
Predicate Encryption for Private and Searchable
Remote Storage

Giuseppe Persiano

Dipartimento di Informatica ed Appl.
”Renato M. Capocelli”
Università di Salerno
giuper@dia.unisa.it

Workshop on Cryptography and Security in Clouds
Zurich, Switzerland
March 15-16, 2011

Giuseppe Persiano (UNISA) Zurich, Switzerland 1 / 54

This talk describes joint work with:

1 Carlo Blundo
2 Angelo De Caro
3 Vincenzo Iovino

Giuseppe Persiano (UNISA) Zurich, Switzerland 2 / 54

Outline

1 Storing Data in a Cloud

2 Hidden Vector Encryption

3 Implementation

4 Full Security

5 Key Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 3 / 54

Outline

1 Storing Data in a Cloud

2 Hidden Vector Encryption

3 Implementation

4 Full Security

5 Key Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 3 / 54

Outline

1 Storing Data in a Cloud

2 Hidden Vector Encryption

3 Implementation

4 Full Security

5 Key Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 3 / 54

Outline

1 Storing Data in a Cloud

2 Hidden Vector Encryption

3 Implementation

4 Full Security

5 Key Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 3 / 54

Outline

1 Storing Data in a Cloud

2 Hidden Vector Encryption

3 Implementation

4 Full Security

5 Key Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 3 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data

(enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data

(enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data

(enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage

Secure Remote Storage

A Cloud has huge storage capabilities and can be accessed from
anywhere;

We consider simple case of a Data Owner storing his data on an
Untrusted Storage;

DOwner can assume:
I UStorage does not destroy the data (enforce using Duplication);

I UStorage does not modify data (enforce using Authentication Code);

I UStorage does not read the data (enforce using Encryption);

Giuseppe Persiano (UNISA) Zurich, Switzerland 4 / 54

Secure Remote Storage
1 In the beginning is the Data

First Name Last Name Affiliation

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

2 Encrypt and obtain

First Name Last Name Affiliation

E (PK, Christian) E (PK, Cachin) E (PK, IBM)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS)

3 Authenticate by using MAC.

4 Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, ”Encrypt and Mac” has some subtleties.

Giuseppe Persiano (UNISA) Zurich, Switzerland 5 / 54

Secure Remote Storage
1 In the beginning is the Data

First Name Last Name Affiliation

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

2 Encrypt and obtain

First Name Last Name Affiliation

E (PK, Christian) E (PK, Cachin) E (PK, IBM)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS)

3 Authenticate by using MAC.

4 Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, ”Encrypt and Mac” has some subtleties.

Giuseppe Persiano (UNISA) Zurich, Switzerland 5 / 54

Secure Remote Storage
1 In the beginning is the Data

First Name Last Name Affiliation

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

2 Encrypt and obtain

First Name Last Name Affiliation

E (PK, Christian) E (PK, Cachin) E (PK, IBM)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS)

3 Authenticate by using MAC.

4 Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, ”Encrypt and Mac” has some subtleties.

Giuseppe Persiano (UNISA) Zurich, Switzerland 5 / 54

Secure Remote Storage
1 In the beginning is the Data

First Name Last Name Affiliation

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

2 Encrypt and obtain

First Name Last Name Affiliation

E (PK, Christian) E (PK, Cachin) E (PK, IBM)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS)

3 Authenticate by using MAC.

4 Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, ”Encrypt and Mac” has some subtleties.

Giuseppe Persiano (UNISA) Zurich, Switzerland 5 / 54

Secure Remote Storage
1 In the beginning is the Data

First Name Last Name Affiliation

Christian Cachin IBM
Giuseppe Persiano SAL
Ahmad-Reza Sadeghi TUD
Matthias Schunter IBM
Paulo Verissimo LIS

2 Encrypt and obtain

First Name Last Name Affiliation

E (PK, Christian) E (PK, Cachin) E (PK, IBM)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS)

3 Authenticate by using MAC.

4 Disperse by using data replication algorithm.

Caveat. For the Crypto-savvy, ”Encrypt and Mac” has some subtleties.
Giuseppe Persiano (UNISA) Zurich, Switzerland 5 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query.

why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Searching on data on a UStorage

Want all persons from IBM

1 Download the data using the retrieve algorithm;

2 Check it has not been modified;

3 Decrypt the whole table;

4 Execute the query;

Not really what we want

1 We need to store locally the table.

2 We might not have enough local storage, that’s why we resorted to
the UStorage.

3 Question: can we ask the UStorage to perform the search for us?

4 Answer 1: give UStorage the decryption query. why did we encrypt?

5 Answer 2: not with the current encryption schemes.

Giuseppe Persiano (UNISA) Zurich, Switzerland 6 / 54

Predicate Encryption

Predicate Encryption for P
Ciphertexts and Keys have attributes.

Key K with attribute ~y can decrypt ciphertext Ct with attribute ~x iff
and only if P(~x , ~y) = 1.

