Predicate Encryption for Private and Searchable
Remote Storage

Giuseppe Persiano

Dipartimento di Informatica ed Appl.
" Renato M. Capocelli”
Universita di Salerno
giuper@dia.unisa.it

Workshop on Cryptography and Security in Clouds

Zurich, Switzerland
March 15-16, 2011

Giuseppe Persiano (UNISA) Zurich, Switzerland 1/54

This talk describes joint work with:

@ Carlo Blundo
@ Angelo De Caro
@ Vincenzo lovino

Giuseppe Persiano (UNISA)

Zurich, Switzerland

2 /54

Outline

@ Storing Data in a Cloud

= =) = E DA
Giuseppe Persiano (UNISA)

Outline

@ Storing Data in a Cloud

© Hidden Vector Encryption

Giuseppe Persiano (UNISA)

Outline
@ Storing Data in a Cloud

© Hidden Vector Encryption

© Implementation

Giuseppe Persiano (UNISA)

Outline

@ Storing Data in a Cloud
© Hidden Vector Encryption
© Implementation

@ Full Security

Giuseppe Persiano (UNISA)

Outline

@ Storing Data in a Cloud
© Hidden Vector Encryption

© Implementation

@ Full Security

© Key Security

Giuseppe Persiano (UNISA)

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOwner can assume:
UStorage does not destroy the data

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOWner can assume:
UStorage does not destroy the data (enforce using Duplication);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOWner can assume:
UStorage does not destroy the data (enforce using Duplication);

UStorage does not modify data

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOWner can assume:
UStorage does not destroy the data (enforce using Duplication);

UStorage does not modify data (enforce using Authentication Code);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOWner can assume:
UStorage does not destroy the data (enforce using Duplication);

UStorage does not modify data (enforce using Authentication Code);

UStorage does not read the data

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOWner can assume:
UStorage does not destroy the data (enforce using Duplication);

UStorage does not modify data (enforce using Authentication Code);

UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

Secure Remote Storage

@ A Cloud has huge storage capabilities and can be accessed from
anywhere;

e We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

) DOWner can assume:
UStorage does not destroy the data (enforce using Duplication);

UStorage does not modify data (enforce using Authentication Code);

UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 /54

Secure Remote Storage

© In the beginning is the Data
| First Name | Last Name | Affiliation |

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza | Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

[m] [l =

Giuseppe Persiano (UNISA)

Secure Remote

Storage

© In the beginning is the Data

| First Name | Last Name | Affiliation |

Christian Cachin IBM

Giuseppe Persiano SAL

Ahmad-Reza | Sadeghi TUD

Matthias Schunter IBM

Paulo Verissimo LIS

@ Encrypt and obtain
 First Name ~ Last Name Affiliation |
E(PK, Christian) E(PK, Cachin) E(PK, IBM)
E(PK, Giuseppe) E(PK, Persiano) | E(PK, SAL)
E(PK, Ahmad-Reza) | E(PK, Sadeghi) E(PK, TUD)
E(PK, Matthias) E(PK, Schunter) | E(PK, IBM)
E(PK, Paulo) E(PK, Verissimo) | E(PK, LIS)
o 5 = =

Giuseppe Persiano (UNISA)

Secure Remote Storage
© In the beginning is the Data

@ Encrypt and obtain

| First Name | Last Name | Affiliation |

Christian Cachin IBM

Giuseppe Persiano SAL

Ahmad-Reza | Sadeghi TUD

Matthias Schunter IBM

Paulo Verissimo LIS

~ First Name Last Name Affiliation |

E(PK, Christian) E(PK, Cachin) E(PK, IBM)
E(PK, Giuseppe) E(PK, Persiano) | E(PK, SAL)
E(PK, Ahmad-Reza) | E(PK, Sadeghi) E(PK, TUD)
E(PK, Matthias) E(PK, Schunter) | E(PK, IBM)
E(PK, Paulo) E(PK, Verissimo) | E(PK, LIS)

@ Authenticate by using MAC.

Giuseppe Persiano (UNISA)

Zurich, Switzerland

5 /54

Secure Remote Storage

© In the beginning is the Data

@ Encrypt and obtain

| First Name | Last Name | Affiliation |

Christian Cachin IBM

Giuseppe Persiano SAL

Ahmad-Reza | Sadeghi TUD

Matthias Schunter IBM

Paulo Verissimo LIS

~ First Name Last Name Affiliation |

E(PK, Christian) E(PK, Cachin) E(PK, IBM)
E(PK, Giuseppe) E(PK, Persiano) | E(PK, SAL)
E(PK, Ahmad-Reza) | E(PK, Sadeghi) E(PK, TUD)
E(PK, Matthias) E(PK, Schunter) | E(PK, IBM)
E(PK, Paulo) E(PK, Verissimo) | E(PK, LIS)

@ Authenticate by using MAC.
@ Disperse by using data replication algorithm.

