A shorter version of this paper appeargiroc. 22nd ACM Symposium on Principles of Distributed
Computing (PODC 2003Boston (MA), USA.

An Asynchronous Protocol for Distributed Computation of
RSA Inverses and its Applications

Christian Cachin

IBM Research
Zurich Research Laboratory
CH-8803 Rischlikon, Switzerland
cca@zurich.ibm.com

April 25, 2003

Abstract

This paper presents an efficient asynchronous protocol to compute RSA inverses with respect to a
public RSA modulusV whose factorization is secret and shared among a group of parties. Given
two numbers: ande, the protocol computegsuch thay® = = (mod N). A synchronous protocol

for this task has been presented by Catalano, Gennaro, and Halevi (Eurocrypt 2000), but the standard
approach for turning this into an asynchronous protocol would require a Byzantine-agreement sub-
protocol. Our protocol adopts their approach, but exploits a feature of the problem in oad®ido

the use of a Byzantine agreement primitive. Hence, it leads to efficient asynchronous protocols for
threshold signatures and for Byzantine agreement based on the strong RSA assumption, without the
use of random oracles.

1 Introduction

RSA [28] is the most widely used public-key cryptosystem today. Methods for sharing an RSA key
among a group of parties in a distributed system, and for using the key in a fault-tolerant way have
therefore received considerable attention [14, 15, 7, 18]. They are the subjbotsifold cryptogra-
phy[13].

For example, it is well-known how to distribute an RSA signature scheme amongt parties in
a synchronous network such that a majority of them can securely issue signatures together, despite the
fact that up tof may be faulty and misbehave in arbitrary, malicious ways. Given an RSA public key
(N, e), whereN is the product of two large primes, such schemes work by sharing the RSA “decryption
exponent’d = e~! mod ¢(N) among the parties, whetg(-) is the Euler function. To sigm, the
parties jointly computer such thatv® = m (mod N). The valuesV, e, andd are chosen when the
sighature scheme is set up and remain unchanged afterwards.

Several RSA-based cryptosystems have been proposed [17, 12] recentlyevidhgreen dynam-
ically together with a value:, and the problem is to computesuch thaty® = = (mod N). We call
this theRSA inversion problemCatalano, Gennaro, and Halevi [9] present a protocol that solves it in
the threshold setting. Their protocol computkas the modular inverse efwith the shared modulus
¢(N), from whichy = z¢ mod N is easily obtained.

Most threshold cryptographic protocols, including those mentioned so far, assume a synchronous
network with a broadcast channel connecting all parties. Although this assumption is justified in princi-
ple by the existence of suitable clock synchronization and Byzantine agreement protocols that provide
broadcast, the approach may lead to rather expensive solutions in practice, for example, when deployed

in a distributed system over a wide-area network with only loosely synchronized clocks. Such systems
are also vulnerable to timing attacks.

In this paper, we consider the problem of computing an RSA inverseasymchronouslistributed
system, consisting o communicating parties linked only by point-to-point channels, where local
clocks are not synchronized and no a priori bound on message delay exists.

We present a protocol for asynchronous distributed RSA inversion that is quite practical, achieves
resiliencen > 4t, and use®)(n?) messages an@(n*(x + 1)) communication, where is a security
parameter ang the length of the RSA modulus. Moreover, it is deterministic in the sense that it does
not rely on a randomized Byzantine agreement primitive; a randomized solution would not only be more
expensive but also preclude one of its applicationsmiplementandomized asynchronous Byzantine
agreement using cryptography.

The protocol employs one distributed multiplication step like the synchronous RSA inversion proto-
col of Catalano et al. [9]. In contrast to their protocol and to the generic approach of turning synchronous
protocols with broadcast into asynchronous ones [2, 3], however, our protocol does not B3lyaon
tine agreementor implementing the distributed multiplication step; this works because RSA inversion
is self-verifiablei.e., the result can be checked by every participant locally. This surprising observation
is one of the main contributions of this paper, and it leads to a very simple and attractive protocol.