Delegating decryption

1 Alice generates master secret key (MSK) and public key (PK’) ;

2 Alice publishes PK’;
3 Bob has a private message M to Alice;

I Bob computes E (PK′,M, private);

4 Dean has a work message M ′ to Alice;
I Dean computes E (PK′,M ′,work);

5 Alice gives key for work to secretary;

6 Alice keepts key for private for herself.

Giuseppe Persiano (UNISA) Zurich, Switzerland 7 / 54

Searching encrypted data

Let P be a predicate such that

P((FN, LN,A), (?, ?, “IBM”)) = 1 iff A = “IBM”.

First Name Last Name Affiliation Attributes

E (PK, Christian) E (PK, Cachin) E (PK, IBM) E(PK’,(C,C,I),0)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL) E(PK’,(G,P,S),0)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD) E(PK’,(A,S,T),0)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM) E(PK’,(M,S,I),0)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS) E(PK’,(P,V,L),0)

Giuseppe Persiano (UNISA) Zurich, Switzerland 8 / 54

Searching encrypted data

Let P be a predicate such that

P((FN, LN,A), (?, ?, “IBM”)) = 1 iff A = “IBM”.

First Name Last Name Affiliation Attributes

E (PK, Christian) E (PK, Cachin) E (PK, IBM) E(PK’,(C,C,I),0)
E (PK, Giuseppe) E (PK, Persiano) E (PK, SAL) E(PK’,(G,P,S),0)
E (PK, Ahmad-Reza) E (PK, Sadeghi) E (PK, TUD) E(PK’,(A,S,T),0)
E (PK, Matthias) E (PK, Schunter) E (PK, IBM) E(PK’,(M,S,I),0)
E (PK, Paulo) E (PK, Verissimo) E (PK, LIS) E(PK’,(P,V,L),0)

Giuseppe Persiano (UNISA) Zurich, Switzerland 8 / 54

Predicate Encryption

The SELECT procedure

1 DOwner computes key K with attribute (?, ?, IBM) and sends it to
UStorage;

2 UStorage tries to decrypt E (PK′, (Christian,Cachin,IBM), 0) with K
and obtains 0;
the row is selected

3 UStorage tries to decrypt E (PK′, (Giuseppe,Persiano,SAL), 0) with
K and obtains ⊥;
the row is not selected;

4

5 UStorage sends the two selected rows to the DOwner;

6 DOwner decrypts the received rows;

Giuseppe Persiano (UNISA) Zurich, Switzerland 9 / 54

Hidden Vector Encryption

Hidden Vector Encryption

Ciphertext Ct is associated with attribute vector ~x of length ` over
alphabet Σ.

Key K is associated with pattern vector ~y of length ` over alphabet
Σ? = Σ ∪ {?}.
Predicate Match(~x , ~y) which is true if and only if ~x = 〈x1, . . . , x`〉 and
~y = 〈y1, . . . , y`〉 agree in all positions i for which yi 6= ?.

If patterns vectors ~y ∈ Σ` we have the original notion of searchable
encryption.

Giuseppe Persiano (UNISA) Zurich, Switzerland 10 / 54

Hidden Vector Encryption

Hidden Vector Encryption

Ciphertext Ct is associated with attribute vector ~x of length ` over
alphabet Σ.

Key K is associated with pattern vector ~y of length ` over alphabet
Σ? = Σ ∪ {?}.
Predicate Match(~x , ~y) which is true if and only if ~x = 〈x1, . . . , x`〉 and
~y = 〈y1, . . . , y`〉 agree in all positions i for which yi 6= ?.

If patterns vectors ~y ∈ Σ` we have the original notion of searchable
encryption.

Giuseppe Persiano (UNISA) Zurich, Switzerland 10 / 54

Hidden Vector Encryption – The syntax

Hidden Vector Encryption (Attribute Only)

1 Setup(1n, 1`) outputs the public key PK and the secret key SK.

2 Encryption(PK,~x) outputs an encrypted attribute vector X̃ .

3 GenToken(SK, ~y) outputs key K~y .

4 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 11 / 54

Semantic Security - Selective

SemanticExpA(1n, 1`)
1. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ`.

2. Key-Generation Phase. C computes (PK,SK)← Setup(1n, 1`).
PK is given to A.

3. Query Phase I. A can make any number of key queries.
C answers key queries only for patterns ~y such that
Match(~z0, ~y) = Match(~z1, ~y) = 0.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(PK,~zη) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 12 / 54

Known Constructions

Pairing (symmetric version)

multiplicative groups G and GT of order p;

non-degenerate pairing function e : G×G→ GT ;
I for all x ∈ G, x 6= 1, and a, b ∈ Zp,

e(x , x) 6= 1 and e(xa, xb) = e(x , x)ab.

Constructions

Boneh and Waters [TCC 07] gave a construction based on complexity
assumption for pairing with composite order group;

Iovino and P. [Pairing 08] gave a construction for prime order groups;

BH needs about 1024-bit moduli.
For IP we can use 160-bit moduli.

Giuseppe Persiano (UNISA) Zurich, Switzerland 13 / 54

Known Constructions

Pairing (symmetric version)

multiplicative groups G and GT of order p;

non-degenerate pairing function e : G×G→ GT ;
I for all x ∈ G, x 6= 1, and a, b ∈ Zp,

e(x , x) 6= 1 and e(xa, xb) = e(x , x)ab.

