. Besides evident physical separation, IEEE 802.1Q-
compliant Virtual Local Area Networks (VLAN) enable to
segregate virtual networks on the same physical infrastruc-
ture. It is also possible to create network overlays at link
layer [13] or above [6]. Firewalls can filter desired packets in
a fine-grained manner using Access Control Lists (ACLs).
They can be configured from a console via a serial port,
or by accessing a tiny Web server directly integrated into
the equipment. The computing view is far more complex
with hardware-virtualized resources such as Network Inter-
face Controllers (VNICs) [14], Input/Output Memory Man-
agement Units (IOMMU) that map device-visible virtual
addresses to physical ones, and special instruction sets to
deliver virtualization in processors (Intel-VT, AMD-V).

Hypervisor Layer. One level up, the hypervisor pro-
vides control with software-virtualized interfaces and fire-
walls. The networking view is richer with kernel modules
that extend physical switches into virtual ones. The two
main competing solutions are Open vSwitch [9] and Cisco
Nexus 1000v [4]. Both are very close, but Open vSwitch
implements OpenFlow [7] to offer precise control of for-
ward tables going well beyond ACL-based administration.
The management of switches is simplified thanks to built-
in commands accessible from the host OS. Further control
on communications is possible thanks to the iptables rules
which specify filtering rules for IP packets, the Linux-based
bridging firewall ebtables establishing rules for the link layer,
or solutions like VMware VShield Zones.

In the computing view, resource isolation can be per-
formed through hardware-assisted instructions or emulation.
Type 1 hypervisors seem most suitable for fine-grained con-



Layer Networking View Computing View

Application (VM)
Application-level firewall: WAF. . .
Virtual firewall: VShield Zones/App. . .
SSL/TLS VPN

Antivirus: VShield EndPoint
VM introspection [3]

Hypervisor

Virtual switch [4, 9, 7]
System-level firewall: iptables, ebtables
L2/L3 VPN
IP overlay network [6]

Security API: [8]
Security modules: [1, 12]

Physical

Dedicated network equipment: firewall
(VShield Edge), physical switch, router
VLAN
L1 VPN
Link overlay network [13]

MMU/IOMMU
Hardware-assisted virtualization: Intel-
VT, AMD-V
VNICs

Figure 1: Some Solutions for Cloud Resource Isolation.

trol over resources. Some generic hypervisors are actively
maintained, with both open source and commercial solu-
tions. VMware ESX is a mostly closed platform, control re-
maining limited to a fixed set of APIs, and thus difficult to
extend. The Kernel-based Virtual Machine (KVM) and Xen
use Intel-VT or AMD-V for instruction processing, IOMMU
to separate resources, and deliver a device driver to manage
virtualization hardware. KVM implements VMs as Linux
processes, and therefore benefits from a wide variety of stan-
dard tools for process isolation and management. Security
modules [1, 12] for isolation are available for Xen based on
SELinux – thus directly supported by KVM with the ad-
vantage of built-in isolation of Linux kernel backend drivers.
The libvirt library is also increasingly used to administer a
wide range of hypervisors and modules. It provides a higher-
level hypervisor-independent interface to control the virtu-
alization environment. Security modules for this library are
available, e.g., sVirt [8] providing MAC security schemes to
isolate guest OSes and specify access permissions.

VM Layer. The VM essentially relies on the hypervisor
capabilities for computing and networking isolation. How-
ever, a growing number of virtual appliances are already
available to filter network data (virtual firewalls such as
VShield Zone/App from VMware), to monitor the VM se-
curity status (VM introspection [3]), or to isolate a group of
compromised VMs by defining a quarantine zone (antivirus
suites). These solutions run into conventional user/group
administration problems such permission management to
determine the domains in which users, applications, and de-
vices can be added. Some of those solutions provide little
or no explicit interface to manage remotely the other VMs.
Moreover, in the guest OS, security control usually remains
limited to userland, while richer and stronger isolation could
be possible by introducing kernel modules.

Overall, those solutions suffer from three main limitations.
First, available mechanisms are highly heterogeneous, with
lack of an overall architectural vision regarding their orches-
tration into an integrated security infrastructure. Second,
the different security configurations of those mechanisms in-
duce scalability and maintainability challenges: even if a
cloud environment may be tuned to meet specific needs,
nested dependencies between views and layers can become
appalling and virtually impossible to solve, excluding the
“by hand” approach to security management. Third, the
extremely dynamic character of the cloud (e.g., with VM
live migration between physical machines), and the short re-
sponse times required to activate system defenses efficiently,
make the problem even more complex. A flexible, dynamic,
and automated security management of cloud isolation mech-
anisms is thus clearly lacking today.