The difficulty with the multiplication step is that all parties must use a consistent combination of
sharings, excluding, for example, sharings created by apparently faulty parties. This is ensured by
broadcast and by Byzantine agreement in the synchronous protocol and also in a generic asynchronous
protocol. Instead, we carry out the operatiof 1 times in parallel, each time with a different leader
who ensures consistency. Since at least one of these leaders is guaranteed to be correct, at least one
operation terminates. As soon as a party terminates the first parallel protocol instance with the correct
result, it sends the result to all other parties and aborts the remaining protocols. This works only because
the RSA operation is deterministic and because the result can be checked locally by every party.

We discuss two applications of our protoctireshold RSA signaturdsr asynchronous networks
and an efficientommon coirprotocol for implementing asynchronous Byzantine agreement, based on
the strong RSA assumption. An important feature of the resulting protocols in both cases is that they do
not use the so-callechndom oracle modédbr their security analysis. The random oracle model allows
to design practical cryptosystems, but only yields heuristic evidence for their security.

Almost all knownthreshold RSAchemes require a synchronous network with broadcast; the only
exception is the non-interactive signature scheme of Shoup [29], which makes crucial use of the random
oracle model, however. Using our protocol, we obtain asynchronous threshold implementations of the
RSA signature schemes by Gennaro, Halevi, and Rabin [17] and by Cramer and Shoup [12], which are
based on the strong RSA assumption. They represent the first implementations of threshold signatures
in asynchronous networks without random oracles.

Asynchronous Byzantine agreement protocols rely on randomization, which can be implemented by
so-calledcommon coirprotocols [10]. In modern cryptography, such a common coin is known as an
unpredictable threshold pseudo-random function. So far, all efficient implementations of this primitive
have relied on the random oracle model or on synchronous networks and broadcast channels. We observe
that our protocol can be combined with the verifiable pseudo-random function of Micali, Rabin, and
Vadhan [21] to yield an efficient threshold pseudo-random function for asynchronous networks and
a randomized Byzantine agreement protocol based on the strong RSA assumption. This is the first
asynchronous network implementation of such a function in the standard model, and it gives the most
efficient cryptographic asynchronous Byzantine agreement protocol without random oracles.

Related work. This work builds on several cryptographic techniques developed over the last years: the

“non-interactive” verifiable secret sharing scheme of Pedersen [24] (which actually rely on synchronous
clocks and a broadcast channel and therefore involve interaction), the method of sharing the RSA func-
tion by using secret sharing over the integers [14, 15, 26, 18], the zero-knowledge proofs of modular

relations under the strong RSA assumption [16], and the synchronous RSA inversion protocol [9].

Of course, RSA inverses may also be computed in an asynchronous network usioenénie
approach of secure multi-party computation [2, 3]. But such methods are prohibitively expensive for
practical use and invoke many instances of asynchronous Byzantine agreement sub-protocols.

A threshold pseudo-random function without random oracles may also be obtained under the deci-
sional Diffie-Hellman assumption from the constructions of Naor and Reingold [22] and Nielsen [23].
The function can be evaluated by an asynchronous protocol, but it requires a number of rounds that is
directly proportional to the security parameter.

Outline. The paper is organized as follows. Section 2 presents the system model and the cryptographic
assumptions used. It also contains the definition of the RSA inversion problem. A variation of asyn-
chronous verifiable secret sharing is introduced in Section 3; this protocol is used by the preliminary
inversion protocol presented in Section 4. The complete inversion protocol is given in Section 5, and
the applications to threshold signatures and verifiable random functions are described in Section 6.

2 System Model and Problem Statement

We adopt the basic system model from [6, 5], which describes an asynchronous network of parties with
a computationally bounded adversary.

The computational model is parameterized by a security parametarfunctione(x) is called
negligibleif for all ¢ > 0 there exists & such that(x) < Hi forall kK > ko.