Constructions

Boneh and Waters [TCC 07] gave a construction based on complexity
assumption for pairing with composite order group;

Iovino and P. [Pairing 08] gave a construction for prime order groups;

BH needs about 1024-bit moduli.
For IP we can use 160-bit moduli.

Giuseppe Persiano (UNISA) Zurich, Switzerland 13 / 54

A Construction for HVE

Hidden Vector Encryption [IP08]

1 Setup(1n, 1`) outputs
Pick an instance I with n-bit prime and random ti ,b, vi ,b ∈ Zp for
i ∈ [`] and b ∈ Σ.

PK = [I, (Ti ,b = g ti,b ,Vi ,b = g vi,b)i∈[`],b∈Σ]

SK = [I, (T̂i ,b = g1/ti,b , V̂i ,b = g1/vi,b)i∈[`],b∈Σ]

2 Encryption(PK,~x) for ~x = 〈x1, . . . , x`〉 outputs X̃ = (Xi ,Wi)
`
i=1 where

Xi = T s−si
i ,xi

Wi = V si
i ,xi

for randomly chosen s, s1, . . . , s` ∈ Zp.

Giuseppe Persiano (UNISA) Zurich, Switzerland 14 / 54

A Construction for HVE

Hidden Vector Encryption IP08

3 GenToken(SK, ~y) outputs key K~y = (Yi , Li)
`
i=1 where

Yi =

{
T̂ ai
i ,yi
, if yi 6= ?;

∅, if yi = ?.
and Li =

{
V̂ ai
i ,yi
, if yi 6= ?;

∅, if yi = ?.

where for i such that yi 6= ?, the ai ’s are random under the constraint
that

∑
i ai = 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 15 / 54

Construction

Test

4
Test(X̃ ,K~y) =

∏
i :yi 6=?

e(Xi ,Yi) · (Wi , Li).

Observation:
xi = yi ⇒ e(Ti ,xi , T̂i ,yi) = e(g , g).

xi = yi ⇒ e(Vi ,b, V̂i ,b) = e(g , g).

Giuseppe Persiano (UNISA) Zurich, Switzerland 16 / 54

Implementation

Implementation uses:

1 PBC: Pairing Based Cryptography Library
http://crypto.stanford.edu/pbc/ for basic pairing and elliptic
curves computation. Written in C.

2 jPBC: Java Pairing Based Cryptography Library
http://gas.dia.unisa.it/projects/jpbc/

1 a Java Porting of the PBC library;
2 a Java Wrapper of the PBC library;

Three versions tested:

1 jPBC: uses the the Java porting of the PBC library;

2 jPBC+precomputation: uses the the Java porting of the PBC library
but with precomputation;

3 jPBC+PBC+precomputation: uses the Java Wrapper (low level
computation delegated to more efficient PBC C code) and
precomputation.

Giuseppe Persiano (UNISA) Zurich, Switzerland 17 / 54

Parameters

Curve

Supersingular curve y2 = x3 + x over the field Fq for some prime
q = 3 mod 4. (Type A symmetric pairings)

The order p is a prime factor of q + 1.

q = 1112516189738354695660623681779709216838322823798404116

198919708307485046800260086705221179856475399111425452

4050414866145727834858675222143950902758166111

512 bit

r = 730750818665451459101842416358141509827966795777

160 bit

Giuseppe Persiano (UNISA) Zurich, Switzerland 18 / 54

Experimental setup

Model Name: iMac
Model Identifier: iMac8.1
Processor Name: Intel Core 2 Duo
Processor Speed: 2.66 GHz
Number Of Processors: 1
Total Number of Cores: 2
L2 Cache: 6 MB
Memory: 4GB
Bus Speed: 1.07 GHz

Giuseppe Persiano (UNISA) Zurich, Switzerland 19 / 54

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50 60 70 80 90 100

M
ill

is
e
c
o
n
d
s

Attributes

Time to compute an encryption.

jPBC no pre-computation
jPBC with pre-computation

jPBC-PBC with pre-computation

Giuseppe Persiano (UNISA) Zurich, Switzerland 20 / 54

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

M
ill

is
e
c
o
n
d
s

Attributes

Time to generate a search key.

jPBC no pre-computation
jPBC with pre-computation

jPBC-PBC with pre-computation

Giuseppe Persiano (UNISA) Zurich, Switzerland 21 / 54

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80 90 100

M
ill

is
e
c
o
n
d
s

Attributes

Time to test a ciphertext against a search key.

jPBC no pre-computation
jPBC with pre-computation

jPBC-PBC with pre-computation

Giuseppe Persiano (UNISA) Zurich, Switzerland 22 / 54

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90 100

M
ill

is
e
c
o
n
d
s

Attributes

jPBC-PBC with pre-processing.

KeyGen
Pre-Processing

Test

Giuseppe Persiano (UNISA) Zurich, Switzerland 23 / 54

Future work

Current implementation by Angelo De Caro.

more code optimization

Dropbox-like user interfact

Map-Reduce

different types of pairings
I the scheme can be implemented with asymmetric pairing.

