Virtual Security:
Information Leakage in Clouds and
VM Reset Vulnerabilities

N~

Thomas Ristenpart
University of Wisconsin

Today’s talk in one slide

Third-party clouds:

“cloud cartography” get malicious VM side-channels might
to map internal on same physical leak confidential data
infrastructure server as victim of victim
o __/
N YT N Eran Tromer
Exploiting a placement vulnerability: Joint with Hovav Shacham

knowingly getting attack VM on server of victim
Stefan Savage

Virtual machine snapshot technology:

run a VM twice software re-uses expose TLS sessions
from same cryptographic or steal TLS server
snapshot randomness secret key
e
~
Joint with Scott Yilek Exploiting a reset vulnerability:

software unaware of resets, crypto fragile

A simplified model of public cloud computing

Users run Virtual Machines (VMSs) on cloud provider’s infrastructure

@1 o S
Y o SR

virtual machines (VMs)

] —

(l/; User B

T~
~_

virtual machines (VMs)

Multitenancy (users share physical resources)

Owned/operated
by cloud provider

Virtual Machine Manager (VMM)
manages physical server resources for VMs

f
- Virtual

Machine

- Manager
To the VM should look like dedicated server .

Trust models in cloud computing

@

O
N

@ (j/: User A

o —
C~T

1] '

@;;\%/f User B

Users must trust third-party provider to

not spy on running VMs / data
secure infrastructure from external attackers

secure infrastructure from internal attackers

Trust models in cloud computing

ﬂ L User A
Tl '

\X?C\c 0 Bicpoy

Users must trust third-party provider to

not spy on running VMs / data

secure infrastructure from external attackers

secure infrastructure from internal attackers -<

-

Threats due to
sharing of physical
infrastructure ?

~

)

Your business competitor

Script

kiddies

Criminals

One potential threat:
¥ _
.

@ (j/: User A

=
A~

\Qﬂ/g Bad guy

Attacker identifies one or more victims VMs in cloud

hes VM
1) Achieve advantageous Attacker launches VMs

placement VMs each check for co-residence on
same server as victim

2) Launch attacks using physical proximity

Exploit VMM vulnerability DoS Side-channel attack

1 or more targets in the cloud and we want to attack
them from same physical host

ANA

% /b Launch lots of instances (over time),
\ with each attempting an attack

Can attackers do better?

We performed a case study with Amazon’s EC2

1) given no insider information

2) restricted by (the spirit of) Amazon’s acceptable use policy (AUP)

(using only Amazon’s customer APIs and very restricted network probing)

We were able to:

Pick target(s) (
mp|

~ |, AV

“Cloud cartography”

1T 1 D\

Each VM checks
for co-residence

Choose launch parameters
for malicious VMs

/
e

Cross-VM side
channel attacks
to spy on victim’s
computational
load

Secret
data

C

-

Frequently achieve
advantageous placement

Some info about EC2 service (Fall 2008)

Linux-based VMs available
Uses Xen-based VM manager

User account
launch

3 “availability zones” (Zone 1, Zone 2, Zone 3)
parameters

5 instance types (various combinations of virtualized resources)

Type gigs of RAM EC2 Compute Units (ECU)
m1.small (default) 1.7 1
m1l.large 7.5 4
m1.xlarge 15 8
cl.medium 1.7 5
cl.xlarge 7 20

1 ECU =1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor

Limit of 20 instances at a time per account.
Essentially unlimited accounts with credit card.

EC2 instance networking (Fall 2008)

External
domain
name

External IP

Ext

Our experiments indicated
that internal IPs

are statically assigned to
physical servers

Co-residence checking
ends up easy via DomO:
one hop on traceroute
to co-resident target

1 Internal IP

ernal

domain name or IP

/r Internal IP

-

4

7L

IP address

shows up in
traceroutes

Xen
VMM

IP address mod 64

P|cktarget(s) » (

launch
parameters

™1

Cloud cartography

T O D\
¢ 5 Choose launch parameters
=n I for malicious VMs

= Ty ke W

-3 “availability zones” «

(Zone 1, Zone 2, Zone 3)

< 5 instance types
(ml1.small, c1.medium, m1l.large, m1.xlarge, cl.xlarge)

. User account

Zone 1 - Zone 2 . Zone 3
s < < v YyYwWYY v Yy v I.. - - -- - e
Y W' Y rrver w'V e v o L 2 Y - -
v v -
% v L 4 v Yy v . : . ' - e P) &
A 4
N Terve v . 4 o Ve wu L]