We say that two probability distributionBx and Py arestatistically indistinguishablé their dis-
tanced(Px, Py) = %Zx\PX(x) — Py(x)| is negligible. The distance of two random variables is
defined as the distance between the associated probability distributions.

The notatioru < S denotes the (uniformly) random choice of an elemefiom a setS, and[-, -]
denotes an interval &£.

Cryptographic assumptions. An RSA modulusV is the product of two primes of equal length.
W.l.o.g. the length ofV is u > x bits. A safeprime P is a prime such tha{’2;1 is prime. Asafe
RSA modulusV is the product of two safe prime&3 and @, which comprise the secret key. TRSA
operationis to computen® mod N for givenm ande. TheRSA inversion operatiois to computey
such thaty = x mod N for givenx ande; y is called theRSA inversef = ande.

The RSA assumptiois that for a givere > 1 a randomly generated RSA modulns any proba-
bilistic polynomial-time algorithm computes the RSA inverse@nd a random: € Zy at most with
negligible probability.

The flexible RSA probleris for a randomly generated RSA moduliysand a random: € Zy to
finde > 1 andy € Z} suchthay® = x (mod N). Thestrong RSA assumptiasnthat any probabilistic
polynomial-time algorithm solves the flexible RSA problem at most with negligible probability. Solving
the flexible RSA problem is potentially easier than computing RSA inverses becauwesg depend on
the choice ofy. The strong RSA assumption has first been used bycBard Pfitzmann [1] and by
Fujisaki and Okamoto [16].

Given the secret kéyp(N) = (P — 1)(Q — 1), RSA inversion is easily carried out by computing
d = e~! mod ¢(N) and then raising to the power modulo N. We will show how to compute this
in an asynchronous distributed system whe{&/) is shared among a group of parties.

2.1 System Model

Network. The network consists af partiesPy,..., P,, which are probabilistic interactive Turing
machines (PITM) [20] that run in polynomial time (it). There is an adversary, which is a PITM that

'Knowing ¢(N) is equivalent to the factors 6¥.

runs in polynomial time inc. Some parties are controlled by the adversary and cabiedipted the
remaining parties are calldtbnest An adversary that corrupts at masparties is called-limited.

There is also an initialization algorithm, which is run by a trusted party before the system starts. On
inputx, n, t, and further parameters, it generates the state information used to initialize the parties. The
initial state information for the corrupted parties is given to the adversary. In other words, the adversary
is static, which simplifies the protocol presentation.

We assume that every pair of honest parties is linkedd$scarre asynchronous chanmieat provides
privacy and authenticity with scheduling determined by the adversary. Formally, we model such a
network as follows. All communication is driven by the adversary. There exists a global set of messages
M, whose elements are identified blagel (s, r, 1) denoting the sender the receiver, and the lengtth
of the message. The adversary sees the labels of all messadgkebir not their contents. The adversary
may also add messages originating from corrupted sendéns. initially empty. The system proceeds
in steps. At each step, the adversary performs some computation, chooses an honBstaradtyelects
some message € M with label(s, i,1). P; is thenactivatedwith m on its communication input tape.
When activatedP; reads the contents of its communication input tape, performs some computation, and
generates one or more response messages, which it writes to its communication output tape. A response
messagen may contain a destination address, which is the indefka party. Such am is added toM
with label (z, 7, |m|) if P; is honest; ifP; is corruptedym is given to the adversary. In any case, control
returns to the adversary. This step is repeated arbitrarily often until the adversary halts.

These steps define a sequence of events, which we view as logical time. We sometimes use the
phrase “at a certain point in time” to refer to an event like this.

Theviewof a party consists of its initialization data, all messages it has received, and the random
choices it made so far.

Termination. We definetermination of a protocol instance only to the extent that the adversary
chooses to deliver messages among the honest parties [6]. Technically, termination of a protocol follows
from a bound on the number of messages that honest parties generate on behalf of a protocol, which
must be independent of the adversary.