Giuseppe Persiano (UNISA) Zurich, Switzerland 24 / 54

Back to Theory

Giuseppe Persiano (UNISA) Zurich, Switzerland 25 / 54

Full Security

1. Key-Generation Phase. C computes (PK,SK)← Setup(1n, 1`).
PK is given to A.

2. Query Phase I. A can make any number of key queries.

3. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ`.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(PK,~zη) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.

7. Winning condition. A wins if η = η′ .

Giuseppe Persiano (UNISA) Zurich, Switzerland 26 / 54

Restricting the queries

Impossible to achieve

If A has asked a key for ~y such that Match(~z0, ~y) 6= Match(~z1, ~y), A wins.

Unrestricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y)

Restricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y) = 0

Giuseppe Persiano (UNISA) Zurich, Switzerland 27 / 54

Restricting the queries

Impossible to achieve

If A has asked a key for ~y such that Match(~z0, ~y) 6= Match(~z1, ~y), A wins.

Unrestricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y)

Restricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y) = 0

Giuseppe Persiano (UNISA) Zurich, Switzerland 27 / 54

Restricting the queries

Impossible to achieve

If A has asked a key for ~y such that Match(~z0, ~y) 6= Match(~z1, ~y), A wins.

Unrestricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y)

Restricted queries

Winning condition. A wins if η = η′ and for all ~y for which A has a key

Match(~z0, ~y) = Match(~z1, ~y) = 0

Giuseppe Persiano (UNISA) Zurich, Switzerland 27 / 54

Full Security with Unrestricted Queries

1. Key-Generation Phase. C computes (PK,SK)← Setup(1n, 1`).
PK is given to A.

2. Query Phase I. A can make any number of key queries.

3. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ`.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(PK,~zη) to A.

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.

7. Winning condition. A wins if η = η′ and for all queries ~y it holds
that

Match(~z0, ~y) = Match(~z1, ~y)

Giuseppe Persiano (UNISA) Zurich, Switzerland 28 / 54

Full Security

De Caro, Iovino, P, 2011

Fully secure HVE with unrestricted queries in composite (product of 4
primes) order bilinear groups.

Caveat: 160 bits become 2048.

Giuseppe Persiano (UNISA) Zurich, Switzerland 29 / 54

Selective vs Full Security

Selective security assumes that the adversary attacks the data and
not the public key.

The adversary declares that he wants to distinguish ciphertexts with
Affiliation=IBM from ciphertexts with Affiliation=SAL.

Full security allows the adversary to base his attack on the public key
(which is chosen independently from the data) and on the keys
obtained.

Giuseppe Persiano (UNISA) Zurich, Switzerland 30 / 54

Key Security

Security threat

UStorage knows all searches I have done.

Key security is impossible for public key

storage manager receives K~y and wants to check if
Match(〈1, . . . , 1〉, ~y) = 1;

I encrypt 〈1, . . . , 1〉 using PK;
I run Test to obtain the answer;

We should go private key! Or maybe not....

Giuseppe Persiano (UNISA) Zurich, Switzerland 31 / 54

Key Security

Security threat

UStorage knows all searches I have done.

Key security is impossible for public key

storage manager receives K~y and wants to check if
Match(〈1, . . . , 1〉, ~y) = 1;

I encrypt 〈1, . . . , 1〉 using PK;
I run Test to obtain the answer;

We should go private key!

Or maybe not....

Giuseppe Persiano (UNISA) Zurich, Switzerland 31 / 54

Key Security

Security threat

UStorage knows all searches I have done.

Key security is impossible for public key

storage manager receives K~y and wants to check if
Match(〈1, . . . , 1〉, ~y) = 1;

I encrypt 〈1, . . . , 1〉 using PK;
I run Test to obtain the answer;

We should go private key! Or maybe not....

Giuseppe Persiano (UNISA) Zurich, Switzerland 31 / 54

Public vs. Private Key

Why Public Key?

In the scenario with DBowner and UStorage, private key is sufficient.

All write operations must go through the DBowner.

In the Alice/Secretary settings we need public key.

Giuseppe Persiano (UNISA) Zurich, Switzerland 32 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;

I for ` = 3 and Σ = {0, 1}
Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;

I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉

⇒ vectors with a 0 entry in position 2;
I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;

I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;
I Pol = Σ`

⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;
I Pol = Σ` ⇒ all vectors (public-key setting);

I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;
I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅

⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;
I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.

Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Partial Public Key Model

Key Policy

public keys associated with policies;

a policy Pol is a vector of subsets of Σ;

it encodes the set XPol of attribute vectors that can be encrypted;
I for ` = 3 and Σ = {0, 1}

Pol = 〈{0, 1}, {0}, {0, 1}〉⇒ vectors with a 0 entry in position 2;
I Pol = Σ` ⇒ all vectors (public-key setting);
I if any entry is ∅ ⇒ no vector (private-key setting);

Hidden Vector Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 PPKeyGen(SK,Pol) outputs the partial public key PPKPol.