3 P o
| 3 & 5) lvv'v'v' J"'l v v l. - ...l + e v

10.249.0.0 10.250.0.0

10.251.0.0 10.252.0.0 10.253.0.0 10.254.0.0 10.255.0.0

Internal IP address

Acoount B Account A

Cloud cartography

T O D\
Pick target(s) » ((\ Choose launch parameters
N ~ .
- L for malicious VMs

-3 “availability zones”
(Zone 1, Zone 2, Zone 3)

launch _
parameters < 5 instance types
(ml1.small, c1.medium, m1l.large, m1.xlarge, cl.xlarge)

__ User account «

cl.medium + cl.xlarge ml.large + ml.small o ml.xlarge
64 ~ o ¥ ¥ *
e + * o] + Dd’ o] O o + + + ++ # 40 4
32 | ¥ O ¥ ¥ + B5 "+ gk ¥ +)
+ 0 OO o o + + o+ g
OF* + o * + + 0O 3 + + o
64 b= e T e
¢ oo e o O% 4 + + ¥
32 | o0 O o4 4 o +g + omyE * + - o
0 L« HDm o] DD + o (o] -|+ +] -t + * %0]
10.252.0.0 10.253.0.0 10.254.0.0

Internal IP address

IP address mod 256
Internal IP address mod 256

Associate to each /24 an estimate of Availability zone and Instance Type

S S Availability zone
External IP > Internal IP > y
DNS /24 Instance Type

Mapping 6,577 public HTTP servers running on EC2 (Fall 2008)

Unknown ml.small - cl. medium ® ml.large @ ml.xlarge @@ cl.xlarge .

256 . . . D . . .o Y ..
wse @ - o @i-siilan-Ho mw*m Aneve @O 0B LA g p e
A W@l o 02RPES W vt @ 0 e 0FIBVLE rvwig
, m(-md!. .Q‘“"ﬁ'n."“*& o D A% L) mran b
10 Q_'g.. 0 Pl @O vyt @ AN B A
T @p%e LaRiE 9 e WD 0 RGIY iR
L 0efs0 ENQEliedy i & g @ Bl ALK T
NG9 T TE eeravs o ¢ oo BV g b gy
128 o M th g kig 0By TXge e a0 glo ..n WO auaag
I et Rl idEh eewme o 0 @etiHEiT.g weelp
$h 5N ga B0 iR EN g irinat Be. 1P ..‘-edi‘v ¥ oeessning
AN T g iteng @ v c® §F iR E AR ames Sno
64 Ot Wi o @te oFSigg rehige 9 - w0 00 A Rg ! & emedign

£2 5 A e 4 - d;xs.:"gt s rw. i o &M Digh amenise.
@ Y3t @ QUIFIRS MG g W 8 - Uik svween g

e Rall SECL SN DR Sl I m? ¥ am wio
e . XCLIY @ &, .-"_"‘L. " Mee @O 4 1._.'&3' 0t ews o-“._.

10.251.0.1 10.252.0.0 10.253.0.0 10.254.0.0 10.255.0.0

Internal IP address

Achieving co-residence

“Brute-forcing” co-residence

5 Attacker launches many VMs over
N ® a relatively long period of time in
target’s zone and of target type

Experiment:

1,686 public HTTP servers as stand-in “targets”
running ml.small and in Zone 3 (via our map)

1,785 “attacker” instances launched over 18 days

Each checked co-residence against all targets

AN

Results: Sequential placement locality
lowers success

78 uniqgue DomO IPs
141 /1,686 (8.4%) had attacker co-resident

Lower bound on true success rate

Achieving co-residence

Instance flooding near target launch abuses
parallel placement locality

Qﬂ/\‘ Launch many instances in parallel
A

near time of target launch

Attackers might arrange this due to dynamic nature
of cloud use:

Auto-scaling services (Amazon, RightScale, ...)

Cause target VM to crash, relaunch

Wait for maintenance cycles

Achieving co-residence

Instance flooding near target launch abuses

parallel placement locality

Qﬁ/\‘ Launch many instances in parallel
A

near time of target launch

Experiment:

Repeat for 10 trials:
1) Launch 1 target VM (Account A)

2) 5 minutes later, launch 20 “attack” VMs N
(alternate using Account B or C)

3) Determine if any co-resident with target

4 /10 trials succeeded >

Attacker has uncomfortably good chance
at achieving co-residence with your VM

What can the attacker then do?

