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Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication );

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);
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Secure Remote Storage
1 In the beginning is the Data

First Name Last Name Affiliation

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

2 Encrypt and obtain

First Name Last Name Affiliation

E (PK, Christian) E (PK, Cachin) E (PK, IBM)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS)

3 Authenticate by using MAC.

4 Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, ”Encrypt and Mac” has some subtleties.
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Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.
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Predicate Encryption

Predicate Encryption for P
Ciphertexts and Keys have attributes.

Key K with attribute ~y can decrypt ciphertext Ct with attribute ~x iff
and only if P(~x , ~y) = 1.

Delegating decryption

1 Alice generates master secret key (MSK) and public key (PK’) ;

2 Alice publishes PK’;
3 Bob has a private message M to Alice;

I Bob computes E (PK′,M, private);

4 Dean has a work message M ′ to Alice;
I Dean computes E (PK′,M ′,work);

5 Alice gives key for work to secretary;

6 Alice keepts key for private for herself.
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Searching encrypted data

Let P be a predicate such that

P((FN, LN,A), (?, ?, “IBM”)) = 1 iff A = “IBM”.

First Name Last Name Affiliation Attributes

E (PK, Christian) E (PK, Cachin) E (PK, IBM) E(PK’,(C,C,I),0)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL) E(PK’,(G,P,S),0)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD) E(PK’,(A,S,T),0)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM) E(PK’,(M,S,I),0)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS) E(PK’,(P,V,L),0)
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Predicate Encryption

The SELECT procedure

1 DOwner computes key K with attribute (?, ?, IBM) and sends it to
UStorage;

2 UStorage tries to decrypt E (PK′, (Christian,Cachin,IBM), 0) with K
and obtains 0;
the row is selected

3 UStorage tries to decrypt E (PK′, (Giuseppe,Persiano,SAL), 0) with
K and obtains ⊥;
the row is not selected;

4 . . . . . . . . .

5 UStorage sends the two selected rows to the DOwner;

6 DOwner decrypts the received rows;
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Hidden Vector Encryption

Hidden Vector Encryption

Ciphertext Ct is associated with attribute vector ~x of length ` over
alphabet Σ.

Key K is associated with pattern vector ~y of length ` over alphabet
Σ? = Σ ∪ {?}.
Predicate Match(~x , ~y) which is true if and only if ~x = 〈x1, . . . , x`〉 and
~y = 〈y1, . . . , y`〉 agree in all positions i for which yi 6= ?.

If patterns vectors ~y ∈ Σ` we have the original notion of searchable
encryption.

Giuseppe Persiano (UNISA) Zurich, Switzerland 10 / 54



Hidden Vector Encryption

Hidden Vector Encryption

Ciphertext Ct is associated with attribute vector ~x of length ` over
alphabet Σ.

Key K is associated with pattern vector ~y of length ` over alphabet
Σ? = Σ ∪ {?}.
Predicate Match(~x , ~y) which is true if and only if ~x = 〈x1, . . . , x`〉 and
~y = 〈y1, . . . , y`〉 agree in all positions i for which yi 6= ?.

If patterns vectors ~y ∈ Σ` we have the original notion of searchable
encryption.

Giuseppe Persiano (UNISA) Zurich, Switzerland 10 / 54



Hidden Vector Encryption – The syntax

Hidden Vector Encryption (Attribute Only)

1 Setup(1n, 1`) outputs the public key PK and the secret key SK.

2 Encryption(PK,~x) outputs an encrypted attribute vector X̃ .

3 GenToken(SK, ~y) outputs key K~y .

4 Test(X̃ ,T~y ) returns Match(~x , ~y) with overwhelming probability.
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Semantic Security - Selective

SemanticExpA(1n, 1`)
1. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ`.

2. Key-Generation Phase. C computes (PK,SK)← Setup(1n, 1`).
PK is given to A.

3. Query Phase I. A can make any number of key queries.
C answers key queries only for patterns ~y such that
Match(~z0, ~y) = Match(~z1, ~y) = 0.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(PK,~zη) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 12 / 54



Known Constructions

Pairing (symmetric version)

multiplicative groups G and GT of order p;

non-degenerate pairing function e : G×G→ GT ;
I for all x ∈ G, x 6= 1, and a, b ∈ Zp,

e(x , x) 6= 1 and e(xa, xb) = e(x , x)ab.