Giuseppe Persiano (UNISA)

Zurich, Switzerland

5 /54

Secure Remote Storage
© In the beginning is the Data

@ Encrypt and obtain

| First Name | Last Name | Affiliation |

Christian Cachin IBM

Giuseppe Persiano SAL

Ahmad-Reza | Sadeghi TUD

Matthias Schunter IBM

Paulo Verissimo LIS

~ First Name Last Name Affiliation |

E(PK, Christian) E(PK, Cachin) E(PK, IBM)
E(PK, Giuseppe) E(PK, Persiano) | E(PK, SAL)
E(PK, Ahmad-Reza) | E(PK, Sadeghi) E(PK, TUD)
E(PK, Matthias) E(PK, Schunter) | E(PK, IBM)
E(PK, Paulo) E(PK, Verissimo) | E(PK, LIS)

@ Authenticate by using MAC.
@ Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, "Encrypt and Mac" has some subtleties.

Giuseppe Persiano (UNISA)

Zurich, Switzerland

5 /54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Giuseppe Persiano (UNISA)

Zurich, Switzerland

6 /54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Not really what we want
@ We need to store locally the table.

Giuseppe Persiano (UNISA)

Zurich, Switzerland

6/ 54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Not really what we want
@ We need to store locally the table.

@ We might not have enough local storage, that's why we resorted to
the UStorage.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 /54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Not really what we want
@ We need to store locally the table.

@ We might not have enough local storage, that's why we resorted to
the UStorage.

© Question: can we ask the UStorage to perform the search for us?

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 /54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Not really what we want
@ We need to store locally the table.

@ We might not have enough local storage, that's why we resorted to
the UStorage.

© Question: can we ask the UStorage to perform the search for us?

@ Answer 1: give UStorage the decryption query.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 /54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Not really what we want
@ We need to store locally the table.

@ We might not have enough local storage, that's why we resorted to
the UStorage.

© Question: can we ask the UStorage to perform the search for us?

@ Answer 1: give UStorage the decryption query. why did we encrypt?

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 /54

Searching on data on a UStorage

Want all persons from IBM
© Download the data using the retrieve algorithm;
@ Check it has not been modified;
© Decrypt the whole table;
© Execute the query;

Not really what we want
@ We need to store locally the table.

@ We might not have enough local storage, that's why we resorted to
the UStorage.

© Question: can we ask the UStorage to perform the search for us?

@ Answer 1: give UStorage the decryption query. why did we encrypt?

© Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 /54

Predicate Encryption

Predicate Encryption for P
o Ciphertexts and Keys have attributes.

o Key K with attribute y can decrypt ciphertext Ct with attribute X iff
and only if P(x.y) = 1.

Delegating decryption
O Alice generates master secret key (MSK) and public key (PK') ;
@ Alice publishes PK';
© Bob has a private message M to Alice;
Bob computes E(PK', M, private);

@ Dean has a work message M’ to Alice;
Dean computes E(PK', M’, work);

O Alice gives key for work to secretary;

O Alice keepts key for private for herself.

v

Giuseppe Persiano (UNISA) Zurich, Switzerland 7 /54

Searching encrypted data

Let P be a predicate such that

P((FN, LN, A), (x, %, “IBM")) = 1 iff A= “IBM".

Giuseppe Persiano (UNISA)

R

p)

Searching encrypted data

Let P be a predicate such that

P((FN, LN, A), (%, %, “IBM")) =1 iff A= “IBM”.

* First Name ' Last Name Affiliation | Attributes \
E(PK, Christian) E(PK, Cachin) | E(PK, IBM) | E(PK'.(C,C.1),0)
E(PK, Giuseppe) E(PK, Persiano) | E(PK, SAL) | E(PK',(G,P,S),0)

E(PK, Ahmad-Reza) | E(PK, Sadeghi) | E(PK, TUD) | E(PK',(AST),0)
E(PK, Matthias) E(PK, Schunter) | E(PK, IBM) | E(PK',(M,S,I),0)
E(PK, Paulo) E(PK, Verissimo) | E(PK, LIS) E(PK",(P,V,L),0)

Giuseppe Persiano (UNISA)

)
I
il
it

Predicate Encryption

The SELECT procedure

© DOwner computes key K with attribute (%, x, IBM) and sends it to
UStorage;

@ UStorage tries to decrypt E(PK’, (Christian,Cachin,IBM), 0) with K
and obtains 0;
the row is selected

© UStorage tries to decrypt E(PK', (Giuseppe,Persiano,SAL), 0) with
K and obtains L;
the row is not selected;

© UStorage sends the two selected rows to the DOwner;

@ DOwner decrypts the received rows;

Giuseppe Persiano (UNISA) Zurich, Switzerland 9 /54

Hidden Vector Encryption

Hidden Vector Encryption

o Ciphertext Ct is associated with attribute vector X of length ¢ over
alphabet .

o Key K is associated with pattern vector y of length £ over alphabet
Y, =X U{x}

@ Predicate Match(X, y) which is true if and only if X = (x1,...,x) and

—

¥ = (y1,...,ye) agree in all positions i for which y; # *.

v

Giuseppe Persiano (UNISA) Zurich, Switzerland 10 / 54

Hidden Vector Encryption

Hidden Vector Encryption

o Ciphertext Ct is associated with attribute vector X of length ¢ over
alphabet .

o Key K is associated with pattern vector y of length £ over alphabet
Y, =X U{x}

@ Predicate Match(X, y) which is true if and only if X = (x1,...,x) and

—

¥ = (y1,...,ye) agree in all positions i for which y; # *.

v

If patterns vectors y € ¥ we have the original notion of searchable
encryption.

