
Security of Cloud Storage:
- Deduplication vs. Privacy

Benny Pinkas - Bar Ilan University

Shai Halevi, Danny Harnik, Alexandra
Shulman-Peleg - IBM Research Haifa

1

Remote storage and security

 “Easy” to encrypt data, but

 Encryption is not so easy in practice

 There are benefits to storing unencrypted data
 no encryption at the client level

  privacy issues

2

A recent headline

3

Cloud backup services

 Online file backup and synchronization is huge

 Mozy

 Over one million customers and 50,000 business
customers. Over 75 PetaByte stored.

 Dropbox

 Over three million customers.

 And many more… many services geared
towards enterprises.

4

Mozy

 I use MozyHome

 You get 2GB backup for free

 You used to pay only $4.95 per month for
unlimited storage! (until very recently)

5

Mozy

 You can examine your backup history

File already on MozyHome servers
6

Mozy

 But sometimes strange things happen…

30.Rock.S03E20.HDTV.Xvid-LOL.avi 175MB
7

Deduplication

 Deduplication = storing and uploading
only a single copy of redundant data

 Applied at the file or block level

 Saves more than 90% in common business
scenarios (90% of 75 PetaBytes…)

 “most impactful storage technology”

 July 2009: EMC acquires DataDomain for $2.1B

 April 2008: IBM acquires Dilligent for $200M

8

Deduplication and privacy

 Our attacks require the following features:

 Cross-user deduplication

 If two or more users store the same file, only a single
copy is stored.

 Source-based deduplication

 Deduplication is performed at the client side.

 Saves bandwidth as well as storage.

 It is easy to check whether your storage
service uses these features.

9

Deduplication and privacy

 The storage service is an oracle, which
answers the following query
 “Has any other user previously uploaded this file?”

 Rather limited
 Does not tell who uploaded the file

 The attacker can only ask this query once –
afterwards the file is always deduped (but this
issue can be solved!)

 Still, many attacks are possible
10

Repeating the attack

 Naively, the attacker can only check once
whether a file has been previously uploaded

 Attempt to backup the file.

 If no upload occurs, then someone must have
previously uploaded the file.

 If an upload occurs, then no one has uploaded
the file before. But now the file is uploaded and
it won’t be possible to repeat the test 

 Solution: When the actual upload begins,

terminate the communication.

11

File Identification
Attacks

12

Attack I – Identifying files

 Alice gives Bob a file, and swears him not to copy
it to his home machine (which uses
MozyHome/Dropbox/etc.)

 Alice can check if Bob followed this request

 Relevant to the Wikileaks case.

 There is no need for Alice to upload entire
sensitive files.

 Easy to implement.

13

Attack II – Learning contents of files

 Alice and Bob work for the same company, which
uses online storage for backup.

 All employees receive a standard form listing
their yearly bonus.

 Alice knows that Bob’s bonus is a multiple of
$500, and is in the range $0 - $100K.

 She generates 201 documents, and runs a
backup…

 Essentially a brute force attack. Applicable when
the range is of medium size (106?)

 14

 Essentially a side channel

 Possible scenarios

 Online banking – learning PIN codes or details of
transactions

 Learning results of medical tests

 Learning bids in auctions

 Many others examples…

Attack II – Learning contents of files Attack II – Learning contents of files

15

Attack III – covert channel

 Alice installs a malicious software on Bob’s
machine.

 Bob runs a firewall, blocking network access.

 Bob uses an online storage service.

 To transfer a bit to Alice, the software saves
one of two versions of a file.

 Much more efficient coding is possible.

16

Consequences

 These are simple attacks

 But no company would be happy if they
could be applied to its data

17

Solution I

 Global policy: Do not perform deduplication.

 Local hack: Bob encrypts his files with a personal
key.

 Then it is impossible for the service to check whether
Alice’s file is identical to Bob’s.

18

Solution I

 Global policy: Do not perform deduplication.

 Local hack: Bob encrypts his files with a personal
key.

 Then it is impossible for the service to check whether
Alice’s file is identical to Bob’s.

