Predicate Encryption for Private and Searchable Remote Storage

Giuseppe Persiano

Dipartimento di Informatica ed Appl. "Renato M. Capocelli" Università di Salerno giuper@dia.unisa.it

Workshop on Cryptography and Security in Clouds Zurich, Switzerland March 15-16, 2011

E 5 4 E 5

This talk describes joint work with:

- Carlo Blundo
- Angelo De Caro
- Vincenzo Iovino

3

-

< 4 **₽** ► <

1 Storing Data in a Cloud

æ

・ロト ・聞ト ・ヨト ・ヨト

Storing Data in a Cloud

2 Hidden Vector Encryption

3

∃ ► < ∃ ►</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Storing Data in a Cloud
- 2 Hidden Vector Encryption
- Implementation

3

∃ ► < ∃ ►</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Storing Data in a Cloud
- 2 Hidden Vector Encryption
- Implementation

3

E 6 4 E 6

- ∢ /⊐) - ∢

- Storing Data in a Cloud
- 2 Hidden Vector Encryption
- Implementation
- 4 Full Security

3

3 D (3 D)

< 4 ₽ > <

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

- DOwner can assume:
 - UStorage does not destroy the data

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

- DOwner can assume:
 - UStorage does not destroy the data (enforce using Duplication);

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

• DOwner can assume:

- UStorage does not destroy the data (enforce using Duplication);
- UStorage does not modify data

E 5 4 E

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

• DOwner can assume:

- UStorage does not destroy the data (enforce using Duplication);
- UStorage does not modify data (enforce using Authentication Code);

THE 1 1

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

• DOwner can assume:

- UStorage does not destroy the data (enforce using Duplication);
- UStorage does not modify data (enforce using Authentication Code);
- UStorage does not read the data

A (10) A (10)

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

• DOwner can assume:

- UStorage does not destroy the data (enforce using Duplication);
- UStorage does not modify data (enforce using Authentication Code);
- UStorage does not read the data (enforce using Encryption);

- 4 回 ト 4 三 ト 4 三

Secure Remote Storage

- A Cloud has huge storage capabilities and can be accessed from anywhere;
- We consider simple case of a Data Owner storing his data on an Untrusted Storage;

• DOwner can assume:

- UStorage does not destroy the data (enforce using Duplication);
- UStorage does not modify data (enforce using Authentication Code);
- UStorage does not read the data (enforce using Encryption);

- 4 回 ト 4 三 ト 4 三

In the beginning is the Data

First Name	Last Name	Affiliation
Christian	Cachin	IBM
Giuseppe	Persiano	SAL
Ahmad-Reza	Sadeghi	TUD
Matthias	Schunter	IBM
Paulo	Verissimo	LIS

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

In the beginning is the Data

First Name	Last Name	Affiliation
Christian	Cachin	IBM
Giuseppe	Persiano	SAL
Ahmad-Reza	Sadeghi	TUD
Matthias	Schunter	IBM
Paulo	Verissimo	LIS

2 Encrypt and obtain

First Name	Last Name	Affiliation
E(PK, Christian)	E(PK, Cachin)	E(PK, IBM)
E(PK, Giuseppe)	E(PK, Persiano)	<i>E</i> (PK, SAL)
E(PK, Ahmad-Reza)	E(PK, Sadeghi)	<i>E</i> (PK, TUD)
E(PK, Matthias)	E(PK, Schunter)	E(PK, IBM)
E(PK, Paulo)	<i>E</i> (PK, Verissimo)	<i>E</i> (PK, LIS)

< 67 ▶

3

In the beginning is the Data

First Name	Last Name	Affiliation
Christian	Cachin	IBM
Giuseppe	Persiano	SAL
Ahmad-Reza	Sadeghi	TUD
Matthias	Schunter	IBM
Paulo	Verissimo	LIS

2 Encrypt and obtain

First Name	Last Name	Affiliation
E(PK, Christian)	E(PK, Cachin)	<i>E</i> (PK, IBM)
E(PK, Giuseppe)	E(PK, Persiano)	E(PK, SAL)
E(PK, Ahmad-Reza)	E(PK, Sadeghi)	<i>E</i> (PK, TUD)
E(PK, Matthias)	E(PK, Schunter)	E(PK, IBM)
E(PK, Paulo)	E(PK, Verissimo)	<i>E</i> (PK, LIS)

Authenticate by using MAC.

< 67 ▶

In the beginning is the Data

First Name	Last Name	Affiliation
Christian	Cachin	IBM
Giuseppe	Persiano	SAL
Ahmad-Reza	Sadeghi	TUD
Matthias	Schunter	IBM
Paulo	Verissimo	LIS

2 Encrypt and obtain

First Name	Last Name	Affiliation
E(PK, Christian)	E(PK, Cachin)	E(PK, IBM)
E(PK, Giuseppe)	E(PK, Persiano)	<i>E</i> (PK, SAL)
E(PK, Ahmad-Reza)	E(PK, Sadeghi)	<i>E</i> (PK, TUD)
E(PK, Matthias)	E(PK, Schunter)	E(PK, IBM)
E(PK, Paulo)	E(PK, Verissimo)	<i>E</i> (PK, LIS)

- Authenticate by using MAC.
- Oisperse by using data replication algorithm.

In the beginning is the Data

First Name	Last Name	Affiliation
Christian	Cachin	IBM
Giuseppe	Persiano	SAL
Ahmad-Reza	Sadeghi	TUD
Matthias	Schunter	IBM
Paulo	Verissimo	LIS

2 Encrypt and obtain

First Name	Name Last Name	
E(PK, Christian)	E(PK, Cachin)	E(PK, IBM)
E(PK, Giuseppe)	E(PK, Persiano)	<i>E</i> (PK, SAL)
E(PK, Ahmad-Reza)	E(PK, Sadeghi)	<i>E</i> (PK, TUD)
E(PK, Matthias)	<i>E</i> (PK, Schunter)	E(PK, IBM)
E(PK, Paulo)	E(PK, Verissimo)	<i>E</i> (PK, LIS)

- O Authenticate by using MAC.
- Oisperse by using data replication algorithm.

Caveat. For the Crypto-savvy, "Encrypt and Mac" has some subtleties.