Giuseppe Persiano (UNISA) Zurich, Switzerland 10 / 54

Hidden Vector Encryption — The syntax

Hidden Vector Encryption (Attribute Only)
@ Setup(1”,1%) outputs the public key PK and the secret key SK.

@ Encryption(PK, X) outputs an encrypted attribute vector X.
© GenToken(SK, y) outputs key Kj.

Q Test(X, Ty) returns Match(X, y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland

11 / 54

Semantic Security - Selective

SemanticExp 4(1", 1¢)

1.

Initialization Phase. A announces two challenge attribute vectors
20,71 € PR

Key-Generation Phase. C computes (PK, SK) « Setup(17”,1¢).
PK is given to A.

Query Phase |. A can make any number of key queries.

C answers key queries only for patterns y such that
Match(Zy, y) = Match(Z,y) = 0.

. Challenge construction. C chooses random 1 € {0,1} and returns

Encryption(PK, Z,) to A.
Query Phase II. Identical to Query Phase I.

Output phase. A returns 7.
If » = 1’ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 12 / 54

Known Constructions

Pairing (symmetric version)

o multiplicative groups G and Gt of order p;
@ non-degenerate pairing function e : G x G — G;
forall x € G, x #1, and a,b € Z,,

e(x,x) # 1 and e(x?, xP) = e(x, x).

Giuseppe Persiano (UNISA) Zurich, Switzerland 13 / 54

Known Constructions

Pairing (symmetric version)
o multiplicative groups G and Gt of order p;
@ non-degenerate pairing function e : G x G — G;
forall x € G, x #1, and a,b € Z,,

e(x,x) # 1 and e(x?, xP) = e(x, x).

Constructions

@ Boneh and Waters [TCC 07] gave a construction based on complexity
assumption for pairing with composite order group;

@ lovino and P. [Pairing 08] gave a construction for prime order groups;

BH needs about 1024-bit moduli.
For IP we can use 160-bit moduli.

Giuseppe Persiano (UNISA) Zurich, Switzerland 13 / 54

A Construction for HVE

Hidden Vector Encryption [IP08]

1 Setup(1”,1%) outputs
Pick an instance Z with n-bit prime and random t; ;,, v; ,, € Z for
i€ll]and beX.

PK = [Z,(Tip=28"" Vip=8"")ic[q bex]
SK = [Z,(Tip=g"tio, Vip= gl/vf’b)ie[z],be)i]

2 Encryption(PK, X) for X = (x1,...,x;) outputs X = (X;, W;)¢_, where

Xi=T5 W=V

1, X 1, X;

for randomly chosen s, s, ..., 5 € Zp.

Giuseppe Persiano (UNISA) Zurich, Switzerland 14 / 54

A Construction for HVE

Hidden Vector Encryption P08
3 GenToken(SK, ¥) outputs key Ky = (Y;, L;)%_; where

I iy £k Va Ly
\/i: 1,yi? 1 Yi 75* and Li= LYi 1 Yi #*
0, if y;=x%. 0, if y; =%

where for i such that y; # %, the a;'s are random under the constraint
that) ;a; = 0.

v

Giuseppe Persiano (UNISA) Zurich, Switzerland 15 / 54

Construction

Test
4 ~
Test(X, Ky) = H e(Xi, Yi) - (Wi, Ly).
iyi7*
Observation:

Xi =Yi = e(Ti,X,-7 :i_i,y,-) = e(gag)'

Xi =Yi = e(\/i,b7 \A/i,b) = e(gag)

Giuseppe Persiano (UNISA)

it
S

Implementation

Implementation uses:

@ PBC: Pairing Based Cryptography Library
http://crypto.stanford.edu/pbc/ for basic pairing and elliptic
curves computation. Written in C.

@ jPBC: Java Pairing Based Cryptography Library
http://gas.dia.unisa.it/projects/jpbc/

@ a Java Porting of the PBC library;
@ a Java Wrapper of the PBC library;
Three versions tested:
@ jPBC: uses the the Java porting of the PBC library;

@ jPBC+Hprecomputation: uses the the Java porting of the PBC library
but with precomputation;

© jPBC+PBC+precomputation: uses the Java Wrapper (low level
computation delegated to more efficient PBC C code) and
precomputation.