Constructions

Boneh and Waters [TCC 07] gave a construction based on complexity
assumption for pairing with composite order group;

Iovino and P. [Pairing 08] gave a construction for prime order groups;

BH needs about 1024-bit moduli.
For IP we can use 160-bit moduli.
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A Construction for HVE

Hidden Vector Encryption [IP08]

1 Setup(1n, 1`) outputs
Pick an instance I with n-bit prime and random ti ,b, vi ,b ∈ Zp for
i ∈ [`] and b ∈ Σ.

PK = [I, (Ti ,b = g ti,b ,Vi ,b = g vi,b)i∈[`],b∈Σ]

SK = [I, (T̂i ,b = g1/ti,b , V̂i ,b = g1/vi,b)i∈[`],b∈Σ]

2 Encryption(PK,~x) for ~x = 〈x1, . . . , x`〉 outputs X̃ = (Xi ,Wi )
`
i=1 where

Xi = T s−si
i ,xi

Wi = V si
i ,xi

for randomly chosen s, s1, . . . , s` ∈ Zp.
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A Construction for HVE

Hidden Vector Encryption IP08

3 GenToken(SK, ~y) outputs key K~y = (Yi , Li )
`
i=1 where

Yi =

{
T̂ ai
i ,yi
, if yi 6= ?;

∅, if yi = ?.
and Li =

{
V̂ ai
i ,yi
, if yi 6= ?;

∅, if yi = ?.

where for i such that yi 6= ?, the ai ’s are random under the constraint
that

∑
i ai = 0.
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Construction

Test

4
Test(X̃ ,K~y ) =

∏
i :yi 6=?

e(Xi ,Yi ) · (Wi , Li ).

Observation:
xi = yi ⇒ e(Ti ,xi , T̂i ,yi ) = e(g , g).

xi = yi ⇒ e(Vi ,b, V̂i ,b) = e(g , g).
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Implementation

Implementation uses:

1 PBC: Pairing Based Cryptography Library
http://crypto.stanford.edu/pbc/ for basic pairing and elliptic
curves computation. Written in C.

2 jPBC: Java Pairing Based Cryptography Library
http://gas.dia.unisa.it/projects/jpbc/

1 a Java Porting of the PBC library;
2 a Java Wrapper of the PBC library;

Three versions tested:

1 jPBC: uses the the Java porting of the PBC library;

2 jPBC+precomputation: uses the the Java porting of the PBC library
but with precomputation;

3 jPBC+PBC+precomputation: uses the Java Wrapper (low level
computation delegated to more efficient PBC C code) and
precomputation.
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Parameters

Curve

Supersingular curve y2 = x3 + x over the field Fq for some prime
q = 3 mod 4. (Type A symmetric pairings)

The order p is a prime factor of q + 1.

q = 1112516189738354695660623681779709216838322823798404116

198919708307485046800260086705221179856475399111425452

4050414866145727834858675222143950902758166111

512 bit

r = 730750818665451459101842416358141509827966795777

160 bit
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Experimental setup

Model Name: iMac
Model Identifier: iMac8.1
Processor Name: Intel Core 2 Duo
Processor Speed: 2.66 GHz
Number Of Processors: 1
Total Number of Cores: 2
L2 Cache: 6 MB
Memory: 4GB
Bus Speed: 1.07 GHz
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Future work

Current implementation by Angelo De Caro.

more code optimization

Dropbox-like user interfact

Map-Reduce

different types of pairings
I the scheme can be implemented with asymmetric pairing.
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Back to Theory
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Full Security

1. Key-Generation Phase. C computes (PK,SK)← Setup(1n, 1`).
PK is given to A.

2. Query Phase I. A can make any number of key queries.

3. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ`.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(PK,~zη) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.

