
Gaining Customer Trust in

Cloud Services with Excalibur

Max
Planck
Institute
forforforfor
SoftwareSoftwareSoftwareSoftware SystemsSystemsSystemsSystems

Cloud Services with Excalibur

Rodrigo Rodrigues

MPI-SWS

Joint work with Nuno Santos,

Krishna Gummadi, and Stefan Saroiu

Problem: Customers Surrender Full

Control of their Data

Can data leak?

Will it stay within
jurisdictional boundaries?

Which SW will access it?

BC versus AC

Before:

Application developer

After:

Cloud providerApplication developer

retains all control

Cloud provider

retains all control

Excalibur

Proposal: Share Control between

Customers and Providers

Costumer specifies

Customer

Reqs Costumer specifies

requirements for

how data can be

handled

Cloud Provider

Back-end

Data

Nodes

Node Configurations

• Provider: publishes

• Customer: chooses

• Provider: enforces

• Attribute-value pairs for

Node configuration

service : “EC2”

version : “4.0.1”

country : “Germany”

zone : “z1”

type : “small”

• Attribute-value pairs for

cloud nodes:

– Software

– Location

– Hardware

• Customers define policies
over configurations

Policy

service = “EC2”

and
version > “4.0”

and
(country = “Germany”

or
country = “UK”)

Trust Model

• Software administrator � adversarial role

• Platform developer � mitigation role

• Cloud provider � trusted to deploy
defenses (but no control over all defenses (but no control over all
administrators)

• Threats against integrity and confidentiality
of customer data

Trusted Platforms

• Configuration that implements expected
behavior (integrity, confidentiality)

• Enforces this despite adversarial sysadmin
behaviorbehavior

• E.g., modified Xen to cripple admin control

• Still allows for migration, suspension,
resumption of VM

Challenges

• Untrusted admin can:

– Misuse interface that is provided

– Reboot node into different platform

– Listen network traffic– Listen network traffic

• How to convey guarantees to the user?

Policy-Sealed Data

• Allow both customers and cloud apps to
cryptographically seal data to policy

• Can only be unsealed by nodes obeying
policypolicy

Policy-Sealed Data Usage

• Data must be sealed () upon:

– Costumer upload

– Leaving node that obeys policy

• Network transmission (migrate) Policy Data

+

• Network transmission (migrate)

• Disk (suspend)

• Must unseal () to access it

CustomerPolicy Data

Implementing Policy-Sealed Data

• Leverage TPMs

– Widely available

– Enable remote query

about node about node

characteristics

• Adopted in real
systems

– E.g., BitLocker

TPM

TPM Characteristics

• Strong identities

– Per-node identity key

• Trusted boot

– Chain of measurements that computes the – Chain of measurements that computes the

platform fingerprint upon boot.

– Fingerprint cannot be forged or overwritten

TPM Characteristics

• Remote attestation

– Allows a remote party (challenger) to

authenticate the node and platform.

• Sealed storage• Sealed storage

– Allows sensitive data to be securely stored

across reboots.

– Seal/Unseal primitives: encrypt the data, can

only be decrypted on the same node running

the same platform

Using TPMs in the Cloud

• Challenge 1: Who attests nodes in cloud
back-end?

– If customers, then exposes provider’s

infrastructureinfrastructure

– If cloud services, need to modify all services

to attest before data leaves nodes.

• Complex

• Inefficient

Using TPMs in the Cloud

• Challenge 2: Avoid performance penalty

– Attestation is painfully slow

– How to handle membership changes

efficiently?efficiently?

• Challenge 3: Scalability

– Work efficiently despite 1k..1M nodes

System Architecture

Cloud nodes

Monitor

Datacenter

Excalibur library

System Interface

• ciphertext = sheathe(data, policy)

• data = unsheathe(ciphertext)

• Example policy:• Example policy:

service = “Xen” and version>4.0

and country = “DE”

Dynamic attrs.

Static attrs.

Monitor Main Tasks

1. Keep track of mappings:

- static attributes to hosts

- dynamic attributes to low-level TPM
measurementsmeasurements

2. Attest cloud nodes upon booting

3. Generate and distribute special
credentials

4. Attest to clients that cloud service is
trustworthy

Attribute-Based Encryption (CP-ABE)

1. Setup: Generate <public,master> keys

2. Create decryption keys:
Master key + Attributes (string,int) � Decryption key

3. Encrypt data:3. Encrypt data:

Public key + Attributes + Plaintext � Cyphertext

4. Decrypt data:

Cyphertext + Decryption key � Plaintext

Attribute-Based Encryption (CP-ABE)

• Goal: Run sheathe/unsheathe locally

• Leverage CP-ABE:

– Embed attributes in decryption keys

– Generate and distribute one per cloud node – Generate and distribute one per cloud node

boot

– Sheathe uses public key and embeds policy

But, CP-ABE is not perfect…

• CP-ABE is slow

– Both generation of CP-ABE decryption keys, and

– Encryption and decryption (slower than RSA)

• To prevent node authentication bottleneck• To prevent node authentication bottleneck

– Pre-generate the decryption keys

– Reuse capability for same configuration

• To reduce performance impact to seal/unseal

– Encrypt a symmetric key rather than the data

Attesting cloud nodes upon boot

1. Attest to identity + dynamic attributes

2. Deliver special keys that encode attributes

Example App: VM Rental

• EC2-like service based on Eucalyptus/Xen

• Extra assurance: VMs must be confined to
certain locations

• Simple changes to Eucalyptus/Xen• Simple changes to Eucalyptus/Xen
– Added/modified 52 lines of code in create,

save, restore, migrate

• Other possible features: prevent curious
sysadmin from accessing VM image

Evaluation: Generating CP-ABE Keys
String Attrs Numeric Attrs

• Only need to generate one per class of
hosts with same attributes

Sheathing and Unsheathing

• 1 KB data object (CP-ABE dominates)

Overhead from ABE

• For large data, sheathe symmetric key and
encrypt data

Performance of VM Rental

• Most delay is inevitable (encrypting)

Conclusion

• Excalibur implements policy-sealed data
– Shifts some control over data from cloud providers to

customers

• Leverages important technologies
– TPMs– TPMs

– ABE

• Demonstrate usefulness by building EC2-like
system with stronger guarantees

• Future: Build “real” trusted platforms