Giuseppe Persiano (UNISA) Zurich, Switzerland 17 / 54

Parameters

Curve
@ Supersingular curve y? = x3 + x over the field Fq for some prime
g =3 mod 4. (Type A symmetric pairings)
@ The order p is a prime factor of g + 1.

g = 1112516189738354695660623681779709216838322823798404116
198919708307485046800260086705221179856475399111425452
4050414866145727834858675222143950902758166111

512 bit
r = 730750818665451459101842416358141509827966795777

160 bit

Giuseppe Persiano (UNISA) Zurich, Switzerland 18 / 54

Experimental setup

Model Name: iMac

Model Identifier: iMac8.1
Processor Name: Intel Core 2 Duo
Processor Speed: 2.66 GHz
Number Of Processors: 1

Total Number of Cores: 2

L2 Cache: 6 MB

Memory: 4GB

Bus Speed: 1.07 GHz

Giuseppe Persiano (UNISA)

Zurich, Switzerland

19 / 54

4000
3500
3000
2500
2000
1500
1000

500

Milliseconds

Time to compute an encryption.

jPBC no pre-computation ———
jPBC with pre-computation ———
jPBC-PBC with pre-computation

10

Giuseppe Persiano (UNISA)

20

30 40 50 60
Attributes

70 80 90

Zurich, Switzerland

10C

20 / 54

Time to generate a search key.

200 — T : . : : : :
jPBC no pre-computation ——
jPBC with pre-computation ———
jPBC-PBC with pre-computation ——
150
[2]
©
c
(@]
g 100
%)
S
50
0

10 20 30 40 50 60 70 80 90 10C
Attributes

Giuseppe Persiano (UNISA) Zurich, Switzerland 21 / 54

Time to test a ciphertext against a search key.

3000 T 1 T T T 1 T
jPBC no pre-computation ——
jPBC with pre-computation ———
2500 jPBC-PBC with pre-computation

2000

1500

Milliseconds

1000

500

10 20 30 40 50 60 70 80 90 10C
Attributes

Giuseppe Persiano (UNISA) Zurich, Switzerland 22 / 54

jPBC-PBC with pre-processing.
250 1 1 1 1 1 1

KeyGe'n ——

Pre-Processing ———

200

150

100

Milliseconds

50

10 20 30 40 50 60 70 80 90 10C
Attributes

Giuseppe Persiano (UNISA) Zurich, Switzerland 23 / 54

Future work

Current implementation by Angelo De Caro.

@ more code optimization
@ Dropbox-like user interfact

@ Map-Reduce
o different types of pairings
> the scheme can be implemented with asymmetric pairing.

Giuseppe Persiano (UNISA) Zurich, Switzerland 24 / 54

Back to Theory

Full Security

1. Key-Generation Phase. C computes (PK,SK) « Setup(1”,1).
PK is given to A.

2. Query Phase |. A can make any number of key queries.

3. Initialization Phase. A announces two challenge attribute vectors
29,71 € P

4. Challenge construction. C chooses random 7 € {0,1} and returns
Encryption(PK, Z,) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns 7’

7. Winning condition. A wins if n =17’ .

Giuseppe Persiano (UNISA) Zurich, Switzerland 26 / 54

Restricting the queries

Impossible to achieve

If A has asked a key for y such that Match(Zy, y) # Match(Z, ¥), A wins.

Giuseppe Persiano (UNISA)

J

Restricting the queries

Impossible to achieve

If A has asked a key for y such that Match(Zp, y) # Match(Zz, y), A wins.

v

Unrestricted queries

Winning condition. A wins if n = n’ and for all y for which A has a key

Match(Zy, ¥) = Match(Zy, y)

Giuseppe Persiano (UNISA) Zurich, Switzerland 27 / 54

Restricting the queries

Impossible to achieve
If A has asked a key for y such that Match(Zp, y) # Match(Zz, y), A wins.

v

Unrestricted queries

Winning condition. A wins if n = n’ and for all y for which A has a key

Match(Zy, ¥) = Match(Zy, y)

Restricted queries
Winning condition. A wins if n =7 and for all ¥ for which A has a key

Match(fo,)_/') = Match(Zl,y) =0

Giuseppe Persiano (UNISA) Zurich, Switzerland 27 / 54

Full Security with Unrestricted Queries

1. Key-Generation Phase. C computes (PK,SK) « Setup(1”,1).
PK is given to A.

2. Query Phase I. A can make any number of key queries.

3. Initialization Phase. A announces two challenge attribute vectors
29,71 € PR

4. Challenge construction. C chooses random 7 € {0,1} and returns
Encryption(PK, Z,) to A.

5. Query Phase Il. Identical to Query Phase I.

6. Output phase. A returns 7.

7. Winning condition. A wins if n = n and for all queries y it holds
that
Match(Zy, y) = Match(Z, y)

Giuseppe Persiano (UNISA) Zurich, Switzerland 28 / 54

Full Security

De Caro, lovino, P, 2011

Fully secure HVE with unrestricted queries in composite (product of 4
primes) order bilinear groups.

Caveat: 160 bits become 2048.