3 Encryption(PPKPol,~x) outputs encrypted attribute vector X̃ for
attribute vector ~x ∈ XPol.

4 GenToken(SK, ~y) outputs key K~y .

5 Test(X̃ ,T~y) returns Match(~x , ~y) with overwhelming probability.
Giuseppe Persiano (UNISA) Zurich, Switzerland 33 / 54

Known Constructions

Constructions

Boneh-Waters [2007] gave a construction based on groups with order
product of four primes. Need 2048-bit moduli.

Blundo, Iovino, P. [2009, 2010] gave a construction based on groups
of prime order.

Finish

Giuseppe Persiano (UNISA) Zurich, Switzerland 34 / 54

Semantic Security with Partial Public Keys

1. Initialization Phase. A announces two challenge attribute vectors
~z0,~z1 ∈ Σ` and policy Pol ∈ (2Σ)`.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`) and
PPKPol ← PPKeyGen(SK,Pol).
PPKPol is given to A.

3. Query Phase I. A can make any number of key queries.
C answers key queries only for patterns ~y such that
Match(~z0, ~y) = Match(~z1, ~y) = 0.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(SK,~zη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 35 / 54

Token Security with Partial Public Keys

1. Initialization Phase. A announces ~y0, ~y1 ∈ Σ`
? with ? in the same

positions and a policy Pol such that
~x ∈ XPol ⇒ Match(~x , ~y0) = Match(~x , ~y1) = 0.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`) and
PPKPol ← PPKeyGen(SK,Pol).
PPKPol is given to A.

3. Query Phase I. A can make any number of key queries.
A gets GenToken(SK, ~y).

4. Challenge construction. η is chosen at random from {0, 1} and
receives GenToken(SK, ~yη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 36 / 54

Construction for Partial Public Key HVE

Setup (1n, 1`)

1. Select a symmetric bilinear instance I = [p,G,GT , g , e].

2. For i ∈ [2`− 1], choose random t1,i ,0, t2,i ,0, t1,i ,1, t2,i ,1 ∈ Zp and set

Ki =

(
T1,i ,0 = g t1,i,0 , T2,i ,0 = g t2,i,0

T1,i ,1 = g t1,i,1 , T2,i ,1 = g t2,i,1

)
K̄i =

(
T̄1,i ,0 = g1/t1,i,0 , T̄2,i ,0 = g1/t2,i,0

T̄1,i ,1 = g1/t1,i,1 , T̄2,i ,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki , K̄i)i∈[2`−1]].

Notice: if x = y then

e(Tb,i ,x , T̄b,i ,y) = e(g , g)

for all i ∈ [2`− 1] and b = 1, 2.

Giuseppe Persiano (UNISA) Zurich, Switzerland 37 / 54

Construction for Partial Public Key HVE

Setup (1n, 1`)

1. Select a symmetric bilinear instance I = [p,G,GT , g , e].

2. For i ∈ [2`− 1], choose random t1,i ,0, t2,i ,0, t1,i ,1, t2,i ,1 ∈ Zp and set

Ki =

(
T1,i ,0 = g t1,i,0 , T2,i ,0 = g t2,i,0

T1,i ,1 = g t1,i,1 , T2,i ,1 = g t2,i,1

)
K̄i =

(
T̄1,i ,0 = g1/t1,i,0 , T̄2,i ,0 = g1/t2,i,0

T̄1,i ,1 = g1/t1,i,1 , T̄2,i ,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki , K̄i)i∈[2`−1]].

Notice: if x = y then

e(Tb,i ,x , T̄b,i ,y) = e(g , g)

for all i ∈ [2`− 1] and b = 1, 2.

Giuseppe Persiano (UNISA) Zurich, Switzerland 37 / 54

Construction for Partial Public Key HVE

PPKeyGen (SK,Pol)

1. For i = 1, . . . , `,
for every b ∈ Poli , add T1,i ,b and T2,i ,b to PPKi .

2. For i = `+ 1, . . . , 2`− 1,
add T1,i ,0 and T2,i ,0 to PPKi .

3. Return PPKPol = [(PPKi)i∈[2`−1]].

Giuseppe Persiano (UNISA) Zurich, Switzerland 38 / 54

Construction for Partial Public Key HVE

Encryption(PPKPol, ~x = 〈x1, . . . , x`〉)
1. If ~x /∈ XPol return ⊥.

2. Append (`− 1) 0-entries to ~x .

3. Pick s at random from Zp.

4. (s1, . . . , s2`−1)← LSS(`, 2`− 1, 0).

5. For i = 1, . . . , 2`− 1,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

6. Return X̃ = [(X1,i ,X2,i)i∈[2`−1]].

Notice: if ~x ∈ XPol, then ∀i T1,i ,xi ,T2,i ,xi ∈ PPKPol.

Giuseppe Persiano (UNISA) Zurich, Switzerland 39 / 54

Construction for Partial Public Key HVE

Encryption(PPKPol, ~x = 〈x1, . . . , x`〉)
1. If ~x /∈ XPol return ⊥.

2. Append (`− 1) 0-entries to ~x .

3. Pick s at random from Zp.

4. (s1, . . . , s2`−1)← LSS(`, 2`− 1, 0).