We say that a messagedssociatedo a particular protocol instance if it was generated by an honest
party on behalf of the protocol.

Themessagandcommunication complexities a protocol are defined as the number and as the bit
length, respectively, of all associated messages, generated by honest parties. They are random variables
that depend on the adversary and-on

Recall that the adversary runs in time polynomiakinWe assume that the parameteis bounded
by a fixed polynomial inx, independent of the adversary, and that the same holds for all messages in the
protocol (longer messages are simply ignored).

For a particular protocol, grotocol statisticX is a family of real-valued, non-negative random
variables{ X 4(x)}, parameterized by adversaryand security parameter, where eachX 4(x) is a
random variable induced by running the system with(Message complexity is an example of such a
statistic.) We restrict ourselves to protocol statistics that are bounded by a polynomial in the adversary’s
running time.

We say that a protocol statisti is uniformly boundedf there exists a fixed polynomial(x) such
that for all adversaried, there is a negligible functiogy, such that for alk > 0,

Pr[X (k) > p(k)] < ea(r).

A protocol statisticX is calledprobabilistically uniformly bounded there exists a fixed polynomial
p(x) and a fixed negligible functiod such that for all adversarie$, there is a negligible functioay,,
such that for all > 0 andx > 0,

Pr[Xa(k) > Ip(k)] < (1) + €a(k).

4

If X is probabilistically uniformly bounded by, then for all adversariedl, we haveE[X 4(k)] =
O(p(k)), with a hidden constant that is independent4of Additionally, if Y is probabilistically uni-
formly bounded by, thenX -Y is probabilistically uniformly bounded hy: ¢, and.X + Y is probabilis-
tically uniformly bounded by + ¢. Thus, (probabilistically) uniformly bounded statistics are closed
under polynomial composition, which is their main benefit for analyzing the composition of randomized
protocols [5].

Protocol execution and notation. We now introduce our notation for writing asynchronous protocols.
Recall that a party is always activated with an input message; this message is added to an internal input
buffer upon activation.

In our model, protocols are invoked by the adversary. Every protostdnceis identified by a
unique stringlD, also called theag, which is chosen by the adversary when it invokes the instance.

There may be several protocol instances executing at a given party, but no more than one is active
concurrently. When a party is activated, all instances aveihstates A wait state specifies a condition
defined on the received messages contained in the input buffer and other local state variables. If one or
more instances are in a wait state whose condition is satisfied, one such instance is scheduled arbitrarily,
and this instance runs until it reaches another wait state. This process continues until no more instances
are in a wait state whose condition is satisfied. Then, the activation of the party is terminated, and
control returns to the adversary.

There are two types of messages that protocols process and generate: The first type iopotains
actions which represent a local activation and carry input to a protocol, arigdut actions which
signal termination and potentially carry output of a protocol; such messages ardacdleglvents The
second message type is an ordinary point-to-point network message, which is to be delivered to the peer
protocol instance running on another party; such messages are alsqealtembl messages

All messages are denoted by a tupl®, .. .); the tag/D denotes the protocol instance to which
this message iassociated Input actions are of the for/D, in ,type ...), and output actions are of
the form(ID, out ,type ...), with typedefined by the protocol specification. All other messages of the
form (ID,type ...) are protocol messages, wheypeis defined by the protocol implementation.

We describe protocols in a modular way: A protocol instance may invoke another protocol instance
by sending it a suitable input action and obtain its output via an output action of the sub-protocol. This
is realized by a party-internal mechanism, which, for any message generated by the calling protocol that
contains an input action for a sub-protocol, creates the corresponding protocol instance (if not already
running) and delivers the input action; furthermore, it passes all output actions of the sub-protocol to the
calling protocol by adding them to the input buffer.