Giuseppe Persiano (UNISA) Zurich, Switzerland 29 / 54

Selective vs Full Security

@ Selective security assumes that the adversary attacks the data and
not the public key.

@ The adversary declares that he wants to distinguish ciphertexts with
Affiliation=IBM from ciphertexts with Affiliation=SAL.

@ Full security allows the adversary to base his attack on the public key
(which is chosen independently from the data) and on the keys
obtained.

V)
0
)

Giuseppe Persiano (UNISA)

Key Security

Security threat

UStorage knows all searches | have done.

Giuseppe Persiano (UNISA)

Key Security

Security threat

UStorage knows all searches | have done.

Key security is impossible for public key

@ storage manager receives Ky and wants to check if
Match((1,...,1),y) = 1;
encrypt (1,...,1) using PK;
run Test to obtain the answer;

We should go private key!

Giuseppe Persiano (UNISA) Zurich, Switzerland 31 /54

Key Security

Security threat

UStorage knows all searches | have done.

Key security is impossible for public key

@ storage manager receives Ky and wants to check if
Match((1,...,1),y) = 1;
encrypt (1,...,1) using PK;
run Test to obtain the answer;

v

We should go private key! Or maybe not....

Giuseppe Persiano (UNISA) Zurich, Switzerland 31 /54

Public vs. Private Key

Why Public Key?

@ In the scenario with DBowner and UStorage, private key is sufficient.

o All write operations must go through the DBowner.

@ In the Alice/Secretary settings we need public key.

Giuseppe Persiano (UNISA) Zurich, Switzerland 32 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;

@ a policy Pol is a vector of subsets of ¥;
@ it encodes the set Xp, of attribute vectors that can be encrypted;

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;
@ it encodes the set Xp, of attribute vectors that can be encrypted;

for {=3and ¥ ={0,1}
Pol = ({0,1}, {0}, {0,1})

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;
@ it encodes the set Xp, of attribute vectors that can be encrypted;

for {=3and X ={0,1}
Pol = ({0,1}, {0}, {0,1})= vectors with a 0 entry in position 2;

Giuseppe Persiano (UNISA) Zurich, Switzerland

33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;
@ it encodes the set Xp, of attribute vectors that can be encrypted;
for =3 and ¥ = {0,1}

Pol = ({0, 1}, {0}, {0,1})= vectors with a 0 entry in position 2;
Pol = ©*

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;
@ it encodes the set Xp, of attribute vectors that can be encrypted;
for =3 and ¥ = {0,1}

Pol = ({0, 1}, {0}, {0,1})= vectors with a 0 entry in position 2;
Pol = ¥ = all vectors (public-key setting);

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;

@ it encodes the set Xp, of attribute vectors that can be encrypted;
for {=3and X ={0,1}
Pol = ({0, 1}, {0}, {0,1})= vectors with a 0 entry in position 2;

Pol = ¥ = all vectors (public-key setting);
if any entry is ()

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;

@ it encodes the set Xp, of attribute vectors that can be encrypted;
for {=3and X ={0,1}
Pol = ({0, 1}, {0}, {0,1})= vectors with a 0 entry in position 2;
Pol = ¥ = all vectors (public-key setting);
if any entry is) = no vector (private-key setting);

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Partial Public Key Model
Key Policy
@ public keys associated with policies;
@ a policy Pol is a vector of subsets of ¥;
@ it encodes the set Xp, of attribute vectors that can be encrypted;
for {=3and X ={0,1}
Pol = ({0, 1}, {0}, {0,1})= vectors with a 0 entry in position 2;

Pol = £ = all vectors (public-key setting);
if any entry is) = no vector (private-key setting);

Hidden Vector Encryption
@ Setup(1”,1°) outputs the secret key SK.
@ PPKeyGen(SK, Pol) outputs the partial public key PPKpy.

@ Encryption(PPKpyy, X) outputs encrypted attribute vector X for
attribute vector X € Xpy).

@ GenToken(SK, y) outputs key Kj;.

' Test‘Xi T~I| returns Match|>_<'I m with overwhelming probability.
Giuseppe Persiano (UNISA) Zurich, Switzerland 33 /54

Known Constructions

Constructions

@ Boneh-Waters [2007] gave a construction based on groups with order
product of four primes. Need 2048-bit moduli.

@ Blundo, lovino, P. [2009, 2010] gave a construction based on groups
of prime order.

Giuseppe Persiano (UNISA) Zurich, Switzerland 34 / 54

Semantic Security with Partial Public Keys

1. Initialization Phase. A announces two challenge attribute vectors
Zo, 71 € ¢ and policy Pol € (2%)".

2. Key-Generation Phase. C computes SK « Setup(1”,1¢) and
PPKpo +— PPKeyGen(SK, Pol).
PPKpo is given to A.

3. Query Phase |. A can make any number of key queries.
C answers key queries only for patterns y such that
Match(Zy, y) = Match(Z, y) = 0.