2. APPROACH
The previous limitations may be overcome by adopting an

autonomic approach to security of IaaS infrastructures [2],
to get over fragmentation of security components providing
resource isolation, automate security administration, and
react rapidly to detected threats. Thus, security becomes
self-managed through control loop patterns in the isolation
mechanisms throughout the system. This means introducing
detection, decision, and reaction security components that
collaborate to select the adequate isolation policies match-
ing the ambient estimated risk, and achieve an optimal level
of protection of cloud resources. We propose to apply that
approach for cloud resource isolation, both in terms of views
and layers. To synchronize the different corresponding auto-
nomic loops, we distinguish two types of loop orchestration,
horizontal and vertical.

The autonomic paradigm may be applied to different views
of cloud resource isolation, both computing and networking.
Indeed, earlier research on autonomics is usually separated
between autonomic computing, providing self-management
capabilities to overcome growing system complexity, but tak-
ing distribution of resources for granted, and autonomic net-
working, applying similar principles to communication envi-
ronments to master rising network management complexity.
An end-to-end cloud security framework should thus be able
to reconcile both views. Horizontal orchestration patterns
are thus introduced to coordinate autonomic computing and
networking loops between the two views.

Autonomic behavior can also be considered at the different
IaaS layers. Depending on the targeted mechanism, a great
number of autonomic loops may thus be introduced, which
may be increased due to cross-layering issues. In order to
keep the self-management model consistent, those loops have
to be synchronized to maintain a stable state. This is the
role of the vertical orchestration patterns which coordinate
the loops between the different layers.

Several patterns may be used for orchestrating autonomic
loops. A centralized model is perhaps the simplest way to
organize autonomic components: a single entity dictates the
global behaviour to other autonomic managers. This pattern
is extensible to a hierarchy of autonomic managers. Other
patterns such as peer-to-peer are also possible.

Having views interacting with layers opens a totally new
range of possibilities in terms of flexibilility for cloud isola-
tion. The whole security management model is engineered
by orchestrators that obey to generic patterns, specified by
the administrator. Such a design makes possible the gen-
eration of high-level strategies for cloud resource isolation,
enabling easy administration and high dynamicity.



Figure 2: Isolation Framework Overview.

For instance, consider a scenario where a physical net-
work equipment realizes isolation between applicative VM
resources, also supervised by a virtual security appliance.
When an attack is detected, in the physical layer, a first
loop may decide to isolate a specific host in a VLAN. At the
application level, the security appliance may also decide to
update its database containing signatures of known viruses.
However, if connection to the network is lost, the second
loop will not work properly, a timeout being triggered. For
the architecture to remain consistent, our approach enables
to introduce rules for the physical layer loop to notify the
application layer loop to stop network interactions.

We now give a brief overview of our proposition for an au-
tonomic management framework for cloud resource isolation
orchestrating feedback loops over views and layers based on
the previous principles.

3. TOWARDS A FRAMEWORK
Overview. Figure 2 describes an abstract overview of

our autonomic isolation framework, which makes the follow-
ing assumptions on the IaaS infrastructure: (1) each cloud
resource offers well-defined interfaces/hooks to capture its
state (detection phase), and to perform actions on it (re-
action phase), both from the system and the network per-
spectives; (2) in each layer, individual decision-making com-
ponents (i.e., autonomic managers) provide the necessary
interfaces to realize the collective layer management behav-
ior (horizontal orchestration); and (3) each layer offers the
needed management interfaces to perform synchronization
between layers (vertical orchestration).

Two types of orchestrators guarantee overall consistency
of self-management of cloud resource isolation:

• Vertical Orchestrators (VO) synchronize overall cloud
resource isolation management behaviors between lay-
ers, and implements the vertical orchestration patterns.
For instance, in case of inconsistency between layers, a
VO may decide to enforce specific rules on well-chosen
layers, according to administrator-defined policies.

• Horizontal Orchestrators (HO) synchronize in each layer
cloud resource isolation behaviors between computing
and networking views of resources. Each view sends

collected informations to the HO (1). The HO sum-
marizes its knowledge and provides it to VO (2). When
a local layer isolation policy has to be modified (or new
policies chosen at the overall level), views are updated
by the HO through hooks previously specified (3).

Thus, orchestrators implement a hierarchical and layered
self-management model, distributed over layers and views,
and defining a modular system that can be easily extended
to fit particular cloud network architectures.

Cloud Framework Design. Figure 3 represents a sim-
ple implementation of the isolation framework on a sample
IaaS infrastructure. Dedicated network equipments provide
the physical architecture. Network traffic is segregated by a
firewall by ACL rule-matching, by a switch through VLAN
tables, and by routing tables. All of these security policies
are modifiable by the physical autonomic loop. For our im-
plementation, two VLANs are plugged between the firewall
and the physical machine.

The hypervisor (KVM) contains Linux-specific policies,
such as internal routing tables, or memory associations be-
tween physical and virtual devices. In the figure, peth0

represents the physical Ethernet interface, eth0 and eth1

are physically virtualized interfaces, while br0 and br1 are
the bridge abstractions needed by the hypervisor to switch
on/off an interface. Bridge br0 memory is simply associ-
ated with eth0, as br1 with eth1. Each bridge will be the
endpoint of an emulated interface for VMs. The libvirt API
handles the remote access to establish the hypervisor- layer
autonomic loop.