Giuseppe Persiano (UNISA)

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Check it has not been modified;
- Decrypt the whole table;
- Execute the query;

< 🗇 🕨 < 🖃 🕨

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Check it has not been modified;
- Decrypt the whole table;
- Execute the query;

Not really what we want

We need to store locally the table.

(日) (同) (日) (日)

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Check it has not been modified;
- Decrypt the whole table;
- Execute the query;

Not really what we want

- We need to store locally the table.
- We might not have enough local storage, that's why we resorted to the UStorage.

(日) (同) (日) (日)

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Ocheck it has not been modified;
- Decrypt the whole table;
- Execute the query;

Not really what we want

- We need to store locally the table.
- We might not have enough local storage, that's why we resorted to the UStorage.
- Question: can we ask the UStorage to perform the search for us?

イロト イポト イヨト イヨト

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Check it has not been modified;
- Decrypt the whole table;
- Execute the query;

Not really what we want

- We need to store locally the table.
- We might not have enough local storage, that's why we resorted to the UStorage.
- Question: can we ask the UStorage to perform the search for us?
- Answer 1: give UStorage the decryption query.

3

イロト イヨト イヨト イヨト

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Check it has not been modified;
- Decrypt the whole table;
- Execute the query;

Not really what we want

- We need to store locally the table.
- We might not have enough local storage, that's why we resorted to the UStorage.
- Question: can we ask the UStorage to perform the search for us?
- Answer 1: give UStorage the decryption query. why did we encrypt?

イロト イヨト イヨト イヨト

Want all persons from IBM

- Download the data using the retrieve algorithm;
- Check it has not been modified;
- Decrypt the whole table;
- Execute the query;

Not really what we want

- We need to store locally the table.
- We might not have enough local storage, that's why we resorted to the UStorage.
- Question: can we ask the UStorage to perform the search for us?
- Answer 1: give UStorage the decryption query. why did we encrypt?
- S Answer 2: not with the current encryption schemes.

3

イロト イヨト イヨト イヨト

Predicate Encryption

Predicate Encryption for ${\cal P}$

• Ciphertexts and Keys have attributes.

• Key K with attribute \vec{y} can decrypt ciphertext Ct with attribute \vec{x} iff and only if $\mathcal{P}(\vec{x}, \vec{y}) = 1$.

Delegating decryption

- Alice generates master secret key (MSK) and public key (PK');
- Alice publishes PK';
- Bob has a private message M to Alice;
 - Bob computes E(PK', M, private);
- Dean has a work message M' to Alice;
 - Dean computes E(PK', M', work);
- Alice gives key for work to secretary;
- Alice keepts key for private for herself.

< 🗇 ▶

Searching encrypted data

Let $\ensuremath{\mathcal{P}}$ be a predicate such that

 $\mathcal{P}((FN, LN, A), (\star, \star, "\mathsf{IBM"})) = 1 \text{ iff } A = "\mathrm{IBM"}.$

- 32

(日) (同) (三) (三)

Searching encrypted data

Let $\ensuremath{\mathcal{P}}$ be a predicate such that

 $\mathcal{P}((FN, LN, A), (\star, \star, "\mathsf{IBM"})) = 1 \text{ iff } A = "\mathrm{IBM"}.$

First Name	Last Name	Affiliation	Attributes
E(PK, Christian)	E(PK, Cachin)	<i>E</i> (PK, IBM)	E(PK',(C,C,I),0)
E(PK, Giuseppe)	E(PK, Persiano)	<i>E</i> (PK, SAL)	E(PK',(G,P,S),0)
E(PK, Ahmad-Reza)	E(PK, Sadeghi)	<i>E</i> (PK, TUD)	E(PK',(A,S,T),0)
E(PK, Matthias)	<i>E</i> (PK, Schunter)	<i>E</i> (PK, IBM)	E(PK',(M,S,I),0)
E(PK, Paulo)	E(PK, Verissimo)	<i>E</i> (PK, LIS)	E(PK',(P,V,L),0)

- 32

(日) (同) (三) (三)

Predicate Encryption

The SELECT procedure

- DOwner computes key K with attribute (*, *, *IBM*) and sends it to UStorage;
- UStorage tries to decrypt E(PK', (Christian, Cachin, IBM), 0) with K and obtains 0;
 the row is selected
- OStorage tries to decrypt E(PK', (Giuseppe, Persiano, SAL), 0) with K and obtains ⊥;
 the row is not selected;
- 4
- UStorage sends the two selected rows to the DOwner;
- DOwner decrypts the received rows;

(日) (同) (三) (三)

Hidden Vector Encryption

Hidden Vector Encryption

- Ciphertext Ct is associated with *attribute* vector \vec{x} of length ℓ over alphabet Σ .
- Key K is associated with *pattern* vector \vec{y} of length ℓ over alphabet $\Sigma_{\star} = \Sigma \cup \{\star\}.$
- Predicate Match (\vec{x}, \vec{y}) which is true if and only if $\vec{x} = \langle x_1, \ldots, x_\ell \rangle$ and $\vec{y} = \langle y_1, \ldots, y_\ell \rangle$ agree in all positions *i* for which $y_i \neq \star$.

Hidden Vector Encryption

Hidden Vector Encryption

- Ciphertext Ct is associated with *attribute* vector \vec{x} of length ℓ over alphabet Σ .
- Key K is associated with *pattern* vector \vec{y} of length ℓ over alphabet $\Sigma_* = \Sigma \cup \{*\}.$
- Predicate Match (\vec{x}, \vec{y}) which is true if and only if $\vec{x} = \langle x_1, \ldots, x_\ell \rangle$ and $\vec{y} = \langle y_1, \ldots, y_\ell \rangle$ agree in all positions *i* for which $y_i \neq \star$.

If patterns vectors $\vec{y} \in \Sigma^{\ell}$ we have the original notion of searchable encryption.

(日) (周) (三) (三)

Hidden Vector Encryption – The syntax

Hidden Vector Encryption (Attribute Only)

- Setup $(1^n, 1^\ell)$ outputs the *public key* PK and the *secret key* SK.
- **2** Encryption(PK, \vec{x}) outputs an *encrypted attribute vector* \tilde{X} .
- **3** GenToken(SK, \vec{y}) outputs key $K_{\vec{y}}$.
- Some Test($\tilde{X}, T_{\vec{y}}$) returns Match(\vec{x}, \vec{y}) with overwhelming probability.