4. Challenge construction. C chooses random 7 € {0,1} and returns
Encryption(SK, Z,).

5. Query Phase Il. Identical to Query Phase I.

6. Output phase. A returns 7.
If » = 1’ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 35/ 54

Token Security with Partial Public Keys

1. Initialization Phase. A announces yp, 1 € X% with x in the same

positions and a policy Pol such that
X € Xpo| = Match(i’,)7()) = I\/Iatch()?,)71) =0.

2. Key-Generation Phase. C computes SK « Setup(1”,1%) and
PPKpol <— PPKeyGen(SK, Pol).
PPKpo is given to A.

3. Query Phase I. A can make any number of key queries.
A gets GenToken(SK, y).

4. Challenge construction. 7 is chosen at random from {0,1} and
receives GenToken(SK, y;,).

5. Query Phase Il. ldentical to Query Phase I.

6. Output phase. A returns 7.
If » = 1’ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 36 / 54

Construction for Partial Public Key HVE

Setup (17,1%)
1. Select a symmetric bilinear instance Z = [p, G, G, g, €].
2. For i € [2¢ — 1], choose random ty j 0, t2i0, t1,i,1, t2,i1 € Zp and set

Ki = < Tiio = g?”f‘% T20 = g™)
T1i1 =g, Tpi1 = gt

R, — (Tiio = gi/tl”:*‘), T2i0 = gl/tz”:"))
Tiia =g, Ty =gt/

3. Return SK = [Z, (K;, Ri)ie[zé—l]]-

Giuseppe Persiano (UNISA) Zurich, Switzerland 37 / 54

Construction for Partial Public Key HVE

Setup (17,1%)
1. Select a symmetric bilinear instance Z = [p, G, G, g, €].
2. For i € [2¢ — 1], choose random ty j 0, t2i0, t1,i,1, t2,i1 € Zp and set

K, — < Tii0= gtl”:"’, Tsi0= gt2’f’°)
Tiia=ghit, Tpi1 =g

K — (T1i0= gi/tl”:*", D20 = gl/tz”:”) '
Tiia =g, Ty =gt/

3. Return SK = [Z, (K;, Ri)ie[u—l]]-

Notice: if x =y then

e(Thixs Thiy) =e(g.8)
forallie[2¢—1]and b=1,2.

Giuseppe Persiano (UNISA) Zurich, Switzerland 37 / 54

Construction for Partial Public Key HVE

PPKeyGen (SK, Pol)
1. Fori=1,...,¢,
for every b € Pol;, add Ty ;p and T3 to PPK;.
2. Fori=0+1,...,20 -1,
add T17,'7() and T2’,'70 to PPK;.
3. Return PPKp, = [(PPK,’);E[%_”].

Giuseppe Persiano (UNISA) Zurich, Switzerland

38 / 54

Construction for Partial Public Key HVE

Encryption(PPKpo, X = (x1,..., X))

1.

o kR WD

If X ¢ Xpo return L.
Append (¢ — 1) O-entries to X.
Pick s at random from Z.
(51, 0cog 525_1) — LSS(@, 20 — 1,0).
Fori=1,...,2¢ —1,
set X1, = Tlsl_f(” and Xp; = Tz_,s'x,

Return X = [(X1,i, X2,i)icpe-1)]-

Giuseppe Persiano (UNISA) Zurich, Switzerland

39 / 54

Construction for Partial Public Key HVE

Encryption(PPKpo, X = (x1,..., X))

1.

o kR WD

If X ¢ Xpo return L.
Append (¢ — 1) O-entries to X.
Pick s at random from Z.
(51, 0cog 525_1) — LSS(@, 20 — 1,0).
Fori=1,...,2¢ —1,
set X1, = Tlsl_f(” and Xp; = Tz_,s'x,

Return X = [(X1,i, X2,i)icpe-1)]-

Notice: if X € Xpg|, then Vi Tl,i,x,-’ T2,i,x,- € PPKpg.

Giuseppe Persiano (UNISA) Zurich, Switzerland

39 / 54

Linear Secret Sharing

(k, n) Linear Secret Sharing

@ Input: a secret s € Zp;

e Output: n shares (s1,...,s,) such that
any k — 1 (or fewer) shares are random and independent among
themselves and are independent from the secret s;
for any F C [n] of size k there exist reconstruction coefficients a; such

that
S = ZO&,‘S,‘.

ieF

Giuseppe Persiano (UNISA) Zurich, Switzerland 40 / 54

Linear Secret Sharing

(k, n) Linear Secret Sharing

@ Input: a secret s € Zp;

e Output: n shares (s1,...,s,) such that
any k — 1 (or fewer) shares are random and independent among
themselves and are independent from the secret s;
for any F C [n] of size k there exist reconstruction coefficients a; such

that
S = ZO&,‘S,‘.

ieF

Notice: the reconstruction coefficients depend only on the set F and not
on the shares.

Giuseppe Persiano (UNISA) Zurich, Switzerland 40 / 54

Construction for Partial Public Key HVE

GenToken (SK,y = (y1,...,¥))

1. Pick random r € Z,,.

2. h = # of non-x entries of y.
append (¢ — h) O-entries and (h — 1) x-entries
Sy the non-x entries of the extended vector.
Notice that |Sy| = /.