7. Winning condition. A wins if η = η′ .
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Restricting the queries

Impossible to achieve

If A has asked a key for ~y such that Match(~z0, ~y) 6= Match(~z1, ~y), A wins.

Unrestricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y)

Restricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y) = 0
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Full Security with Unrestricted Queries

1. Key-Generation Phase. C computes (PK,SK)← Setup(1n, 1`).
PK is given to A.

2. Query Phase I. A can make any number of key queries.

3. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ`.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(PK,~zη) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.

7. Winning condition. A wins if η = η′ and for all queries ~y it holds
that

Match(~z0, ~y) = Match(~z1, ~y)

Giuseppe Persiano (UNISA) Zurich, Switzerland 28 / 54



Full Security

De Caro, Iovino, P, 2011

Fully secure HVE with unrestricted queries in composite (product of 4
primes) order bilinear groups.

Caveat: 160 bits become 2048.
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Selective vs Full Security

Selective security assumes that the adversary attacks the data and
not the public key.

The adversary declares that he wants to distinguish ciphertexts with
Affiliation=IBM from ciphertexts with Affiliation=SAL.

Full security allows the adversary to base his attack on the public key
(which is chosen independently from the data) and on the keys
obtained.
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Key Security

Security threat

UStorage knows all searches I have done.

Key security is impossible for public key

storage manager receives K~y and wants to check if
Match(〈1, . . . , 1〉, ~y) = 1;

I encrypt 〈1, . . . , 1〉 using PK;
I run Test to obtain the answer;

We should go private key! Or maybe not....
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Public vs. Private Key

Why Public Key?

In the scenario with DBowner and UStorage, private key is sufficient.

All write operations must go through the DBowner.

In the Alice/Secretary settings we need public key.
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Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;

I for ` = 3 and Σ = {0, 1}
Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;

I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y ) returns Match(~x , ~y) with overwhelming probability.
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Known Constructions

Constructions

Boneh-Waters [2007] gave a construction based on groups with order
product of four primes. Need 2048-bit moduli.

Blundo, Iovino, P. [2009, 2010] gave a construction based on groups
of prime order.

Finish
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Semantic Security with Partial Public Keys

1. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ` and policy Pol ∈ (2Σ)`.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`) and
PPKPol ← PPKeyGen(SK,Pol).
PPKPol is given to A.

3. Query Phase I. A can make any number of key queries.
C answers key queries only for patterns ~y such that
Match(~z0, ~y) = Match(~z1, ~y) = 0.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(SK,~zη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.
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Token Security with Partial Public Keys

1. Initialization Phase. A announces ~y0, ~y1 ∈ Σ`
? with ? in the same

positions and a policy Pol such that
~x ∈ XPol ⇒ Match(~x , ~y0) = Match(~x , ~y1) = 0.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`) and
PPKPol ← PPKeyGen(SK,Pol).
PPKPol is given to A.

3. Query Phase I. A can make any number of key queries.
A gets GenToken(SK, ~y).

4. Challenge construction. η is chosen at random from {0, 1} and
receives GenToken(SK, ~yη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.
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Construction for Partial Public Key HVE

Setup (1n, 1`)

1. Select a symmetric bilinear instance I = [p,G,GT , g , e].

2. For i ∈ [2`− 1], choose random t1,i ,0, t2,i ,0, t1,i ,1, t2,i ,1 ∈ Zp and set

Ki =

(
T1,i ,0 = g t1,i,0 , T2,i ,0 = g t2,i,0

T1,i ,1 = g t1,i,1 , T2,i ,1 = g t2,i,1

)
K̄i =

(
T̄1,i ,0 = g1/t1,i,0 , T̄2,i ,0 = g1/t2,i,0

T̄1,i ,1 = g1/t1,i,1 , T̄2,i ,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki , K̄i )i∈[2`−1]].