(日) (周) (三) (三)

Semantic Security - Selective

 $\mathsf{SemanticExp}_{\mathcal{A}}(1^n, 1^\ell)$

- 1. Initialization Phase. A announces two challenge attribute vectors $\vec{z}_0, \vec{z}_1 \in \Sigma^{\ell}$.
- 2. Key-Generation Phase. C computes (PK, SK) \leftarrow Setup(1ⁿ, 1^{ℓ}). PK is given to A.
- 3. Query Phase I. \mathcal{A} can make any number of key queries. \mathcal{C} answers key queries only for patterns \vec{y} such that Match $(\vec{z}_0, \vec{y}) = Match(\vec{z}_1, \vec{y}) = 0.$
- 4. Challenge construction. C chooses random $\eta \in \{0, 1\}$ and returns Encryption(PK, \vec{z}_{η}) to A.
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. A returns η' .

If $\eta = \eta'$ then the experiments returns 1 else 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Known Constructions

Pairing

(symmetric version)

- multiplicative groups \mathbb{G} and \mathbb{G}_T of order p;
- non-degenerate pairing function $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$;
 - for all $x \in \mathbb{G}$, x
 eq 1, and $a, b \in \mathbb{Z}_p$,

$$\mathsf{e}(x,x) \neq 1$$
 and $\mathsf{e}(x^a,x^b) = \mathsf{e}(x,x)^{ab}$

A (10) A (10)
Known Constructions

Pairing

(symmetric version)

- multiplicative groups \mathbb{G} and \mathbb{G}_T of order p;
- non-degenerate pairing function $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$;
 - for all $x \in \mathbb{G}$, $x \neq 1$, and $a, b \in \mathbb{Z}_p$,

$$\mathsf{e}(x,x) \neq 1 \text{ and } \mathsf{e}(x^a,x^b) = \mathsf{e}(x,x)^{ab}$$

Constructions

- Boneh and Waters [TCC 07] gave a construction based on complexity assumption for pairing with composite order group;
- Iovino and P. [Pairing 08] gave a construction for prime order groups;

BH needs about 1024-bit moduli.

For IP we can use 160-bit moduli.

(日) (同) (三) (三)

A Construction for HVE

Hidden Vector Encryption [IP08]

1 Setup(1^{*n*}, 1^{*l*}) outputs Pick an instance \mathcal{I} with *n*-bit prime and random $t_{i,b}, v_{i,b} \in \mathbb{Z}_p$ for $i \in [\ell]$ and $b \in \Sigma$.

$$\begin{aligned} \mathsf{PK} &= [\mathcal{I}, (\mathcal{T}_{i,b} = g^{t_{i,b}}, \mathcal{V}_{i,b} = g^{v_{i,b}})_{i \in [\ell], b \in \Sigma}] \\ \mathsf{SK} &= [\mathcal{I}, (\hat{\mathcal{T}}_{i,b} = g^{1/t_{i,b}}, \hat{\mathcal{V}}_{i,b} = g^{1/v_{i,b}})_{i \in [\ell], b \in \Sigma}] \end{aligned}$$

2 Encryption(PK, \vec{x}) for $\vec{x} = \langle x_1, \dots, x_\ell \rangle$ outputs $\tilde{X} = (X_i, W_i)_{i=1}^{\ell}$ where

$$X_i = T_{i,x_i}^{s-s_i} \qquad W_i = V_{i,x_i}^{s_i}$$

for randomly chosen $s, s_1, \ldots, s_\ell \in \mathbb{Z}_p$.

3

イロト イポト イヨト イヨト

A Construction for HVE

Hidden Vector Encryption IP08

3 GenToken(SK, \vec{y}) outputs key $K_{\vec{y}} = (Y_i, L_i)_{i=1}^{\ell}$ where

$$\mathbf{Y}_{i} = \begin{cases} \hat{T}_{i,y_{i}}^{a_{i}}, & \text{if } y_{i} \neq \star; \\ \emptyset, & \text{if } y_{i} = \star. \end{cases} \text{ and } \mathbf{L}_{i} = \begin{cases} \hat{V}_{i,y_{i}}^{a_{i}}, & \text{if } y_{i} \neq \star; \\ \emptyset, & \text{if } y_{i} = \star. \end{cases}$$

where for *i* such that $y_i \neq \star$, the a_i 's are random under the constraint that $\sum_i a_i = 0$.

イロト 不得下 イヨト イヨト 二日

Construction

Test 4 $\mathsf{Test}(\tilde{X}, K_{\vec{y}}) = \prod_{i: y_i \neq \star} e(X_i, Y_i) \cdot (W_i, L_i).$

Observation:

$$egin{aligned} &x_i = y_i \Rightarrow e(\mathcal{T}_{i,x_i}, \, \hat{\mathcal{T}}_{i,y_i}) = e(g,g). \ &x_i = y_i \Rightarrow e(\mathcal{V}_{i,b}, \, \hat{\mathcal{V}}_{i,b}) = e(g,g). \end{aligned}$$

э

イロト イポト イヨト イヨト

Implementation

Implementation uses:

- PBC: Pairing Based Cryptography Library http://crypto.stanford.edu/pbc/ for basic pairing and elliptic curves computation. Written in C.
- jPBC: Java Pairing Based Cryptography Library http://gas.dia.unisa.it/projects/jpbc/
 - a Java Porting of the PBC library;
 - a Java Wrapper of the PBC library;

Three versions tested:

- JPBC: uses the the Java porting of the PBC library;
- jPBC+precomputation: uses the the Java porting of the PBC library but with precomputation;
- jPBC+PBC+precomputation: uses the Java Wrapper (low level computation delegated to more efficient PBC C code) and precomputation.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Parameters

Curve

- Supersingular curve $y^2 = x^3 + x$ over the field F_q for some prime $q = 3 \mod 4$. (Type A symmetric pairings)
- The order p is a prime factor of q + 1.