The pseudo-code notation used for describing our protocols is as follows. To enter a wait state,
an instance may execute a command of the farait for condition whereconditionis an ordinary
predicate on the input buffer and other state variables. Upon executing this command, an instance enters
a wait state with the giveoondition

We specify aconditionin the form ofreceiving messages events In this casemessagedescribes
a set of one or more protocol messages evehtsdescribes a set of local events (e.g., outputs from
a sub-protocol) satisfying a certain predicate, possibly involving other state variables. Upon executing
this command, an instance enters a wait state, waiting for the arrival of messages satisfying the given
predicate.

There is a global implicitvait for statement that every protocol instance repeatedly executes; it
matches any of theonditionsgiven in the clauses of the formmpon condition block Every time a
conditionis satisfied, the correspondibipckis executed. If there is more than one satistieddition
all correspondindplocksare executed in an arbitrary order.

2.2 Computing RSA Inverses with a Shared Secret Key

A (n, k)-sharingof a secrets is an encoding of into a set ofsharesS;, ..., S, such that any set of
at leastk shares uniquely definesand any set of less thanshares does not give information about
s. Associated with a sharing is an efficient algorithesonstruct that reconstructs from any set of
shares.

A sharing is callednon-interactively) verifiablef there exists public informatio’” and an al-
gorithm verify-share such thatP; can determine if a valu§ represents a “valid” share with respect
to V' by computingverify-share(V, .S). More precisely, a sharing is verifiable if for any adversary
that generates a strirflg and a set of string§™ that satisfy the predicateerify-share(V, S*) for all
S* € §*, forany two subsetS;;, S; C S* of cardinalityk each, the probability thaeconstruct(S;) #
reconstruct(Sy) is negligible. Giverl/, the value returned byeconstruct with all but negligible prob-
ability is called thesecret associated .

Let N be an RSA modulus. Suppo$g, ..., P, hold the shares of afn, k)-sharing of the corre-
sponding RSA secret key(N). A protocol forRSA inversiomf = ande with tag ID, for somee > n,
is started when a party is activated ofD, in ,start e, N,x,S;). A party terminates the protocol
by generating an output of the fordD, out ,inverse ,y). All honest parties must be activated like
this and all should outpuf such thaty® = = (mod N). Recall that our formal system model defines
the notion theassociatednessages for every instance; they include all messages withDtag a tag
starting with/D generated by honest parties analogous to [5].

The formal definition is divided into liveness, correctness, privacy, and efficiency.

Definition 1. A protocol forRSA inversion oveN with a shared secret key(/V) as described above
satisfies the following conditions for amylimited adversary:

Liveness: If all honest parties start the protocol and all associated messages are delivered, then all
honest parties terminate except with negligible probability.

Correctness: If an honest party terminates the protocol and outputheny® = = (mod N) except
with negligible probability.

Privacy: The adversary gains no useful information abo().

Efficiency: For everylD, the number messages associatefitas uniformly bounded.

The formalization ofrivacy calls for the existence of a simulator that interacts with the adversary
and produces a view that is indistinguishable from a real protocol execution.

Termination of a protocol in our computational model follows analogously to [5] from the combi-
nation oflivenessandefficiency

A protocol in this model is also calledbustbecause it tolerates attiveadversary, i.e., one that
exhibits Byzantine faults. It is sometimes useful to restrict the adversggdsivecorruptions, which
means that corrupted parties follow the protocol, but the adversary observes their internal state and
obtains information that may lead to a violation of privacy.

3 \Verifiable Secret Sharing

Verifiable secret sharing (VSS) is an important primitive in distributed cryptography [11]. We introduce
the notion of weak asynchronous verifiable secret sharing and give a protocol for verifiably sharing a
secret over the integers.

3.1 Weak Asynchronous Verifiable Secret Sharing

In weak asynchronous verifiable secret sharitigagreemenproperty of standard asynchronous veri-

fiable secret sharing (AVSS) [8, 4] is relaxed as follows. When the dealer is faulty, some honest parties
may terminate a weak AVSS protocol and others may not, but those who terminate hold consistent shares
and are guaranteed that there are enough honest parties holding shares in order to reconstruct the secret.
In contrast, AVSS guarantees that either all honest parties terminate the protocol successfully or none,
which ensures agreement on the success of the sharing. This difference is analogous to the difference
betweerconsistent broadcastndreliable broadcasin asynchronous networks, using the terminology

of Cachin et al. [5].