 The cost is too high (both for dedup and for
support for lost keys).

 Services which support encryption with personal keys do
not have an all-you-can-eat pricing option.

19

Side note - encryption

 All online storage services encrypt data

 But in order to support dedup they do not encrypt stored
data with personal keys.

 Dropbox: “Dropbox uses modern encryption… All transmission

of data occurs over an encrypted channel (SSL). All files stored on
Dropbox servers are encrypted (AES-256) and are inaccessible
without your account password.”

 Mozy enable users to use personal keys

 But this is not the default option, and users are strongly
advised against using it.

 Personal key is susceptible to offline brute force attack.
20

Side note - costs

 Suppose that

 Deduplication currently provides a saving of
95%

 A solution reduces the savings to 93%

21

Side note - costs

 Suppose that

 Deduplication currently provides a saving of
95%

 A solution reduces the savings to 93%

 Costs are increased by 40% !

22

Solution II

 Perform deduplication at the server.

 Files are always uploaded

 Users do not notice whether dedup occurs 

 But, high communication costs  (at Amazon S3,

cost of uploading is cost of two months of storage).

23

Solution II

 Perform deduplication at the server.

 Files are always uploaded

 Users do not notice whether dedup occurs 

 But, high communication costs  (at Amazon S3,

cost of uploading is cost of two months of storage).

 Probably used by all mail services.

24

Solution II

 Perform deduplication at the server.

 Files are always uploaded

 Users do not notice whether dedup occurs 

 But, high communication costs  (at Amazon S3,

cost of uploading is cost of two months of storage).

 Probably used by all mail services.

 Variant: upload all small files, perform
client-side dedup only on large files.

 After we notified Mozy about our findings, they
started using this solution!

25

More Solutions

 Solution III – randomized approach

 Server sets a random threshold Tx per file.
Only if Tx copies of file are uploaded, dedup
occurs.

 Details omitted.

 Solution IV

 Give users an interface which enables them to
define which files are to be deduped.

26

Hash values and Proofs
of Ownership

27

Deduplication and hash values

 A different (and more direct) attack

28

Deduplication and hash values

 A different (and more direct) attack

 During upload

 Client computes and sends server hash of file

 If this is the first time server receives this hash
value, it tells the client to upload the file

 Otherwise (dedup), it skips the upload and
registers the client as another owner of the file

 Client is then allowed to download the file…

29

Implications

 A short hash value serves as a proof of file
ownership

 This hash value is not really meant to be kept
secret

 The hash value is computable from the file
using an algorithm shared by all clients

30

Attack I –
Abusing known hash values

 Suppose that the dedup procedure uses a
common hash function (e.g., SHA256)

 Bob is a researcher who writes daily lab reports,
and publishes their hash as a time-stamp.

 He also uses an online backup service.

32

Attack I –
Abusing known hash values

 Suppose that the dedup procedure uses a
common hash function (e.g., SHA256)

 Bob is a researcher who writes daily lab reports,
and publishes their hash as a time-stamp.

 He also uses an online backup service.

 Alice signs to the same backup service.

 She attempts to upload a file. When asked for its
hash value, she sends a hash published by Bob.

 The service forgoes the upload.

 Alice can now download Bob’s lab report.

33

Attack II –
Efficient file leakage

 Malicious software

 A malicious software running on Bob’s machine
wishes to stealthily leak all his files to Alice.

 Instead of sending huge files to Alice, can send
her the short hash values of the files.

 Alice can then attempt to upload files, present
the hash values she received, and obtain access
to Bob’s files.

34

Attack II –
Efficient file leakage

 Malicious software

 A malicious software running on Bob’s machine
wishes to stealthily leak all his files to Alice.

 Instead of sending huge files to Alice, can send
her the short hash values of the files.

 Alice can then attempt to upload files, present
the hash values she received, and obtain access
to Bob’s files.

 The malicious software can even store all Bob’s
hash values in a single file, and send its hash
value to Alice.

 A 20-32 bytes message can leak all of Bob’s files!