- r = 730750818665451459101842416358141509827966795777160 bit

Experimental setup

Model Name: iMac Model Identifier: iMac8.1 Processor Name: Intel Core 2 Duo Processor Speed: 2.66 GHz Number Of Processors: 1 Total Number of Cores: 2 L2 Cache: 6 MB Memory: 4GB Bus Speed: 1.07 GHz

3

Time to compute an encryption.

Giuseppe Persiano (UNISA)

Milliseconds

Zurich, Switzerland 20 / 54

Milliseconds

Current implementation by Angelo De Caro.

- more code optimization
- Dropbox-like user interfact
- Map-Reduce
- different types of pairings
 - the scheme can be implemented with asymmetric pairing.

Back to Theory

Giuseppe Persiano (UNISA)

Image: A matrix

э

Full Security

- Key-Generation Phase. C computes (PK, SK) ← Setup(1ⁿ, 1^ℓ). PK is given to A.
- 2. Query Phase I. A can make any number of key queries.
- 3. Initialization Phase. \mathcal{A} announces two challenge attribute vectors $\vec{z_0}, \vec{z_1} \in \Sigma^{\ell}$.
- 4. Challenge construction. C chooses random $\eta \in \{0, 1\}$ and returns Encryption(PK, \vec{z}_{η}) to A.
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. A returns η' .
- 7. Winning condition. A wins if $\eta = \eta'$.

Restricting the queries

Impossible to achieve

If \mathcal{A} has asked a key for \vec{y} such that $Match(\vec{z}_0, \vec{y}) \neq Match(\vec{z}_1, \vec{y}), \mathcal{A}$ wins.

3

- 4 同 6 4 日 6 4 日 6

Restricting the queries

Impossible to achieve

If \mathcal{A} has asked a key for \vec{y} such that $Match(\vec{z}_0, \vec{y}) \neq Match(\vec{z}_1, \vec{y}), \mathcal{A}$ wins.

Unrestricted queries

Winning condition. A wins if $\eta = \eta'$ and for all \vec{y} for which A has a key

 $Match(\vec{z}_0, \vec{y}) = Match(\vec{z}_1, \vec{y})$

(日) (周) (三) (三)

Restricting the queries

Impossible to achieve

If \mathcal{A} has asked a key for \vec{y} such that $Match(\vec{z}_0, \vec{y}) \neq Match(\vec{z}_1, \vec{y}), \mathcal{A}$ wins.

Unrestricted queries

Winning condition. A wins if $\eta = \eta'$ and for all \vec{y} for which A has a key

 $Match(\vec{z}_0, \vec{y}) = Match(\vec{z}_1, \vec{y})$

Restricted queries

Winning condition. \mathcal{A} wins if $\eta = \eta'$ and for all \vec{y} for which \mathcal{A} has a key

$$Match(\vec{z}_0, \vec{y}) = Match(\vec{z}_1, \vec{y}) = 0$$

Full Security with Unrestricted Queries

- Key-Generation Phase. C computes (PK, SK) ← Setup(1ⁿ, 1^ℓ). PK is given to A.
- 2. Query Phase I. \mathcal{A} can make any number of key queries.
- 3. Initialization Phase. \mathcal{A} announces two challenge attribute vectors $\vec{z_0}, \vec{z_1} \in \Sigma^{\ell}$.
- 4. Challenge construction. C chooses random $\eta \in \{0, 1\}$ and returns Encryption(PK, \vec{z}_{η}) to A.
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. A returns η' .
- 7. Winning condition. \mathcal{A} wins if $\eta = \eta'$ and for all queries \vec{y} it holds that

$$Match(\vec{z}_0, \vec{y}) = Match(\vec{z}_1, \vec{y})$$

(日) (周) (三) (三)

Full Security

De Caro, Iovino, P, 2011

Fully secure HVE with unrestricted queries in composite (product of 4 primes) order bilinear groups.

Caveat: 160 bits become 2048.

Selective vs Full Security

- Selective security assumes that the adversary attacks the **data** and not the public key.
- The adversary declares that he wants to distinguish ciphertexts with Affiliation=IBM from ciphertexts with Affiliation=SAL.
- Full security allows the adversary to base his attack on the public key (which is chosen independently from the data) and on the keys obtained.

Key Security

Security threat

UStorage knows all searches I have done.

3

イロト イヨト イヨト イヨト

Key Security

Security threat

UStorage knows all searches I have done.

Key security is impossible for public key

- storage manager receives $K_{\vec{y}}$ and wants to check if $Match(\langle 1, \ldots, 1 \rangle, \vec{y}) = 1;$
 - encrypt $\langle 1, \ldots, 1 \rangle$ using PK;
 - run Test to obtain the answer;

We should go private key!

< 回 > < 三 > < 三 >

Key Security

Security threat

UStorage knows all searches I have done.

Key security is impossible for public key

- storage manager receives $K_{\vec{y}}$ and wants to check if Match $(\langle 1, \ldots, 1 \rangle, \vec{y}) = 1;$
 - encrypt $\langle 1, \ldots, 1 \rangle$ using PK;
 - run Test to obtain the answer;

We should go private key!

Or maybe not....

Public vs. Private Key

Why Public Key?

• In the scenario with DBowner and UStorage, private key is sufficient.

• All write operations must go through the DBowner.

• In the Alice/Secretary settings we need public key.

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

(人間) トイヨト イヨト

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

 $\begin{array}{l} \text{for } \ell = 3 \text{ and } \Sigma = \{0,1\} \\ \text{Pol} = \langle \{0,1\}, \{0\}, \{0,1\} \rangle \end{array}$

3

(人間) トイヨト イヨト

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

for $\ell = 3$ and $\Sigma = \{0, 1\}$ Pol = $\langle \{0, 1\}, \{0\}, \{0, 1\} \rangle \Rightarrow$ vectors with a 0 entry in position 2;

(人間) トイヨト イヨト

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

 $\begin{aligned} & \text{for } \ell = 3 \text{ and } \Sigma = \{0,1\} \\ & \text{Pol} = \langle \{0,1\}, \{0\}, \{0,1\} \rangle \Rightarrow \text{ vectors with a 0 entry in position 2;} \\ & \text{Pol} = \Sigma^{\ell} \end{aligned}$