5. For i = 1, . . . , 2`− 1,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

6. Return X̃ = [(X1,i ,X2,i)i∈[2`−1]].

Notice: if ~x ∈ XPol, then ∀i T1,i ,xi ,T2,i ,xi ∈ PPKPol.

Giuseppe Persiano (UNISA) Zurich, Switzerland 39 / 54

Linear Secret Sharing

(k , n) Linear Secret Sharing

Input: a secret s ∈ Zp;

Output: n shares (s1, . . . , sn) such that
I any k − 1 (or fewer) shares are random and independent among

themselves and are independent from the secret s;
I for any F ⊆ [n] of size k there exist reconstruction coefficients αi such

that
s =

∑
i∈F

αi si .

Notice: the reconstruction coefficients depend only on the set F and not
on the shares.

Giuseppe Persiano (UNISA) Zurich, Switzerland 40 / 54

Linear Secret Sharing

(k , n) Linear Secret Sharing

Input: a secret s ∈ Zp;

Output: n shares (s1, . . . , sn) such that
I any k − 1 (or fewer) shares are random and independent among

themselves and are independent from the secret s;
I for any F ⊆ [n] of size k there exist reconstruction coefficients αi such

that
s =

∑
i∈F

αi si .

Notice: the reconstruction coefficients depend only on the set F and not
on the shares.

Giuseppe Persiano (UNISA) Zurich, Switzerland 40 / 54

Construction for Partial Public Key HVE

GenToken (SK, ~y = 〈y1, . . . , y`〉)
1. Pick random r ∈ Zp.

2. h = # of non-? entries of ~y .
append (`− h) 0-entries and (h − 1) ?-entries
S~y the non-? entries of the extended vector.
Notice that |S~y | = `.

3. (r1, . . . , r2`−1)← LSS(`, 2`− 1, 0).

4. For i ∈ S~y ,
set Y1,i = T̄ ri

1,i ,yi
and Y2,i = T̄ r−ri

2,i ,yi
.

5. Return T~y = [S~y , (Y1,i ,Y2,i)i∈S~y].

Giuseppe Persiano (UNISA) Zurich, Switzerland 41 / 54

Construction for Partial Public Key HVE

Test (X̃ = [(X1,i ,X2,i)i∈[2`−1]],T~y = [S , (Y1,i ,Y2,i)i∈S])

1. Let (vi)i∈S be the reconstruction coefficients for S .

2. Return 1 iff ∏
i∈S

[e(X1,i ,Y1,i) · e(X2,i ,Y2,i)]vi = 1

e(X1,i ,Y1,i) = e(T s−si
1,i ,xi

, T̄ ri
1,i ,yi

) = e(g , g)ri (s−si)

e(X2,i ,Y2,i) = e(T−si2,i ,xi
, T̄ r−ri

2,i ,yi
) = e(g , g)−si (r−ri)

e(X1,i ,Y1,i) · e(X2,i ,Y2,i) = e(g , g)sri · e(g , g)−rsi

e(g , g)s
∑

i rivi · e(g , g)−r
∑

i sivi = e(g , g)s·0 · e(g , g)−r ·0

Giuseppe Persiano (UNISA) Zurich, Switzerland 42 / 54

Construction for Partial Public Key HVE

Test (X̃ = [(X1,i ,X2,i)i∈[2`−1]],T~y = [S , (Y1,i ,Y2,i)i∈S])

1. Let (vi)i∈S be the reconstruction coefficients for S .

2. Return 1 iff ∏
i∈S

[e(X1,i ,Y1,i) · e(X2,i ,Y2,i)]vi = 1

e(X1,i ,Y1,i) = e(T s−si
1,i ,xi

, T̄ ri
1,i ,yi

) = e(g , g)ri (s−si)

e(X2,i ,Y2,i) = e(T−si2,i ,xi
, T̄ r−ri

2,i ,yi
) = e(g , g)−si (r−ri)

e(X1,i ,Y1,i) · e(X2,i ,Y2,i) = e(g , g)sri · e(g , g)−rsi

e(g , g)s
∑

i rivi · e(g , g)−r
∑

i sivi = e(g , g)s·0 · e(g , g)−r ·0

Giuseppe Persiano (UNISA) Zurich, Switzerland 42 / 54

Construction for Partial Public Key HVE

Test (X̃ = [(X1,i ,X2,i)i∈[2`−1]],T~y = [S , (Y1,i ,Y2,i)i∈S])

1. Let (vi)i∈S be the reconstruction coefficients for S .

2. Return 1 iff ∏
i∈S

[e(X1,i ,Y1,i) · e(X2,i ,Y2,i)]vi = 1

e(X1,i ,Y1,i) = e(T s−si
1,i ,xi

, T̄ ri
1,i ,yi

) = e(g , g)ri (s−si)

e(X2,i ,Y2,i) = e(T−si2,i ,xi
, T̄ r−ri

2,i ,yi
) = e(g , g)−si (r−ri)

e(X1,i ,Y1,i) · e(X2,i ,Y2,i) = e(g , g)sri · e(g , g)−rsi

e(g , g)s
∑

i rivi · e(g , g)−r
∑

i sivi = e(g , g)s·0 · e(g , g)−r ·0

Giuseppe Persiano (UNISA) Zurich, Switzerland 42 / 54

Construction for Partial Public Key HVE

Test (X̃ = [(X1,i ,X2,i)i∈[2`−1]],T~y = [S , (Y1,i ,Y2,i)i∈S])