We considerdual-threshold sharingswhich generalize the standard notion of secret sharing by
allowing the reconstruction threshold to exceed the number of corrupted parties by more than one. In
an(n, k, t) dual-threshold sharing, there argarties holding shares of a secret, of which up tay
be corrupted by an adversary, and any groug: @fr more honest parties may reconstruct the secret
(n —t > k > t). Such dual-threshold sharings are useful for distributed computation and agreement
problems [6].

An AVSS protocol establishes a sharing of a secsret [0, M — 1] with tag ID.d as follows.

Every party is initialized on the protocol, and a special paPty called thedealer, is activated on
(ID.d,in ,share ,s). When this occurs, we sdy); sharess € [0, M — 1] with tag/D.d. A party is said

to complete the sharing with tafD.d when it generates an output of the fofdD.d, out ,shared).
Subsequently, a partstarts the reconstruction of the secret with t&9.d when it is activated on
(ID.d,in ,reconstruct);itterminates the reconstruction when it outpt®.d, out , reconstructed ,S).

More precisely, aveak asynchronous verifiable dual-threshold secret shgmagocol establishes
the following for anyt-limited adversary:

Liveness: If the dealerP; is honest, all honest parties are initialized on a shafifigl, and all asso-
ciated messages are delivered, then all honest parties complete the sharing except with negligible
probability.

Correctness: If some honest party completes the sharing, there exists a uniqueWalueh that every
honest party who completes the sharing holds a valid share with respgcéxaept with neg-
ligible probability; if the dealer is honest then the secret associatéd itos. Moreover, if at
leastk honest parties have completed the sharing and start the reconstruction, every one of them
reconstructs the secret associate® texcept with negligible probability, provided all associated
messages are delivered.

Privacy: If the dealer is honest and shares a valweith tag ID.d, and less thaik — ¢ honest parties
have started the reconstruction, then the adversary gains no useful informatior.about

Efficiency: For everylD.d, the communication complexity is uniformly bounded.

This definition is adapted from [4]. It guarantees the uniqueness of the shared value, but kot that
honest parties actually complete the sharing as required for reconstruction; even when an honest party
completes the sharing, it may be that oily- ¢t honest parties hold proper shares. To address this
problem, we introduce the notion sémi-weak AVSSvhich is a weak AVSS protocol that guarantees
additionally:

Weak Agreement: If an honest party completes the sharing, it may send a message to all other honest
parties such that at leasthonest parties complete the sharing upon receiving this message or
have already completed it.

Weak agreement guarantees that a single honest party who completed the sharing carhocaese
parties to complete the sharing, as necessary for reconstruction, simply by sending a suitable message.

We say that this messagempleteghe sharing. Such eompleting messagdoes not contain secret
information; the receiver must already hold a correct share but may not be aware of it before receiving
the completing message. Tineak agreemenproperty is related to the concept of “verifiable” (or
“transferable”) broadcast from [5].

3.2 Secret Sharing over the Integers

Polynomial secret sharing is usually done in a finite field, but it works alsoByprovided that extra
randomization is added. This is a well-known technique developed in the context of threshold RSA [14,
15]. Let L = n!. To share a secrste [0, M — 1] overZ with security parametek’ = 20(%) | choose
k — 1 random values, ..., Fy_y in [-K LM, KL*M] and letf(») = L(Ls + Y.~ F;z"). Denote

the coefficients of theharing polynomialf by fo, fi, ..., fx_1; they are divisible by, and their
absolute value is bounded ByL3 M .
The share off; is f(i) fori = 1,...,n computed inZ. It is easy to see that these values form

a (n, k)-sharingbecausessL = Y, s A¥ f(i) for anyS C {1,...,n} of cardinalityk, wherex{ =
Hjes\{i} % are the Lagrange interpolation coefficients foband position 0. This can be computed in
Z because every] ;¢ s\ (i — j) dividesi!(n — 4)!, which dividesn! = L.