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

for ℓ = 3 and Σ = {0,1}
Pol = ⟨{0,1}, {0}, {0,1}⟩ ⇒ vectors with a 0 entry in position 2;
Pol = Σ^ℓ ⇒ all vectors (public-key setting);

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

for $\ell = 3$ and $\Sigma = \{0, 1\}$ Pol = $\langle \{0, 1\}, \{0\}, \{0, 1\} \rangle \Rightarrow$ vectors with a 0 entry in position 2;

Pol =
$$\Sigma^{\ell} \Rightarrow$$
 all vectors (public-key setting);

if any entry is
$$\emptyset$$

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;

for $\ell = 3$ and $\Sigma = \{0, 1\}$ Pol = $\langle \{0, 1\}, \{0\}, \{0, 1\} \rangle \Rightarrow$ vectors with a 0 entry in position 2;

- $Pol = \Sigma^{\ell} \Rightarrow all vectors (public-key setting);$
- ▶ if any entry is $\emptyset \Rightarrow$ no vector (private-key setting);

- 4 目 ト - 4 日 ト - 4 日 ト

Key Policy

- public keys associated with policies;
- a policy Pol is a vector of subsets of Σ;
- it encodes the set X_{Pol} of attribute vectors that can be encrypted;
 - for $\ell = 3$ and $\Sigma = \{0, 1\}$ Pol = $\langle \{0, 1\}, \{0\}, \{0, 1\} \rangle \Rightarrow$ vectors with a 0 entry in position 2;
 - $\mathsf{Pol} = \Sigma^{\ell} \Rightarrow \mathsf{all} \text{ vectors (public-key setting)};$
 - ▶ if any entry is $\emptyset \Rightarrow$ no vector (private-key setting);

Hidden Vector Encryption

- Setup $(1^n, 1^\ell)$ outputs the secret key SK.
- **2** PPKeyGen(SK, Pol) outputs the *partial public key* PPK_{Pol}.
- Some set \tilde{X} is the set of \tilde{X} of \tilde{X} is the set of \tilde{X} is the set of \tilde{X} is the set of $\tilde{X} \in \mathbb{X}_{Pol}$.
- GenToken(SK, \vec{y}) outputs key $K_{\vec{y}}$.

Test $(\tilde{X}, T_{\vec{x}})$ returns Match (\vec{x}, \vec{v}) with overwhelming probability. Giuseppe Persiano (UNISA)

33 / 54

Known Constructions

Constructions

• Boneh-Waters [2007] gave a construction based on groups with order product of four primes. Need 2048-bit moduli.

• Blundo, Iovino, P. [2009, 2010] gave a construction based on groups of prime order.

Semantic Security with Partial Public Keys

- 1. Initialization Phase. \mathcal{A} announces two challenge attribute vectors $\vec{z_0}, \vec{z_1} \in \Sigma^{\ell}$ and policy $\mathsf{Pol} \in (2^{\Sigma})^{\ell}$.
- Key-Generation Phase. C computes SK ← Setup(1ⁿ, 1^ℓ) and PPK_{Pol} ← PPKeyGen(SK, Pol). PPK_{Pol} is given to A.
- 3. Query Phase I. \mathcal{A} can make any number of key queries. \mathcal{C} answers key queries only for patterns \vec{y} such that Match $(\vec{z}_0, \vec{y}) = Match(\vec{z}_1, \vec{y}) = 0.$
- 4. Challenge construction. C chooses random $\eta \in \{0, 1\}$ and returns Encryption(SK, \vec{z}_{η}).
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. A returns η' .

If $\eta = \eta'$ then the experiments returns 1 else 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Token Security with Partial Public Keys

1. Initialization Phase. \mathcal{A} announces $\vec{y}_0, \vec{y}_1 \in \Sigma^{\ell}_{\star}$ with \star in the same positions and a policy Pol such that

 $\vec{x} \in \mathbb{X}_{\mathsf{Pol}} \Rightarrow \mathsf{Match}(\vec{x}, \vec{y}_0) = \mathsf{Match}(\vec{x}, \vec{y}_1) = 0.$

- Key-Generation Phase. C computes SK ← Setup(1ⁿ, 1^ℓ) and PPK_{Pol} ← PPKeyGen(SK, Pol). PPK_{Pol} is given to A.
- 3. Query Phase I. A can make any number of key queries. A gets GenToken(SK, \vec{y}).
- 4. Challenge construction. η is chosen at random from $\{0, 1\}$ and receives GenToken(SK, \vec{y}_{η}).
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. A returns η' .

If $\eta = \eta'$ then the experiments returns 1 else 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Construction for Partial Public Key HVE

Setup $(1^n, 1^\ell)$

- 1. Select a symmetric bilinear instance $\mathcal{I} = [p, \mathbb{G}, \mathbb{G}_T, g, e]$.
- 2. For $i \in [2\ell 1]$, choose random $t_{1,i,0}, t_{2,i,0}, t_{1,i,1}, t_{2,i,1} \in \mathbb{Z}_p$ and set

$$\begin{split} \mathsf{K}_{i} &= \begin{pmatrix} T_{1,i,0} = g^{t_{1,i,0}}, & T_{2,i,0} = g^{t_{2,i,0}} \\ T_{1,i,1} = g^{t_{1,i,1}}, & T_{2,i,1} = g^{t_{2,i,1}} \end{pmatrix} \\ \bar{\mathsf{K}}_{i} &= \begin{pmatrix} \bar{T}_{1,i,0} = g^{1/t_{1,i,0}}, & \bar{T}_{2,i,0} = g^{1/t_{2,i,0}} \\ \bar{T}_{1,i,1} = g^{1/t_{1,i,1}}, & \bar{T}_{2,i,1} = g^{1/t_{2,i,1}} \end{pmatrix}. \end{split}$$