1. Let (vi)i∈S be the reconstruction coefficients for S .

2. Return 1 iff ∏
i∈S

[e(X1,i ,Y1,i) · e(X2,i ,Y2,i)]vi = 1

e(X1,i ,Y1,i) = e(T s−si
1,i ,xi

, T̄ ri
1,i ,yi

) = e(g , g)ri (s−si)

e(X2,i ,Y2,i) = e(T−si2,i ,xi
, T̄ r−ri

2,i ,yi
) = e(g , g)−si (r−ri)

e(X1,i ,Y1,i) · e(X2,i ,Y2,i) = e(g , g)sri · e(g , g)−rsi

e(g , g)s
∑

i rivi · e(g , g)−r
∑

i sivi = e(g , g)s·0 · e(g , g)−r ·0

Giuseppe Persiano (UNISA) Zurich, Switzerland 42 / 54

Security proofs

Security proofs

Can prove semantic and key security on complexity assumptions

Giuseppe Persiano (UNISA) Zurich, Switzerland 43 / 54

Private-Key Searchable Encryption – The syntax

Private-Key Searchable Encryption

1 Setup(1n, 1`) outputs the secret key SK.

2 Encryption(SK,~x) outputs ciphertext Ct~x with attribute ~x ∈ Σ`.

3 GenToken(SK, ~y) outputs key K~y for pattern ~y ∈ Σ`.

4 Test(Ct~x ,K~y) returns 1 iff ~x = ~y .

Giuseppe Persiano (UNISA) Zurich, Switzerland 44 / 54

Semantic Security with Private Keys

1. Initialization Phase. A announces two challenge attribute vectors
~x0,~x1 ∈ Σ`.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`).

3. Query Phase I. A can make any number of encryption and key queries
for patterns ~y 6= ~x0,~x1.

4. Challenge construction. C chooses random η ∈ {0, 1} and returns
Encryption(SK,~xη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 45 / 54

Token Security with Private Keys

1. Initialization Phase. A announces ~y0, ~y1 ∈ Σ`.

2. Key-Generation Phase. C computes SK← Setup(1n, 1`).

3. Query Phase I. A can make any number of key queries and encryption
queries for attributes ~x 6= ~y0, ~y1.

4. Challenge construction. η is chosen at random from {0, 1} and
receives GenToken(SK, ~yη).

5. Query Phase II. Identical to Query Phase I.

6. Output phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 46 / 54

Construction for Private-Key Searchable Encryption

Setup (1n, 1`)

1. Select a symmetric bilinear instance I = [p,G,GT , g , e].

2. For i ∈ [`], choose random t1,i ,0, t2,i ,0, t1,i ,1, t2,i ,1 ∈ Zp and set

Ki =

(
T1,i ,0 = g t1,i,0 , T2,i ,0 = g t2,i,0

T1,i ,1 = g t1,i,1 , T2,i ,1 = g t2,i,1

)
K̄i =

(
T̄1,i ,0 = g1/t1,i,0 , T̄2,i ,0 = g1/t2,i,0

T̄1,i ,1 = g1/t1,i,1 , T̄2,i ,1 = g1/t2,i,1

)
.

3. Return SK = [I, (Ki , K̄i)i∈[`]].

Finish...

Giuseppe Persiano (UNISA) Zurich, Switzerland 47 / 54

Construction for Private-Key Searchable Encryption

Encryption (SK, ~x)

1. Pick random s ∈ Zp.

2. Pick random s1, . . . , s` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

4. Return Ct~x = [(X1,i ,X2,i)i∈[`]].

GenToken (SK, ~y)

1. Pick random r ∈ Zp.

2. Pick random r1, . . . , r` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set Y1,i = T̄ r−ri

1,i ,yi
and Y2,i = T̄−ri2,i ,yi

.

4. Return K~y = [(Y1,i ,Y2,i)i∈[`]].

Giuseppe Persiano (UNISA) Zurich, Switzerland 48 / 54

Construction for Private-Key Searchable Encryption

Encryption (SK, ~x)

1. Pick random s ∈ Zp.

2. Pick random s1, . . . , s` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set X1,i = T s−si

1,i ,xi
and X2,i = T−si2,i ,xi

.

4. Return Ct~x = [(X1,i ,X2,i)i∈[`]].

GenToken (SK, ~y)

1. Pick random r ∈ Zp.

2. Pick random r1, . . . , r` ∈ Zp that sum up to 0.

3. For i = 1, . . . , `,
set Y1,i = T̄ r−ri

1,i ,yi
and Y2,i = T̄−ri2,i ,yi

.