Cross-VM load measurement using CPU cache contention

Extends techniques of [Osvik, Shamir, Tromer — ‘05]

Attacker VM \
vicimvv P

Main

memory

CPU data cache
1) Read in a large array (fill CPU cache with attacker data)
2) Busy loop (allow victim to run)

3) Measure time to read large array (the load measurement)

Load measurement uses
coarse-grained side channel

Simpler to mount More robust to noise Extract less information

coarse side channels could be damaging
in hands of clever attackers

Cache-based load measurement to determine co-residence

Repeated HTTP get requests

A

@

A

3 pairs of instances, 2 pairs co-resident and 1 not
100 cache load measurements during HTTP gets (1024 byte page) and with no HTTP gets

2e+06
£ 1.5e406
El i
< le+06
o
o 500000

O TR

HTTP gets + No HTTP gets o
[o +4F + e

= +

Lot i + +++

R +uj ﬁ i
Ef o o O *Jt'p[] -
L g o M| g G + B8 O

L @ o O gta

e S ;

@II]DD

12 3] [IID +31] dﬂ' 3|@H—+lcm

Running Apache server

== Performs cache load measurements

n +

i ﬁ#@ﬁmﬁtﬁ .8 o @ s

i +8 + O ++
B o, R - o+ +

[+ o+ o ++

-+ D + +

I—J_P:]

@@gﬁm *’L@% E@%ﬁﬁmﬁm%@

0 10 20 30 40 50 60 70 80 90100 O 10 20 30 40 50 60 70 80 90 100

Trial 1

Instances co-resident

Trial 2

Instances co-resident

0 10 20 30 40 50 60 70 80 90 100
Trial 3

Instances NOT co-resident

Cache-based load measurement of traffic rates

@

Varying rates of web traffic

Running Apache server

== Performs cache load measurements

3 trials with 1 pair of co-resident instances:
1000 cache load measurements during
0, 50, 100, or 200 HTTP gets (3 Mbyte page) per minute for ~1.5 mins

800000
700000 |

600000
500000
400000
300000
200000

Mean CPU cycles

Trial 1 m
Trial 2
Trial 3 W

0 50 100 200

HTTP gets per minute

More on cache-based physical channels

Keystroke timing in experimental testbed similar to EC2 m1.small instances

AMD Opterons CPU1 CPU 2
Corel Core?2) 4 Corel Core? N

VMs pinned "]

to core

NG AN /

If VMs pinned to same core, then cache-load measurements
allow cross-VM keystroke detection

Keystroke timing of this form might be sufficient for the
password recovery attacks of [Song, Wagner, Tian 01]

What can cloud providers do?

1) Cloud cartography

2) Checking for
co-residence

3) Achieving
co-residence

4) Side-channel
information leakage

| —

NP~

Possible counter-measures:

- Random Internal IP assignment

- Isolate each user’s view of
internal address space

- Hide DomO from traceroutes

- Allow users to opt out of
multitenancy

- Hardware or software
countermeasures to stop leakage
[Ber05,0ST05,Page02,Page03,
Page05,Per05]

Today’s talk in one slide

Third-party clouds:

“cloud cartography” get malicious VM side-channels might
to map internal on same physical leak confidential data
infrastructure server as victim of victim
o __/
N YT N Eran Tromer
Exploiting a placement vulnerability: Joint with Hovav Shacham

knowingly getting attack VM on server of victim
Stefan Savage

Virtual machine snapshot technology:

run a VM twice software re-uses expose TLS sessions
from same cryptographic or steal TLS server
snapshot randomness secret key
e
~
Joint with Scott Yilek Exploiting a reset vulnerability:

software unaware of resets, crypto fragile

Virtual machines and snapshots can improve security

Snapshot records exact
state of VM, including @

persistent storage and %\)})\(l/;

active memory. [N
/‘
\ L/

“Protect Against Adware and Spyware: Users protect their PCs against adware,

spyware and other malware while browsing the Internet with Firefox in a virtual
machine.”

[http://www.vmware.com/company/news/releases/player.html]

“Your dad can do his [private] surfing on the virtual machine and can even set it to
reset itself whenever the virtual computer is restarted, so there's no need to worry
about leaving tracks. ... | recommend VMware because you can download a free
version of VMware Server for home use. ”

[Rescorla, http://www.thestranger.com/seattle/SavagelLove?0id=490850]

Example: using a VM snapshot for browser security

Fresh VM

Load browser

Take snapshot

http://www.freesoftware.com/

browser exploit

Virtual machine

\ _ compromised

Resetting to snapshot removes malware!