3. Return SK = $[\mathcal{I}, (K_i, \overline{K}_i)_{i \in [2\ell-1]}]$.

イロト イヨト イヨト
Setup $(1^n, 1^\ell)$

- 1. Select a symmetric bilinear instance $\mathcal{I} = [p, \mathbb{G}, \mathbb{G}_T, g, e]$.
- 2. For $i \in [2\ell 1]$, choose random $t_{1,i,0}, t_{2,i,0}, t_{1,i,1}, t_{2,i,1} \in \mathbb{Z}_p$ and set

$$\begin{split} \mathsf{K}_{i} &= \left(\begin{array}{cc} T_{1,i,0} = g^{t_{1,i,0}}, & T_{2,i,0} = g^{t_{2,i,0}} \\ T_{1,i,1} = g^{t_{1,i,1}}, & T_{2,i,1} = g^{t_{2,i,1}} \end{array} \right) \\ \bar{\mathsf{K}}_{i} &= \left(\begin{array}{c} \overline{T}_{1,i,0} = g^{1/t_{1,i,0}}, & \overline{T}_{2,i,0} = g^{1/t_{2,i,0}} \\ \overline{T}_{1,i,1} = g^{1/t_{1,i,1}}, & \overline{T}_{2,i,1} = g^{1/t_{2,i,1}} \end{array} \right). \end{split}$$

3. Return SK = $[\mathcal{I}, (K_i, \overline{K}_i)_{i \in [2\ell-1]}].$

Notice: if x = y then

$$\mathsf{e}(T_{b,i,x},\,\bar{T}_{b,i,y})=\mathsf{e}(g,g)$$

for all $i \in [2\ell - 1]$ and b = 1, 2.

イロト 不得下 イヨト イヨト 二日

PPKeyGen (SK, Pol)

- 1. For $i = 1, ..., \ell$, for every $b \in Pol_i$, add $T_{1,i,b}$ and $T_{2,i,b}$ to PPK_i.
- 2. For $i = \ell + 1, \dots, 2\ell 1$, add $T_{1,i,0}$ and $T_{2,i,0}$ to PPK_i.

3. Return
$$PPK_{Pol} = [(PPK_i)_{i \in [2\ell-1]}].$$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathsf{Encryption}(\mathsf{PPK}_{\mathsf{Pol}}, \vec{x} = \langle x_1, \dots, x_\ell \rangle)$

- 1. If $\vec{x} \notin \mathbb{X}_{Pol}$ return \perp .
- 2. Append $(\ell 1)$ 0-entries to \vec{x} .
- 3. Pick s at random from \mathbb{Z}_p .

4.
$$(s_1, \ldots, s_{2\ell-1}) \leftarrow \mathsf{LSS}(\ell, 2\ell - 1, 0).$$

5. For
$$i = 1, ..., 2\ell - 1$$
,
set $X_{1,i} = T_{1,i,x_i}^{s-s_i}$ and $X_{2,i} = T_{2,i,x_i}^{-s_i}$

6. Return
$$X = [(X_{1,i}, X_{2,i})_{i \in [2\ell - 1]}].$$

$\mathsf{Encryption}(\mathsf{PPK}_{\mathsf{Pol}}, \vec{x} = \langle x_1, \dots, x_\ell \rangle)$

- 1. If $\vec{x} \notin \mathbb{X}_{Pol}$ return \perp .
- 2. Append $(\ell 1)$ 0-entries to \vec{x} .
- 3. Pick s at random from \mathbb{Z}_p .

4.
$$(s_1, \ldots, s_{2\ell-1}) \leftarrow \mathsf{LSS}(\ell, 2\ell - 1, 0).$$

5. For
$$i = 1, ..., 2\ell - 1$$
,
set $X_{1,i} = T_{1,i,x_i}^{s-s_i}$ and $X_{2,i} = T_{2,i,x_i}^{-s_i}$

6. Return
$$\hat{X} = [(X_{1,i}, X_{2,i})_{i \in [2\ell - 1]}]$$

Notice: if $\vec{x} \in \mathbb{X}_{Pol}$, then $\forall i \ T_{1,i,x_i}, T_{2,i,x_i} \in \mathsf{PPK}_{Pol}$.

Image: A matrix and a matrix

Linear Secret Sharing

(k, n) Linear Secret Sharing

• Input: a secret $s \in \mathbb{Z}_p$;

- **Output:** *n* shares (s_1, \ldots, s_n) such that
 - any k 1 (or fewer) shares are random and independent among themselves and are independent from the secret *s*;
 - ► for any $F \subseteq [n]$ of size k there exist reconstruction coefficients α_i such that

$$s = \sum_{i \in F} \alpha_i s_i.$$

Linear Secret Sharing

(k, n) Linear Secret Sharing

• Input: a secret $s \in \mathbb{Z}_p$;

- **Output:** *n* shares (s_1, \ldots, s_n) such that
 - any k-1 (or fewer) shares are random and independent among themselves and are independent from the secret *s*;
 - ▶ for any $F \subseteq [n]$ of size k there exist reconstruction coefficients α_i such that

$$s = \sum_{i \in F} \alpha_i s_i.$$

Notice: the reconstruction coefficients depend only on the set F and not on the shares.

(日) (同) (三) (三)

GenToken (SK, $\vec{y} = \langle y_1, \ldots, y_\ell \rangle$)

- 1. Pick random $r \in \mathbb{Z}_p$.
- 2. h = # of non- \star entries of \vec{y} . append $(\ell - h)$ 0-entries and (h - 1) \star -entries $S_{\vec{y}}$ the non- \star entries of the extended vector. Notice that $|S_{\vec{y}}| = \ell$.

3.
$$(r_1, \ldots, r_{2\ell-1}) \leftarrow \mathsf{LSS}(\ell, 2\ell - 1, 0).$$

4. For
$$i \in S_{\vec{y}}$$
,
set $Y_{1,i} = \bar{T}_{1,i,y_i}^{r_i}$ and $Y_{2,i} = \bar{T}_{2,i,y_i}^{r-r_i}$

5. Return
$$T_{\vec{y}} = [S_{\vec{y}}, (Y_{1,i}, Y_{2,i})_{i \in S_{\vec{y}}}].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Test
$$(\tilde{X} = [(X_{1,i}, X_{2,i})_{i \in [2\ell-1]}], T_{\vec{y}} = [S, (Y_{1,i}, Y_{2,i})_{i \in S}])$$