At the VM layer, we consider two types of VM: the ad-
ministrative VM (AVM) and the user VM (UVM). A UVM
contains at least two components: a firewall, to isolate net-
work flows, and an antivirus that take cares of data exe-
cution prevention, program isolation and kernel signals. In
the antivirus kernel component, probes monitor the loaded
images in the guest OS. UVMs communicate with the hy-
pervisor through the conn1 connection endpoint, connected
to br0 – a second VM would be connected through br1 and
so on. The UVM virtual memory is mapped to the physical
machine memory. They run on the virtual CPU (vCPU)
abstraction provided by the hypervisor.

The AVM collects probes from every layer and organizes
framework decisions with orchestrators (vertical and hori-
zontal). The AVM behaves as a security management inter-
face, collecting threat information, and deploying counter-
measures. In each layer, the autonomic managers (HO X)
negotiate with both a centralized VO, and with the layer
management APIs.

4. NEXT STEPS
This paper described a flexible approach to manage auto-

nomically cloud resource isolation between different layers,
reconciling computing and network views. The correspond-
ing framework overcomes fragmentation of security compo-
nents and automates their administration by orchestrating
different autonomic loops, vertically and horizontally.

Going beyond the presented architecture requires several
modules in different views, currently under implementation.
HTTP Web servers included into physical equipments need
specific APIs and a wrapper in the AVM. At the hypervisor
layer, the libvirt API uses a library named netcf to enforce
new network rules via XML. Although the frontend is clearly



(a) (b)

Figure 3: Framework Design: (a) Computing View; (b) Networking View.

defined, the backend is OS-dependent: we thus have to fully
translate netcf’s XML configuration files and to implement
commands for interface creation, modification and deletion.
In the VM layer, we have chosen to use ClamAV as a flexible
antivirus with Python support for remote control as source
code is available. Real-time protection is missing but we
are implementing a kernel module to scan files when they
are loaded in memory and control their execution. This
example underlines what can be acheived in the VM layer:
specific functions such as filtering socket creation to ban a
range of compromised VMs can also be hooked.

This particular implementation is actually under deploy-
ment as security infrastructure for the French government-
funded SelfXL project, aiming at self-management of large
scale systems such as cloud computing infrastructures. It al-
lows the realization of dynamic quarantine zones to isolate
and clean potentially compromised VMs.

A preliminary use case of this infrastructure is the fol-
lowing: a virus is launched on a VM and catched by the
detection engine. The VO then sends a set of orders: dis-
able bridge connection for this VM at the hypervisor level,
migrate the VM to a special physical machine, clean the VM,
and migrate it back to its original location. More complex
use cases will be investigated in the coming months.

Acknowledgments
This work has been funded by the ANR SelfXL project.

5. REFERENCES
[1] S. Berger, R. Careces, D. Pendarakis, R. Sailer, and E. Valdez.

TVDc: Managing Security in the Trusted Virtual Datacenter.
ACM SIGOPS Operating Systems Review, 42(1), 2008.

[2] D. Chess, C. Palmer, and S. White. Security in an Autonomic
Computing Environment. IBM Systems Journal,
42(1):107–118, 2003.

[3] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and
D. Zamboni. Cloud Security is not (just) Virtualization
Security. In ACM Workshop on Cloud Computing Security
(CCSW), 2009.

[4] Cisco. Nexus 1000v. www.cisco.com/web/go/nexus1000v.

[5] Cloud Security Alliance. Top Threats To Cloud Computing.
http://www.cloudsecurityalliance.org/topthreats.html.

[6] X. Jiang and D. Xu. VIOLIN: Virtual Internetworking on
OverLay INfrastructure. In International Symposium on
Parallel and Distributed Processing and Applications, 2004.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM
Computer Communication Review, 38:69–74, March 2008.

[8] J. Morris. sVirt: Hardening Linux Virtualization with
Mandatory Access Control. In Linux.conf.au Conference, 2009.

[9] Open vSwitch. openvswitch.org.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get Off of My Cloud! Exploring Information Leakage in
Third-Party Compute Clouds. In ACM Conference on
Computer and Communications Security (CCS), 2009.

[11] J. Rutkowska and A. Tereshkin. Bluepilling the Xen
Hypervisor. In BlackHat Technical Security Conference
(BLACKHAT), 2008.

[12] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger,
J. Griffin, and L. van Doorn. Building a MAC-Based Security
Architecture for the Xen Open-Source Hypervisor. In Annual
Computer Security Applications Conference (ACSAC), 2005.

[13] A. Sundararaj and P. Dinda. Towards Virtual Networks for
Virtual Machine Grid Computing. In USENIX Virtual
Machine Research and Technology Symposium (VM), 2004.

[14] S. Tripathi, N. Droux, T. Srinivasan, and K. Belgaied.
Crossbow: From Hardware Virtualized NICs to Virtualized
Networks. In ACM Workshop on Virtualized Infrastructure
Systems and Architectures, 2009.