35

Attack III –
Content distribution network (CDN)

 Content distribution

 Alice wishes to send a large file to all her friends,
but she has a limited uplink.

 Instead of sending the file to each of her friends,
she can upload the file once and send its hash
value to her friends.

 Each friend can now present the hash value to the
server and obtain access to the file.

36

Attack III –
Content distribution network (CDN)

 Content distribution

 Alice wishes to send a large file to all her friends,
but she has a limited uplink.

 Instead of sending the file to each of her friends,
she can upload the file once and send its hash
value to her friends.

 Each friend can now present the hash value to the
server and obtain access to the file.

 Server essentially serves as a Content Distribution
Network (CDN). This might break its cost structure,
if it planned on serving only few restore ops.

37

“Solutions” to the hash attacks

 The source of the problem is that a single
hash value represents the file.

38

“Solutions” to the hash attacks

 The source of the problem is that a single
hash value represents the file.

 “Solution”: Use a non-standard hash
algorithm (e.g. SHA(“service name” | file))

 All users must still know the hash algorithm.
Therefore Attacks II and III are not prevented 

39

“Solutions” to the hash attacks

 The source of the problem is that a single
hash value represents the file.

 “Solution”: For every client, server picks a
random nonce , and asks client to
compute SHA(nonce | file)

 Server, too, must retrieve file from (multi-
petabyte) secondary storage, and compute
hash 

 40

Constraints that must be satisfied
by a solution

 Must be bandwidth efficient

 Server cannot retrieve files from
secondary storage

 Must store only a few bytes per file

 Client might need to process huge files

 File cannot be stored in main memory

 Attacker might have partial knowledge of
file (e.g., 95% of file)

 Accomplices might send information to the
attacker

41

Proofs of Ownership (PoWs)

 Server preprocesses file.

 Server then stores some short information
per file.

 Client proves ownership of the file

 Client has access to the file (but not to any
preprocessed version of it, as prover has in PoR).

 Server has only access to short information.

 Unlike PoRs, do not require extraction.

 Security definition: if min-entropy of file >

security parameter, then proof fails whp.

42

Solution – first attempt

43

File

Merkle Tree

Solution – first attempt

44

File

Merkle Tree

Preprocessing:
server stores root
of tree

Solution – first attempt

45

File

Merkle Tree

Proof: server asks
client to present
paths to L random
leaves

A client which knows only a p fraction
of the file, succeeds with prob < pL.

√ very efficient

Problem and solution

 A client which knows a large fraction of
the blocks (say, 95%), can pass the test
with reasonable probability (0.9510=0.6).

 Solution:

46

File
Erasure
code

Merkle Tree

Apply solution
to new tree

Ensuring low answer probability of
cheating client

 Apply an erasure code to the file, and then
construct a Merkle tree over the encoding

 Erasure code property: knowledge of, say, 50%
of the encoding suffices to recover original file.

 Therefore an attacker who does not know all
the file, does not know > 50% of the encoding.

 Fails in each Merkle tree query w.p. 50%.

 Cheating probability is now 2-L

47

Efficient encoding

 Computing an erasure code by the client
requires

 Random access, i.e. storing the file in main
memory

 Or, running many passes over the file

 But the file might be much larger than
client’s memory… 

48

Protocols with small space

 Relax the requirements

 Only L bytes are needed for the computation
(say, L=64MB)

 (Therefore leaking L bytes to the attacker by
an accomplice, enables it to cheat.)

49

Protocols with small space

 First hash file to a buffer of L bytes. Then
construct Merkle-tree over the buffer.

50

File Reduced file

Merkle
Tree

Apply solution to tree
computed over reduced data

Challenge: Must be secure even if attacker
knows hash function (e.g., can ask for 50%
of the L byte buffer).

Performance of the different phases of
the low space PoW

51

Running the PoW protocol compared to
sending the file

52

Conclusions

 Deduplication offers huge savings and yet
might leak information about other users

 Most vendors are not aware of this

 The challenge: offer meaningful privacy
guarantees with a limited effect on cost

53