1. Let $(v_i)_{i \in S}$ be the reconstruction coefficients for *S*.
2. Return 1 iff

$$\prod_{i \in S} [e(X_{1,i}, Y_{1,i}) \cdot e(X_{2,i}, Y_{2,i})]^{v_i} = 1$$

3

Test
$$(\tilde{X} = [(X_{1,i}, X_{2,i})_{i \in [2\ell - 1]}], T_{\vec{y}} = [S, (Y_{1,i}, Y_{2,i})_{i \in S}])$$

1. Let $(v_i)_{i \in S}$ be the reconstruction coefficients for S.
2. Return 1 iff

$$\prod_{i \in S} [e(X_{1,i}, Y_{1,i}) \cdot e(X_{2,i}, Y_{2,i})]^{v_i} = 1$$

Zurich, Switzerland 42 / 54

3

イロト イヨト イヨト イヨト

Test
$$(\tilde{X} = [(X_{1,i}, X_{2,i})_{i \in [2\ell-1]}], T_{\vec{y}} = [S, (Y_{1,i}, Y_{2,i})_{i \in S}])$$

1. Let $(v_i)_{i \in S}$ be the reconstruction coefficients for S .
2. Return 1 iff

$$\prod_{i \in S} [e(X_{1,i}, Y_{1,i}) \cdot e(X_{2,i}, Y_{2,i})]^{v_i} = 1$$

3

イロト イヨト イヨト イヨト

Test
$$(\tilde{X} = [(X_{1,i}, X_{2,i})_{i \in [2\ell-1]}], T_{\vec{y}} = [S, (Y_{1,i}, Y_{2,i})_{i \in S}])$$

1. Let $(v_i)_{i \in S}$ be the reconstruction coefficients for *S*.
2. Return 1 iff

$$\prod_{i \in S} [e(X_{1,i}, Y_{1,i}) \cdot e(X_{2,i}, Y_{2,i})]^{v_i} = 1$$

3

イロト イヨト イヨト イヨト

Security proofs

Security proofs

Can prove semantic and key security on complexity assumptions

3

(日) (周) (三) (三)

Private-Key Searchable Encryption – The syntax

Private-Key Searchable Encryption

- Setup $(1^n, 1^\ell)$ outputs the secret key SK.
- **2** Encryption(SK, \vec{x}) outputs ciphertext Ct_{\vec{x}} with attribute $\vec{x} \in \Sigma^{\ell}$.
- **Solution** GenToken(SK, \vec{y}) outputs key $K_{\vec{y}}$ for pattern $\vec{y} \in \Sigma^{\ell}$.
- Test(Ct_{\vec{x}}, $K_{\vec{y}}$) returns 1 iff $\vec{x} = \vec{y}$.

Semantic Security with Private Keys

- 1. Initialization Phase. A announces two challenge attribute vectors $\vec{x}_0, \vec{x}_1 \in \Sigma^{\ell}$.
- 2. Key-Generation Phase. C computes SK \leftarrow Setup $(1^n, 1^\ell)$.
- 3. Query Phase I. A can make any number of encryption and key queries for patterns $\vec{y} \neq \vec{x}_0, \vec{x}_1$.
- 4. Challenge construction. C chooses random $\eta \in \{0, 1\}$ and returns Encryption(SK, \vec{x}_{η}).
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. \mathcal{A} returns η' . If $\eta = \eta'$ then the experiments returns 1 else 0.

(4 個) トイヨト イヨト

Token Security with Private Keys

- 1. Initialization Phase. \mathcal{A} announces $\vec{y}_0, \vec{y}_1 \in \Sigma^{\ell}$.
- 2. Key-Generation Phase. C computes SK \leftarrow Setup $(1^n, 1^\ell)$.
- 3. Query Phase I. A can make any number of key queries and encryption queries for attributes $\vec{x} \neq \vec{y_0}, \vec{y_1}$.
- 4. Challenge construction. η is chosen at random from $\{0, 1\}$ and receives GenToken(SK, \vec{y}_{η}).
- 5. Query Phase II. Identical to Query Phase I.
- 6. Output phase. A returns η' .

If $\eta = \eta'$ then the experiments returns 1 else 0.

Construction for Private-Key Searchable Encryption

Setup $(1^n, 1^\ell)$

- 1. Select a symmetric bilinear instance $\mathcal{I} = [p, \mathbb{G}, \mathbb{G}_T, g, e]$.
- 2. For $i \in [\ell]$, choose random $t_{1,i,0}, t_{2,i,0}, t_{1,i,1}, t_{2,i,1} \in \mathbb{Z}_p$ and set

$$\begin{split} \mathsf{K}_{i} &= \begin{pmatrix} T_{1,i,0} = g^{t_{1,i,0}}, & T_{2,i,0} = g^{t_{2,i,0}} \\ T_{1,i,1} = g^{t_{1,i,1}}, & T_{2,i,1} = g^{t_{2,i,1}} \end{pmatrix} \\ \bar{\mathsf{K}}_{i} &= \begin{pmatrix} \bar{T}_{1,i,0} = g^{1/t_{1,i,0}}, & \bar{T}_{2,i,0} = g^{1/t_{2,i,0}} \\ \bar{T}_{1,i,1} = g^{1/t_{1,i,1}}, & \bar{T}_{2,i,1} = g^{1/t_{2,i,1}} \end{pmatrix}. \end{split}$$

3. Return SK = $[\mathcal{I}, (K_i, \bar{K}_i)_{i \in [\ell]}].$

Finish...

(日) (周) (三) (三)

Construction for Private-Key Searchable Encryption

Encryption (SK, \vec{x})

- 1. Pick random $s \in \mathbb{Z}_p$.
- 2. Pick random $s_1, \ldots, s_\ell \in \mathbb{Z}_p$ that sum up to 0.

3. For
$$i = 1, ..., \ell$$
,
set $X_{1,i} = T_{1,i,x_i}^{s-s_i}$ and $X_{2,i} = T_{2,i,x_i}^{-s_i}$.
4. Return $Ct_{\vec{x}} = [(X_{1,i}, X_{2,i})_{i \in [\ell]}]$.

(日) (周) (三) (三)

Construction for Private-Key Searchable Encryption

Encryption (SK, \vec{x})

- 1. Pick random $s \in \mathbb{Z}_p$.
- 2. Pick random $s_1, \ldots, s_\ell \in \mathbb{Z}_p$ that sum up to 0.