3. (r1, 000y rzg_l) — LSS([, 20 — 1, 0)

4. For i e 5}7, _ _

set Yl,i = Tlrii,y; and YQ,,' =T,"

2,i,y;"
5. Return Ty = [Sy, (Yl,i, Y2,i)ieSy~]-

Giuseppe Persiano (UNISA) Zurich, Switzerland

41/ 54

Construction for Partial Public Key HVE

Test (X = [(Xl,hXZ,i)ie[ZE—l]]a Ty =[S, (Y1, Ya,i)ies])
1. Let (vj)jes be the reconstruction coefficients for S.
2. Return 1 iff

H[e(Xl,,-, Y1) -e(Xai, Y2,i)]" =1
ics

Giuseppe Persiano (UNISA) Zurich, Switzerland

42 / 54

Construction for Partial Public Key HVE

Test (X = [(Xvi, Xo.)iepe1l, Ty = [S, (Y1, Ya.)ies])
1. Let (vj)jes be the reconstruction coefficients for S.

2. Return 1 iff
TG Vet o =1

ieS J
e(X,i, Y1,i) = (T15717)5(" Tlrfi,y,-) = (g, g)r,- s—si)
e(Xoi, Yo,i) = e(TZ_’f"XI_ Tzr,_}r/',) = e(g,g) S

Giuseppe Persiano (UNISA) Zurich, Switzerland

42 / 54

Construction for Partial Public Key HVE

Test (X = [(Xvi, Xo.)iepe1l, Ty = [S, (Y1, Ya.)ies])
1. Let (vj)jes be the reconstruction coefficients for S.

2. Return 1 iff
TG Vet o =1

i€S J
e(X,i, Y1,i) = (T15717)5(" Tlrfi,y,-) = (g, g)r,- s—si)
e(Xoi, Yo,i) = e(Tz_,,s,'X,- Tzr,_}r/',) = e(g,g) S
e(Xl,ia yl,i) : e(Xz,,‘, Y27,') = e(g,g)sr,' . e(g’ g)—rSi

Giuseppe Persiano (UNISA) Zurich, Switzerland

42 / 54

Construction for Partial Public Key HVE

Test (= [(Xl ,,X2l),e[2e 1]] T* = [5, (Y1,/, Y2,i)ie$])
1. Let (vj)jes be the reconstruction coefficients for S.

2. Return 1 iff
TG Vet o =1

ieS J
e(X,i, Y1,i) = (Tls,,,j, Tlrfi,y,-) = (g, g)r,- s—si)
e(Xoi, Yo,i) = e(Tz_,,s,'X,- Tzr,_}r/',) = e(g,g) S
e(Xl,i; Yl,i) . e(X2,;, Y27,') = e(g,g)sr,- . e(g,g)_fsi
e(g,g) > - e(g,g) =i = e(g,8)*0 e(g,8)""

Giuseppe Persiano (UNISA) Zurich, Switzerland 42 / 54

Security proofs

Security proofs

Can prove semantic and key security on complexity assumptions

Giuseppe Persiano (UNISA)

Private-Key Searchable Encryption — The syntax

Private-Key Searchable Encryption
@ Setup(1”,1%) outputs the secret key SK.

@ Encryption(SK, X) outputs ciphertext Ctg with attribute X € X,

© GenToken(SK, y) outputs key Kj for pattern y € =,

Q Test(Ctg, Kj) returns 1 iff X = y.

Giuseppe Persiano (UNISA) Zurich, Switzerland

44 / 54

Semantic Security with Private Keys

1. Initialization Phase. A announces two challenge attribute vectors
X, X1 € Yt

2. Key-Generation Phase. C computes SK « Setup(1”, 19).

3. Query Phase |. A can make any number of encryption and key queries
for patterns y # Xp, X1.

4. Challenge construction. C chooses random 7 € {0,1} and returns
Encryption(SK, X;).

5. Query Phase Il. Identical to Query Phase I.

6. Output phase. A returns 7.
If 7 =7 then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 45 / 54

Token Security with Private Keys

1. Initialization Phase. A announces jj, 1 € X*.
2. Key-Generation Phase. C computes SK « Setup(17,1%).

3. Query Phase I. A can make any number of key queries and encryption
queries for attributes X # o, V1.

4. Challenge construction. 7 is chosen at random from {0,1} and
receives GenToken(SK, y;).

5. Query Phase Il. ldentical to Query Phase I.

6. Output phase. A returns 7.
If n =1’ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 46 / 54

Construction for Private-Key Searchable Encryption

Setup (17,1%)
1. Select a symmetric bilinear instance Z = [p, G, G, g, €.
2. For i € [€], choose random ty j o, t2i0, t1,i1,t2,i1 € Zp and set

K, — (Tiio= gtl”:’oa Taio0= th”:’O)
Ty, = ghid, Tpi1 = gt

R, — (T1,i,o = gi/tl*’:*", T2,i,0 = gl/t2”:’°) ‘

Tyig =glmin, Ty;q = gl/tzia

3. Return SK = [Z, (K;, Ri)ie[e]]-

Giuseppe Persiano (UNISA) Zurich, Switzerland 47 / 54

Construction for Private-Key Searchable Encryption

Encryption (SK, X)

1.
2.
3.