Can virtualization introduce security problems?

|Garfinkel, Rosenblum 05] discuss possibility that snapshot use
could lead to (what we call) reset vulnerabilities

Problems might stem from reuse of security-critical state

()

_ J Hypothetical example:
- N reuse of a one-time-only cryptographic key

We show vulnerabilities exist in practice: [R., Yilek — 2010]

https://www.mybank.com/
>
< o TLS session
> key transport

https://www.randomsite.com/
>
To-be-used P P " TLS session
randomness —, > key transport
captured in
snapshot!

Browser sends first session’s secret key
material to next site visited after reset

Recent versions of Firefox, Chrome allow session compromise attacks
(we notified developers) in VMWare Server 1.0, VirtualBox 3.0

https://www.mybank.com/

= :
/@3 TLS session
& > key transport

A logical timeline of events

User launches
browser in VM

User User requests
snapshots VM https page

Snapshot later
run. Randomness

Randomness
gathered by
browser random

number generator
(RNG)

used by TLS
key transport

A second run from snapshot

leads to same secret key being
sent to (different) server

TLS key ”
transport M/@
client

pkserver

!

ctxt

ctxt sent to server

Potential session
compromise?

<100 mouse
events

Firefox 3.5 Windows XP
Chrome 3.0 Windows XP
IE 6.0 Windows XP
Safari 4.0 Windows XP
Firefox 3.0 Ubuntu Linux
Chrome 4.0 Ubuntu Linux

No

No

No

Yes

Yes

Same secret key
material to
same server

Same secret key
material to
same server

<100 mouse
events

Results hold for both the VMWare Server 1.0 and

VirtualBox 3.0 virtual machine managers

Potential for problems anywhere snapshots used

@) | \ \ 5%
A\ ~ ;< ‘
@%ﬁé User A "

virtual machines (VMs)

Volume snapshots save persistent storage

Full-state snapshots save entire state of VM]

Provider

storage
service

N

Potential for problems anywhere snapshots used

We show that in some situations using Apache mod_ssl inside VMs:

https://www.mybank.com/

" TLS key
5> exchange

https://www.mybank.com/

" TLS key
. exchange \- J

DSA secret key allows

Key extraction might be possible . :
impersonating server

https://www.mybank.com/ DSA

| secret

key f

" TLS key
5> exchange

A few minutes with pen & paper --or-- just check wikipedia article on DSA:

s s
Skserver Skserver
randomness randomness

S1 S2

If adversary gets (M1,S1) and (M2,S2) then
adversary easily computes skser\,er/e5

https://www.mybank.com/ DSA

secret

key f

>

TLS key
5> exchange

A logical timeline of events

1 &

AN s

Adminstrator Leqt:jelrs'(cj
launches Init an e. DSA
) by a child Randomness L k h
Apache childs’ signing ey exch msg
daemon RNGs generated &
\ used to sign
server ™
Apache children User
processes forked snapshots VM | / RNG updated sig
Snapshot later | With time,
un. child PID, stack sig sent to client

https://www.mybank.com/

DSA

" TLS key
5> exchange

A logical timeline of events

secret

key /@

e
- 37
 — 1k i/

HTTPS
request
VM managers we handled
looked at synchronized by a child
guest’s time with Internet Guests’
network up
This would seem to

imply that DSA User
randomness snapshots VM
would be different

_ Snapshot later
each time

run.

RNG updated
with time,
child PID, stack

VM clock
synch

&

DSA
signing key exch msg

Skserver ﬁﬁ
< !

sig

Randomness
generated &
used to sign

sig sent to client

Experimenting with DSA key extraction

L L L 4 L 4

- " TLS key
5> exchange
= o TLS key
5> exchange
=
>
o TLS key

5> exchange

This is one trial.

- 5 trials w/ rebooting physical server

- 5 trials w/o rebooting physical server
Looked for reuse of randomness across pairs of successful connections
Repeat for both VMMs

Experimenting with DSA key extraction

Always
W Tmesney oot Hasul et o w054
machine?
VirtualBox Yes No 10/10 10/10
VirtualBox Yes Yes 10/10 10/10
VMWare Yes No 0/10 0/10
VMWare Yes Yes 4/10 3/10
VMWare No No 6/10 6/10
VMWare No Yes 3/10 1/10

Problems at the intersection of technologies

virtualization random number cryptography

generation
(

RNG » €
\ y £ g
- Snapshot technology - Applications often cache - Crypto schemes fail
allows freezing VM at randomness for later use spectacularly when
arbitrary point RNGs fail
- Applications unaware

- Transparent to guest of snapshots

Applications not designed for resets. ﬁ
Other security problems lurking?