3. For
$$i = 1, ..., \ell$$
,
set $X_{1,i} = T_{1,i,x_i}^{s-s_i}$ and $X_{2,i} = T_{2,i,x_i}^{-s_i}$.

4. Return
$$Ct_{\vec{x}} = [(X_{1,i}, X_{2,i})_{i \in [\ell]}]$$

GenToken (SK, \vec{y})

- 1. Pick random $r \in \mathbb{Z}_p$.
- 2. Pick random $r_1, \ldots, r_\ell \in \mathbb{Z}_p$ that sum up to 0.

3. For
$$i = 1, ..., \ell$$
,
set $Y_{1,i} = \overline{T}_{1,i,y_i}^{r-r_i}$ and $Y_{2,i} = \overline{T}_{2,i,y_i}^{-r_i}$.
4. Return $K_{\vec{v}} = [(Y_{1,i}, Y_{2,i})_{i \in [\ell]}]$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Semantic vs. Token security

• Encryption uses keys K_i , $i \in [\ell]$;

3

(日) (周) (三) (三)

Semantic vs. Token security

- Encryption uses keys K_i , $i \in [\ell]$;
- Token generation is encryption w.r.t. to keys \bar{K}_i , $i \in [\ell]$;

(日) (同) (三) (三)

Semantic vs. Token security

- Encryption uses keys K_i , $i \in [\ell]$;
- Token generation is encryption w.r.t. to keys \bar{K}_i , $i \in [\ell]$;
- $\bullet\,$ In the game for semantic security, ${\cal A}$ can ask
 - any encryption query for keys K_i ;
 - encryption queries for keys \bar{K}_i and pattern $\vec{y} \neq \vec{x}_0, \vec{x}_1$;

Semantic vs. Token security

- Encryption uses keys K_i , $i \in [\ell]$;
- Token generation is encryption w.r.t. to keys \bar{K}_i , $i \in [\ell]$;
- \bullet In the game for semantic security, ${\cal A}$ can ask
 - any encryption query for keys K_i ;
 - encryption queries for keys $ar{K}_i$ and pattern $ec{y}
 eq ec{x}_0, ec{x}_1;$
- \bullet In the game for key security, ${\cal A}$ can ask
 - any encryption query for keys K_i ;
 - encryption queries for keys K_i and attributes $\vec{x} \neq \vec{y}_0, \vec{y}_1$;

A (10) A (10) A (10)

Semantic vs. Token security

- Encryption uses keys K_i , $i \in [\ell]$;
- Token generation is encryption w.r.t. to keys \bar{K}_i , $i \in [\ell]$;
- $\bullet\,$ In the game for semantic security, ${\cal A}$ can ask
 - any encryption query for keys K_i ;
 - encryption queries for keys $ar{K}_i$ and pattern $ec{y}
 eq ec{x}_0, ec{x}_1;$
- \bullet In the game for key security, ${\cal A}$ can ask
 - any encryption query for keys \overline{K}_i ;
 - encryption queries for keys K_i and attributes $\vec{x} \neq \vec{y}_0, \vec{y}_1$;

Semantic Security $\Leftarrow \Rightarrow$ Token Security

(日) (同) (三) (三)

Zero Sum Assumption

Consider the following game between a challenger ${\mathcal C}$ and an adversary ${\mathcal A}$.

$\operatorname{\mathsf{ZeroSumExp}}_{\mathcal{A}}(1^n, 1^\ell)$

- 01. C randomly picks a_1, \ldots, a_ℓ such that $\sum_i a_i = 0$;
- 02. C chooses instance $\mathcal{I} = [p, \mathbb{G}, \mathbb{G}_T, g, e]$ with security parameter 1^n ;
- 03. for $i \in [\ell]$

C chooses random $u_i \in \mathbb{Z}_p$ and sets $U_i = g^{u_i}$ and $V_i = U_i^{a_i}$;

- 04. C chooses random $\eta \in \{0, 1\}$;
- 05. if $\eta = 0$ then C sets V_1 to a random element of \mathbb{G} ;
- 06. C runs A on input $[\mathcal{I}, (U_i)_{i \in [\ell]}, (V_i)_{i \in [\ell]}];$
- 07. Let η' be \mathcal{A} 's guess for η ;
- 08. if $\eta = \eta'$ then return 1 else return 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Split Zero Sum Assumption

Consider the following game between a challenger C and an adversary A.

SplitZeroSumExp $_{4}(1^{n}, 1^{\ell})$ 01. C randomly picks a_1, \ldots, a_ℓ such that $\sum_i a_i = 0$; 02. C chooses instance $\mathcal{I} = [p, \mathbb{G}, \mathbb{G}_T, g, e]$ with security parameter 1^n ; 03. C chooses random $u, w \in \mathbb{Z}_p$ and sets $W = g^w$; 04. for $i \in [\ell]$ \mathcal{C} chooses random $u_i \in \mathbb{Z}_p$; sets $U_i = g^{u_i}, V_i = U_i^{a_i}, A_i = g^{a_i}$, and $S_i = U_i^{u_i}$; 05 C sets $\hat{U} = U_1^w$; 06. C chooses random $\eta \in \{0, 1\}$; 07. if $\eta = 1$ then \mathcal{C} sets $Z = W^{u-a_1}$ else \mathcal{C} chooses random $Z \in \mathbb{G}$; 08. C runs A on input $[\mathcal{I}, (U_i)_{i \in [\ell]}, (V_i)_{i \in [\ell]}, (A_i)_{i \in [\ell]}, (S_i)_{i \in [\ell] \setminus \{1\}}, W, \hat{U}, Z];$ 09. Let η' be \mathcal{A} 's guess for η ; 10. **if** $\eta = \eta'$ **then** return 1 **else** return 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Theorem

Under the Zero Sum Assumption and the Split Zero Sum Assumption, there exists private-key searchable encryption with semantic and key security.

Notice: construction based on pairings on prime order groups.

(日) (同) (三) (三)

Further directions

Search

Is sublinear search possible?

Verifiability

A lazy UStorage might say that he found no match. Can we verify the result?

3

< 回 ト < 三 ト < 三 ト

Thank you

3

・ロン ・四 ・ ・ ヨン ・ ヨン