3.3 A Protocol for Weak AVSS overZy

Protocolw-AVSS combines the verification method of Pedersen’s VSS [24] with secret sharing over the
integers and with the method of Fujisaki and Okamoto [16] to achieve robustness based on the strong
RSA assumption iZy to an asynchronous VSS protocol.

Let K = 29(%) be a security paramete¥, a safe RSA modulug, andh two random squares iy,
ands € [0, M — 1] the secret to share.

The dealer first computés, k, t)-sharings ok and of a randomg € Z,; over the integers, defining
two sharing polynomialg’ and f’, respectively. It also computes verification valugs = gfi h'i
mod N for j =0,...,k — 1, wheref; and f; denote the coefficients ¢fand f”.

The communication follows the approach of “echo broadcast” [27] (which is called “consistent
broadcast” in [5]) with a non-interactive:, m, t) dual-threshold signature schenSe [6] for m =
max{kz, [%”11 } Recall that such a threshold signature scheme toleratestugptoupted parties and
requiresm valid signature shares for assembling the threshold signature. First, the dealer sends a share
of the secret to all parties and every party answers witl,asignature share if the share is valid. Then,
upon receivingm S;-shares, the dealer computes the threshold signature and sends it to all parties.
Finally, a party accepts the sharing when it has a valid share and receives a valid threshold signature.
Reconstruction is straightforward and omitted (cf. [4]).

A detailed description is given in Figure 1. The predicegeify-point(C,i,a,b) checks that the
given valuesa and b correspond to the pointg(i) and f'(i), respectively, committed to i@ =
[Co....,Cral; itis true if and only ifg?h® = []5Z((C;)” (mod N). Note thatverify-point is the
share validation algorithm of the resulting sharing with public informationCommon inputs to the
protocol areN, g, andh. The local output of every party includes its sh&sgt;).

The message complexity of Protoa@tAVSS is O(n). Assuming that a threshold signature and
a threshold signature share apéx) bits, the communication complexity is dominated by #ead
messages, one of which is of lendgth+2(k+log(K L?>M)) = O(ku+r+log M), sincelog K = O(k)
andlog L = O(x). Whenk = ©(n), the total communication complexity 3(n?u + n(x + log M)).

It can be shown using standard methods [15, 16, 26, 9] that Prote@MSS implements weak
AVSS overZy for n > k + t under the strong RSA assumption.

For example, ircorrectnessthe uniqueness of the shared secret follows from the strong RSA as-
sumption as follows. Towards a contradiction, suppose an héhéstminates the protocol with a valid
shareS = (a,b) of s and some honeg®; terminates it with a valid shar®’ = (a/,0') of s’ # s. By
the properties of a valid sharegrify-share(Vs, S) andverify-share(V,:, S’) are both true. Recall that

8

Protocol w-AVSS for party P; and tag ID.d

upon initialization:
Sq J_; ti— L
V0w L

upon (ID.d,in ,share ,s): /I only P,
Fi,...,Fy1,F|,....F_ | «gr[-KL*M, KL*M)|
S0 <R [0 M — 1]
let f(z) = L(Ls + Y0~ | F;27)
andf'(z) = L(Lso + Y_5=] Fi27)
C —[Co,...,Cx1], whereC; = g/infi mod N
forj=0,....,k—1
forj=1,...,ndo
send messagdD.d,send , C, f(j), f'(j)) to P;

upon receiving messag@D.d,send , C, a, b) from P, for the first time:
if s; = L and verify-point(C, i, a,b) then
Si— a;t; — b
compute arS;-signature share
on(ID.d,ready ,C)
send messagdD.d,ready ,C,u)to Py

upon receiving messag@D.d, ready , C,u;) from P; for the first time:
if i = d and u; is a validS; -signature share
on(ID.d,ready ,C') then
V—VUu {u]}
r—r41
if r = m then
assemble the shares¥hto anS; -threshold
sighaturev
send messagdD.d,final ,C,v) to all parties

upon receiving messag@D.d, final | C,v):
if w = 1 andv is a validS;-signature or{ID.d,
ready ,C) and verify-point(C, i, s;, t;) then
w <— v
output(ID.d,out ,shared)