Crypto operations fail spectacularly given bad randomness

Example randomness traditional hedged
situation: quality: crypto: crypto:
Proper RNG Good Strongest Strongest

VM resets Repeated No security Stronger
Debian Predictabl N it st
OpensSsL bug J redictable J 0 security ¥ rong

[Bellare, Brakerski, Naor, R.,

HEdQEd Cryptogra phy Segev, Shacham, Yilek 2009]

Cryptographic operations should be as-secure-as-possible
in face of bad randomness

General hedging framework [R., Yilek 2010]
Integrates approaches from

' [Bellare, et al. 2009] [Yilek 2010]
‘l' inputs
Hedge
Func keys Routine output
Randomness operation

Hedging is backwards-compatible,
allowing immediate deployability

Hedging does not solve RNG failures, but
provides improved defense-in-depth

40

Today’s talk in one slide

Third-party clouds:

“cloud cartography” get malicious VM side-channels might
to map internal on same physical leak confidential data
infrastructure server as victim of victim
o __/
N YT N Eran Tromer
Exploiting a placement vulnerability: Joint with Hovav Shacham

knowingly getting attack VM on server of victim
Stefan Savage

Virtual machine snapshot technology:

run a VM twice software re-uses expose TLS sessions
from same cryptographic or steal TLS server
snapshot randomness secret key
e
~
Joint with Scott Yilek Exploiting a reset vulnerability:

software unaware of resets, crypto fragile

Achieving co-residence

Instance flooding near target launch abuses
parallel placement locality

How long is parallel placement locality good for?

Experiment:

40 “target” VMs (across two accounts)
20 “attack” VMs launched hourly

Total co-resident [B e HHHHHAT
. — - H+
New co-resident [s
+
[
+
L+
+

o Ot O Ot O Ot O

T+T

O DD 00 0O B S L LT O
S X

Number of instances

0O 10 20 30 40 50

Unique Dom0 assignments

Hours since vietims launched Hours since vietims launched

More on cache-based physical channels

Keystroke timing in experimental testbed similar to EC2 m1.small instances

AMD Opterons CPU1 CPU 2
Corel Core?2) 4 Corel Core? N

VMs pinned "]

to core

NG AN /

If VMs pinned to same core, then cache-load measurements
allow cross-VM keystroke detection

Keystroke timing of this form might be sufficient for the
password recovery attacks of [Song, Wagner, Tian 01]

Cryptographic side-channels?

Cache-based side channels shown to leak RSA, AES keys [BO5,P05,0ST06]
in non-VM settings

Translating such attacks to cross-VM setting faces hurdles:

o M
Core migration Fine-grained
Noise due to other VMs side channels
No hyperthreading challenging
Double indirection of memory addresses
./
CPU 1 CPU 2
4 CI ri 1 CI ri 2 A Corel Core? A
N AN /

Open question: realizing such attacks in cloud setting

Cryptographic side-channels?

Cache-based side channels shown to leak RSA, AES keys [BO5,P05,0ST06]
in non-VM settings

Translating such attacks to cross-VM setting faces hurdles:

o M
Core migration Fine-grained
Noise due to other VMs side channels
No hyperthreading challenging
Double indirection of memory addresses
./
CPU 1 CPU 2
4 CI ri 1 CI ri 2 A Corel Core? A
N AN /

Open question: realizing such attacks in cloud setting

Cryptographic side-channels?

Cache-based side channels shown to leak RSA, AES keys [BO5,P05,0ST06]
in non-VM settings

Translating such attacks to cross-VM setting faces hurdles:

o M
Core migration Fine-grained
Noise due to other VMs side channels
No hyperthreading challenging
Double indirection of memory addresses
./
CPU 1 CPU 2
4 CI ri 1 CI ri 2 A Corel Core? A
N AN /

Open question: realizing such attacks in cloud setting

Cryptographic side-channels?

Cache-based side channels shown to leak RSA, AES keys [BO5,P05,0ST06]
in non-VM settings

Translating such attacks to cross-VM setting faces hurdles:

o M
Core migration Fine-grained
Noise due to other VMs side channels
No hyperthreading challenging
Double indirection of memory addresses
./
CPU 1 CPU 2
4 CI ri 1 CI ri 2 A Corel Core? A
N AN /

Open question: realizing such attacks in cloud setting