Notice: if x = y then

e(Tb,i ,x , T̄b,i ,y ) = e(g , g)

for all i ∈ [2`− 1] and b = 1, 2.
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Construction for Partial Public Key HVE

PPKeyGen (SK,Pol)

1. For i = 1, . . . , `,
for every b ∈ Poli , add T1,i ,b and T2,i ,b to PPKi .

2. For i = `+ 1, . . . , 2`− 1,
add T1,i ,0 and T2,i ,0 to PPKi .

3. Return PPKPol = [(PPKi )i∈[2`−1]].
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Construction for Partial Public Key HVE

Encryption(PPKPol, ~x = 〈x1, . . . , x`〉)
1. If ~x /∈ XPol return ⊥.

2. Append (`− 1) 0-entries to ~x .

3. Pick s at random from Zp.

4. (s1, . . . , s2`−1)← LSS(`, 2`− 1, 0).

5. For i = 1, . . . , 2`− 1,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

6. Return X̃ = [(X1,i ,X2,i )i∈[2`−1]].

Notice: if ~x ∈ XPol, then ∀i T1,i ,xi ,T2,i ,xi ∈ PPKPol.
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Linear Secret Sharing

(k , n) Linear Secret Sharing

Input: a secret s ∈ Zp;

Output: n shares (s1, . . . , sn) such that
I any k − 1 (or fewer) shares are random and independent among

themselves and are independent from the secret s;
I for any F ⊆ [n] of size k there exist reconstruction coefficients αi such

that
s =

∑
i∈F

αi si .

Notice: the reconstruction coefficients depend only on the set F and not
on the shares.
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Construction for Partial Public Key HVE

GenToken (SK, ~y = 〈y1, . . . , y`〉)
1. Pick random r ∈ Zp.

2. h = # of non-? entries of ~y .
append (`− h) 0-entries and (h − 1) ?-entries
S~y the non-? entries of the extended vector.
Notice that |S~y | = `.

3. (r1, . . . , r2`−1)← LSS(`, 2`− 1, 0).

4. For i ∈ S~y ,
set Y1,i = T̄ ri

1,i ,yi
and Y2,i = T̄ r−ri

2,i ,yi
.

5. Return T~y = [S~y , (Y1,i ,Y2,i )i∈S~y ].
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Construction for Partial Public Key HVE

Test (X̃ = [(X1,i ,X2,i)i∈[2`−1]],T~y = [S , (Y1,i ,Y2,i)i∈S ])

1. Let (vi )i∈S be the reconstruction coefficients for S .

2. Return 1 iff ∏
i∈S

[e(X1,i ,Y1,i ) · e(X2,i ,Y2,i )]vi = 1

e(X1,i ,Y1,i ) = e(T s−si
1,i ,xi

, T̄ ri
1,i ,yi

) = e(g , g)ri (s−si )

e(X2,i ,Y2,i ) = e(T−si2,i ,xi
, T̄ r−ri

2,i ,yi
) = e(g , g)−si (r−ri )

e(X1,i ,Y1,i ) · e(X2,i ,Y2,i ) = e(g , g)sri · e(g , g)−rsi

e(g , g)s
∑

i rivi · e(g , g)−r
∑

i sivi = e(g , g)s·0 · e(g , g)−r ·0
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Security proofs

Security proofs

Can prove semantic and key security on complexity assumptions
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Private-Key Searchable Encryption – The syntax

Private-Key Searchable Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 Encryption(SK,~x) outputs ciphertext Ct~x with attribute ~x ∈ Σ`.

3 GenToken(SK, ~y) outputs key K~y for pattern ~y ∈ Σ`.

4 Test(Ct~x ,K~y ) returns 1 iff ~x = ~y .
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Semantic Security with Private Keys

1. Initialization Phase. A announces two challenge attribute vectors
~x0,~x1 ∈ Σ`.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`).

