Max
Planck

@ Institute
for

M Software Systems

Gaining Customer Trust In
Cloud Services with Excalibur

Rodrigo Rodrigues
MPI-SWS

Joint work with Nuno Santos,
Krishna Gummadi, and Stefan Saroiu

Problem: Customers Surrender Full
Control of their Data

Can data leak? | q

will'it stay itN F
jurisc al boundaries?
Which SW will‘h | P

% -

_-.-‘—'

BC versus AC

Before: After:
Application developer —— Cloud provider

retains all control retains all control

Excalibur

Proposal: Share Control between
Customers and Providers

Customer |
(&
(o Regs Costumer specifies
Data requirements for
how data can be
handled

Cloud Provider
Back-end

Node Configurations

Provider: publishes
Customer: chooses
Provider: enforces

Attribute-value pairs for
cloud nodes:

— Software

— Location

— Hardware

Customers define policies
over configurations

Node configuration

service : “EC2”
version : “4.0.1”
country : “Germany”
zone :“z1”

type : “small”

Policy

service = “EC2”
and

version > “4.0”
and

(country = “Germany”
or

country = “UK”) 7

Trust Model

Software administrator > adversarial role
Platform developer = mitigation role

Cloud provider - trusted to deploy
defenses (but no control over all
administrators)

Threats against integrity and confidentiality
of customer data

Trusted Platforms

Configuration that implements expected
behavior (integrity, confidentiality)

Enforces this despite adversarial sysadmin
behavior

E.g., modified Xen to cripple admin control

Still allows for migration, suspension,
resumption of VM

Challenges

» Untrusted admin can:
— Misuse interface that is provided
— Reboot node into different platform
— Listen network traffic

* How to convey guarantees to the user?

Policy-Sealed Data

 Allow both customers and cloud apps to
cryptographically seal data to policy

« Can only be unsealed by nodes obeying
policy

Policy-Sealed Data Usage

« Data must be sealed (¥) upon:
— Costumer upload

— Leaving node that obeys policy }"' *‘

* Network transmission (migrate)
» Disk (suspend)

* Must unseal (¥) to access it

Implementing Policy-Sealed Data

* Leverage TPMs

Eﬂ — Widely available
. — Enable remote query
C\ oy about node
characteristics

P Adopted in real
r‘%“ systems
M- .
" — E.g., BitLocker

TPM Characteristics

« Strong identities
— Per-node identity key

* Trusted boot

— Chain of measurements that computes the
platform fingerprint upon boot.

— Fingerprint cannot be forged or overwritten

TPM Characteristics

« Remote attestation

— Allows a remote party (challenger) to
authenticate the node and platform.

» Sealed storage

— Allows sensitive data to be securely stored
across reboots.

— Seal/Unseal primitives: encrypt the data, can
only be decrypted on the same node running
the same platform

Using TPMs in the Cloud

» Challenge 1: Who attests nodes in cloud
back-end?

— If customers, then exposes provider’'s
infrastructure

— If cloud services, need to modify all services
to attest before data leaves nodes.

« Complex
* |[nefficient

Using TPMs in the Cloud

» Challenge 2: Avoid performance penalty
— Attestation is painfully slow

— How to handle membership changes
efficiently?

» Challenge 3: Scalability
— Work efficiently despite 1k..1M nodes

System Architecture

Cloud nodes

M

Excalibur library

System Interface

« ciphertext = sheathe(data, policy)

- data = unsheathe (ciphertext)

« Example policy:

service = “Xen” and version>4.0 Dynamic attrs.

and country = “DE” Static attrs.

Monitor Main Tasks

1. Keep track of mappings:
- static attributes to hosts

- dynamic attributes to low-level TPM
measurements

2. Attest cloud nodes upon booting

3. Generate and distribute special
credentials

4. Attest to clients that cloud service is
trustworthy

Attribute-Based Encryption (CP-ABE)

1. Setup: Generate <public,master> keys

2. Create decryption keys:
Master key + Attributes (string,int) = Decryption key

3. Encrypt data:
Public key + Attributes + Plaintext - Cyphertext

4. Decrypt data:
Cyphertext + Decryption key = Plaintext

Attribute-Based Encryption (CP-ABE)

» Goal: Run sheathe/unsheathe locally

» Leverage CP-ABE:

— Embed attributes in decryption keys

— Generate and distribute one per cloud node
boot

— Sheathe uses public key and embeds policy

But, CP-ABE is not perfect...

 CP-ABE is slow
— Both generation of CP-ABE decryption keys, and
— Encryption and decryption (slower than RSA)

* To prevent node authentication bottleneck
— Pre-generate the decryption keys
— Reuse capability for same configuration

« To reduce performance impact to seal/unseal
— Encrypt a symmetric key rather than the data

Attesting cloud nodes upon boot

Monitor Node
1. AIKY .

2. n
]

3. {n, PCRuode, K Loecion YAIK node

< —— -
4a. OK, (K", K°YK L ion 4b. FAIL

1. Attest to identity + dynamic attributes
2. Deliver special keys that encode attributes

Example App: VM Rental

EC2-like service based on Eucalyptus/Xen

Extra assurance: VMs must be confined to
certain locations
Simple changes to Eucalyptus/Xen

— Added/modified 52 lines of code in create,
save, restore, migrate

Other possible features: prevent curious
sysadmin from accessing VM image

Evaluation: Generating CP-ABE Keys

—_ String Attrs — Numeric Attrs

= 0.5 i 30 [| | |

o =

2 04 g 30

I L 23

© 03 (G

B g °

% 0.2 % 15

2 01 = 1?

) o -

E 0 E 7

= 0 100 20 30 40 50 = 0 10 20 30 40 50
Attributes in key (#) Attributes in key (#)

* Only need to generate one per class of
hosts with same attributes

Sheathing and Unsheathing

— 0.5 | T | |) 0.25 I] I I

w String Y String

@ 0.4 | Numerc -« = 02 | Numernc s S
-EE-E LT [ail -- - -
T 0.3 prm e 4 2 015 e e
& =

o 0.2 oo 4 5 01 et e -
P =

L 4 o 005 et -
N E o g e e g

0 10 20 30 40 30 0 10 20 30 40 50
Leaf nodas in policy (#) Attributes used by policy (%)

« 1 KB data object (CP-ABE dominates)

Overhead from ABE

S@100% T
E'ﬂ B0 | [b e _
&2

%..E: o [(SN p VO [NN R S — —
S D A0% |] o] o] b _
0o

Eg (. (O (SN p VUM [NN R SN [— —
5SS 0% —

1K 10K 100K 1M 10M 100M
Data size (bytes)
* For large data, sheathe symmetric key and
encrypt data

Performance of VM Rental

10 .

Enlr:ryptimn I—
g L Sheathe/Unsheathe mmmm .
Xen Base

—

Create Save Restore Migrate

Latency (s)

* Most delay is inevitable (encrypting)

Conclusion

Excalibur implements policy-sealed data

— Shifts some control over data from cloud providers to
customers

Leverages important technologies
— TPMs
— ABE

Demonstrate usefulness by building EC2-like
system with stronger guarantees

Future: Build “real” trusted platforms