4. Return K~y = [(Y1,i ,Y2,i)i∈[`]].

Giuseppe Persiano (UNISA) Zurich, Switzerland 48 / 54

Security proof strategy

Semantic vs. Token security

Encryption uses keys Ki , i ∈ [`];

Token generation is encryption w.r.t. to keys K̄i , i ∈ [`];

In the game for semantic security, A can ask
I any encryption query for keys Ki ;
I encryption queries for keys K̄i and pattern ~y 6= ~x0,~x1;

In the game for key security, A can ask
I any encryption query for keys K̄i ;
I encryption queries for keys Ki and attributes ~x 6= ~y0, ~y1;

Semantic Security ⇐⇒ Token Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

Encryption uses keys Ki , i ∈ [`];

Token generation is encryption w.r.t. to keys K̄i , i ∈ [`];

In the game for semantic security, A can ask
I any encryption query for keys Ki ;
I encryption queries for keys K̄i and pattern ~y 6= ~x0,~x1;

In the game for key security, A can ask
I any encryption query for keys K̄i ;
I encryption queries for keys Ki and attributes ~x 6= ~y0, ~y1;

Semantic Security ⇐⇒ Token Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

Encryption uses keys Ki , i ∈ [`];

Token generation is encryption w.r.t. to keys K̄i , i ∈ [`];

In the game for semantic security, A can ask
I any encryption query for keys Ki ;
I encryption queries for keys K̄i and pattern ~y 6= ~x0,~x1;

In the game for key security, A can ask
I any encryption query for keys K̄i ;
I encryption queries for keys Ki and attributes ~x 6= ~y0, ~y1;

Semantic Security ⇐⇒ Token Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

Encryption uses keys Ki , i ∈ [`];

Token generation is encryption w.r.t. to keys K̄i , i ∈ [`];

In the game for semantic security, A can ask
I any encryption query for keys Ki ;
I encryption queries for keys K̄i and pattern ~y 6= ~x0,~x1;

In the game for key security, A can ask
I any encryption query for keys K̄i ;
I encryption queries for keys Ki and attributes ~x 6= ~y0, ~y1;

Semantic Security ⇐⇒ Token Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Security proof strategy

Semantic vs. Token security

Encryption uses keys Ki , i ∈ [`];

Token generation is encryption w.r.t. to keys K̄i , i ∈ [`];

In the game for semantic security, A can ask
I any encryption query for keys Ki ;
I encryption queries for keys K̄i and pattern ~y 6= ~x0,~x1;

In the game for key security, A can ask
I any encryption query for keys K̄i ;
I encryption queries for keys Ki and attributes ~x 6= ~y0, ~y1;

Semantic Security ⇐⇒ Token Security

Giuseppe Persiano (UNISA) Zurich, Switzerland 49 / 54

Zero Sum Assumption

Consider the following game between a challenger C and an adversary A.

ZeroSumExpA(1n, 1`)
01. C randomly picks a1, . . . , a` such that

∑
i ai = 0;

02. C chooses instance I = [p,G,GT , g , e] with security parameter 1n;
03. for i ∈ [`]

C chooses random ui ∈ Zp and sets Ui = gui and Vi = Uai
i ;

04. C chooses random η ∈ {0, 1};
05. if η = 0 then C sets V1 to a random element of G;
06. C runs A on input [I, (Ui)i∈[`], (Vi)i∈[`]];
07. Let η′ be A’s guess for η;
08. if η = η′ then return 1 else return 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 50 / 54

Split Zero Sum Assumption
Consider the following game between a challenger C and an adversary A.

SplitZeroSumExpA(1n, 1`)
01. C randomly picks a1, . . . , a` such that

∑
i ai = 0;

02. C chooses instance I = [p,G,GT , g , e] with security parameter 1n;
03. C chooses random u,w ∈ Zp and sets W = gw ;
04. for i ∈ [`]

C chooses random ui ∈ Zp;
sets Ui = gui ,Vi = Uai

i ,Ai = gai , and Si = Uu
i ;

05 C sets Û = Uw
1 ;

06. C chooses random η ∈ {0, 1};
07. if η = 1 then C sets Z = W u−a1 else C chooses random Z ∈ G;

08. C runs A on input [I, (Ui)i∈[`], (Vi)i∈[`], (Ai)i∈[`], (Si)i∈[`]\{1},W , Û,Z];
09. Let η′ be A’s guess for η;
10. if η = η′ then return 1 else return 0.

Giuseppe Persiano (UNISA) Zurich, Switzerland 51 / 54

Theorem

Under the Zero Sum Assumption and the Split Zero Sum Assumption,
there exists private-key searchable encryption with semantic and key
security.

Notice: construction based on pairings on prime order groups.

Giuseppe Persiano (UNISA) Zurich, Switzerland 52 / 54

Further directions

Search

Is sublinear search possible?

Verifiability

A lazy UStorage might say that he found no match.
Can we verify the result?

Giuseppe Persiano (UNISA) Zurich, Switzerland 53 / 54

Thank you

Giuseppe Persiano (UNISA) Zurich, Switzerland 54 / 54

	Storing Data in a Cloud
	Hidden Vector Encryption
	Implementation
	Full Security
	Key Security