Pick random s € Z,.
Pick random sy,...,s, € Z, that sum up to 0.
Fori=1,...,¢,

set X17,' = Tls’l—’)s(,’ and Xz’,' = T2_,rs,'x,

Return Ctyz = [(X1,i, X2.i)ielgl-

Giuseppe Persiano (UNISA) Zurich, Switzerland

48 / 54

Construction for Private-Key Searchable Encryption

Encryption (SK, X)

1.
2.
3.

Pick random s € Z,.

Pick random sy,...,s, € Z, that sum up to 0.
Fori=1,...,¢,
set X17,' = Tlsl—)s(,’ and Xz’,' = -,—2—’5,)(,

Return Ctyz = [(X1,i, X2.i)ielgl-

GenToken (SK, y)

1.
2.
3.

Pick random r € Z,.

Pick random rq,...,r, € Z, that sum up to 0.
el = _

set Y1, = Tlr;’;”_ and YQ’,' = sz,-r"yl,-
Return Ky = [(Y1i, Y2.1)ieql-

Giuseppe Persiano (UNISA)

Zurich, Switzerland

48 / 54

Security proof strategy

Semantic vs. Token security

@ Encryption uses keys Kj, i € [{];

Giuseppe Persiano (UNISA)

Security proof strategy

Semantic vs. Token security

@ Encryption uses keys Kj, i € [{];

o Token generation is encryption w.r.t. to keys K;, i € [(];

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

e Encryption uses keys Kj, i € [(];
o Token generation is encryption w.r.t. to keys K;, i € [(];

@ In the game for semantic security, A can ask
any encryption query for keys Kj;
encryption queries for keys K; and pattern y # Xp, X1;

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

e Encryption uses keys Kj, i € [(];
o Token generation is encryption w.r.t. to keys K;, i € [(];

@ In the game for semantic security, A can ask
any encryption query for keys Kj;
encryption queries for keys K; and pattern y # Xp, X1;

@ In the game for key security, A can ask
any encryption query for keys Kij;
encryption queries for keys K; and attributes X # yp, yi;

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

e Encryption uses keys Kj, i € [(];
o Token generation is encryption w.r.t. to keys K;, i € [(];

@ In the game for semantic security, A can ask
any encryption query for keys Kj;
encryption queries for keys K; and pattern y # Xp, X1;

@ In the game for key security, A can ask
any encryption query for keys Kij;
encryption queries for keys K; and attributes X # yp, yi;

Semantic Security <==- Token Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Zero Sum Assumption

Consider the following game between a challenger C and an adversary A.

ZeroSumExp 4(17, 1¢)

01.
02.
03.

04.
05.
06.
07.
08.

C randomly picks ay, ..., a; such that). a; = 0;
C chooses instance Z = [p, G, G, g, €] with security parameter 1”;
for i € [(]
C chooses random u; € Zj, and sets U; = g and V; = Uff;
C chooses random 7 € {0,1};
if » = 0 then C sets V4 to a random element of G;
C runs A on input [Z, (Uj)iepg, (Vi)iepql;
Let ’ be A’s guess for 7;
if » =7 then return 1 else return 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 50 / 54

Split Zero Sum Assumption

Consider the following game between a challenger C and an adversary A.

SplitZeroSumExp 4(17, 1¢)

01.
02.
03.
04.

05

06.
07.
08.
09.
10.

C randomly picks a1, ..., a such that)", a; =0;
C chooses instance Z = [p, G, G, g, €] with security parameter 1”;
C chooses random u, w € Z, and sets W = g";
for i € [(]

C chooses random u; € Zp;

sets U; = g, V; = U7, A; = g%, and S; = U},
C sets U = UY;
C chooses random 7 € {0,1};
if n =1 then C sets Z = W"~2 else C chooses random Z € G;
C runs A on input [Z, (Uj)iciq: (Vi)ieq, (Aiieig (S)ier\ (13> W, U, Z];
Let 1’ be A’s guess for n;
if » =7’ then return 1 else return 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 51 / 54

Theorem

Under the Zero Sum Assumption and the Split Zero Sum Assumption,
there exists private-key searchable encryption with semantic and key
security.

Notice: construction based on pairings on prime order groups.

Giuseppe Persiano (UNISA) Zurich, Switzerland 52 / 54

Further directions

Search

Is sublinear search possible?

Verifiability

A lazy UStorage might say that he found no match.
Can we verify the result?

Giuseppe Persiano (UNISA)

Giuseppe Persiano (UNISA)

Thank you

	Storing Data in a Cloud
	Hidden Vector Encryption
	Implementation
	Full Security
	Key Security