3. Query Phase I. A can make any number of encryption and key queries
for patterns ~y 6= ~x0,~x1.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(SK,~xη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.
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Token Security with Private Keys

1. Initialization Phase. A announces ~y0, ~y1 ∈ Σ`.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`).

3. Query Phase I. A can make any number of key queries and encryption
queries for attributes ~x 6= ~y0, ~y1.

4. Challenge construction. η is chosen at random from {0, 1} and
receives GenToken(SK, ~yη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.
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Construction for Private-Key Searchable Encryption

Setup (1n, 1`)

1. Select a symmetric bilinear instance I = [p,G,GT , g , e].

2. For i ∈ [`], choose random t1,i ,0, t2,i ,0, t1,i ,1, t2,i ,1 ∈ Zp and set

Ki =

(
T1,i ,0 = g t1,i,0 , T2,i ,0 = g t2,i,0

T1,i ,1 = g t1,i,1 , T2,i ,1 = g t2,i,1

)
K̄i =

(
T̄1,i ,0 = g1/t1,i,0 , T̄2,i ,0 = g1/t2,i,0

T̄1,i ,1 = g1/t1,i,1 , T̄2,i ,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki , K̄i )i∈[`]].

Finish...
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Construction for Private-Key Searchable Encryption

Encryption (SK, ~x)

1. Pick random s ∈ Zp.

2. Pick random s1, . . . , s` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

4. Return Ct~x = [(X1,i ,X2,i )i∈[`]].

GenToken (SK, ~y)

1. Pick random r ∈ Zp.

2. Pick random r1, . . . , r` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set Y1,i = T̄ r−ri

1,i ,yi
and Y2,i = T̄−ri2,i ,yi

.

4. Return K~y = [(Y1,i ,Y2,i )i∈[`]].
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2. Pick random s1, . . . , s` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

4. Return Ct~x = [(X1,i ,X2,i )i∈[`]].

GenToken (SK, ~y)

1. Pick random r ∈ Zp.

2. Pick random r1, . . . , r` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set Y1,i = T̄ r−ri

1,i ,yi
and Y2,i = T̄−ri2,i ,yi

.
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Security proof strategy

Semantic vs. Token security

Encryption uses keys Ki , i ∈ [`];

Token generation is encryption w.r.t. to keys K̄i , i ∈ [`];

In the game for semantic security, A can ask
I any encryption query for keys Ki ;
I encryption queries for keys K̄i and pattern ~y 6= ~x0,~x1;

In the game for key security, A can ask
I any encryption query for keys K̄i ;
I encryption queries for keys Ki and attributes ~x 6= ~y0, ~y1;

Semantic Security ⇐⇒ Token Security
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Zero Sum Assumption

Consider the following game between a challenger C and an adversary A.

ZeroSumExpA(1n, 1`)
01. C randomly picks a1, . . . , a` such that

∑
i ai = 0;

02. C chooses instance I = [p,G,GT , g , e] with security parameter 1n;
03. for i ∈ [`]

C chooses random ui ∈ Zp and sets Ui = gui and Vi = Uai
i ;

04. C chooses random η ∈ {0, 1};
05. if η = 0 then C sets V1 to a random element of G;
06. C runs A on input [I, (Ui )i∈[`], (Vi )i∈[`]];
07. Let η′ be A’s guess for η;
08. if η = η′ then return 1 else return 0.
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Split Zero Sum Assumption
Consider the following game between a challenger C and an adversary A.

SplitZeroSumExpA(1n, 1`)
01. C randomly picks a1, . . . , a` such that

∑
i ai = 0;

02. C chooses instance I = [p,G,GT , g , e] with security parameter 1n;
03. C chooses random u,w ∈ Zp and sets W = gw ;
04. for i ∈ [`]

C chooses random ui ∈ Zp;
sets Ui = gui ,Vi = Uai

i ,Ai = gai , and Si = Uu
i ;

05 C sets Û = Uw
1 ;

06. C chooses random η ∈ {0, 1};
07. if η = 1 then C sets Z = W u−a1 else C chooses random Z ∈ G;

08. C runs A on input [I, (Ui )i∈[`], (Vi )i∈[`], (Ai )i∈[`], (Si )i∈[`]\{1},W , Û,Z ];
09. Let η′ be A’s guess for η;
10. if η = η′ then return 1 else return 0.
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Theorem

Under the Zero Sum Assumption and the Split Zero Sum Assumption,
there exists private-key searchable encryption with semantic and key
security.

Notice: construction based on pairings on prime order groups.
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Further directions

Search

Is sublinear search possible?

Verifiability

A lazy UStorage might say that he found no match.
Can we verify the result?
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Thank you
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