Figure 1: Protocolw-AVSS for weak K -random AVSS of a secrste [0, M — 1] overZy.

the public verification informatiof; corresponds to the vector of the protocol. But the consistency
property of the underlying “echo broadcast” (cf. [27]) ensuresthat V., and thereforg®h? = g% h?’

(mod N). It follows easily thatg% = h (mod N) with all but negligible probability sinceV is a

safe RSA modulus, contradicting the strong RSA assumption.
Theprivacyof the secret can be shown using a standard simulation argument (cf. Lemma 1 in [15]).
Protocolw-AVSS can be modified to implemesemi-weak AVS8ver the integers by setting

m = max{k:-i—t, [Lt-l-l“}

Thecompletingnessage, i.e., the message that may cause an honest party to complete the sharing, is the
final message, which is known to all parties who have completed the sharing. The choidber
ensures that th&, -signature included in the message is sufficient evidence that ableast> k£ honest
parties hold a share of the secret. Since ¢ > m, the protocol can only create a sharing polynomial
of degree less tham — 2t.

Suitable implementations of the non-interactive threshold signature scSeraegist only in the
random oracle model so far [29]. To avoid the random oracle model, one may repladgé a vec-
tor of ordinary digital signatures, one for each party, and distribute the verification keys during setup.
This increases the size of tfieal message and the communication complexity of the protocol by a
factorn.

The same protocol allows to share multiple secsets, . . . in parallel with the same dealer in shar-
ings with reconstruction thresholdsk’, All properties are satisfied if the reconstruction threshold
of Sy is set tom = max{m,m/,...}. This not only decreases message and computation complexities
compared to separate executions of the sharing protocol, but ensures also that every honest party holding
a share of holds also a share af,.... The latter property is important for the inversion protocol in
the next section.

4 A Preliminary Protocol

We start with a preliminary protocol for computing an RSA inverse. The protocol requires a correct
leader and tolerates crashes and a passive adversary. That is, all parties apart from the leader may crash
and collude to gain knowledge about the secret, but otherwise they follow the protocol.

ProtocolAINV1 uses the approach of the synchronous protocol for computing modular inverses by
Catalano et al. [9], to obtain a sharingdf= ¢~! mod p(N). Given the shared, the resulty = 2¢
mod N is reconstructed easily.

More precisely, the protocol works as follows. The input of evéyyincludese, N, z, and.S;,
whereS; is P;’s share ofp = ¢(NV) in a(n,t + 1,t)-sharing ovelZy, using a polynomialS(z) =
L(L¢ + Y\, a;2%) for a; g [-KL?N, KL*N]. W.L.o.g., assum&' > K > L* andK > e > n.

The parties first compute A-random(n,t + 1,t¢)-sharing of a randond)y € [0, KN — 1], an
analogous sharing of a randoRy € [0, K2N? — 1], and aK-random(n, 2t + 1,t)-sharing of0 ¢
[0, K*L3N? — 1]. These sharings are executed in parallel as mentioned at the end of Section 3.3 and
define integer polynomial§(z) and R(z) of degreet and H(z) of degree2t, where H(0) = 0. As
usual, the shares @f, areQ(7), R(i), andH (7).

Next, the parties obtain a sharing Bf0) for F'(z) = S(2)Q(z) + eR(z) + H(z) by local multi-
plication and addition of shares only, and collaboratively reconsii@ey = L*¢Qq + L%*ecR,. Every
party applies the extended Euclidean algorithm to compute loaadlydb such thatwF'(0) + be = 1,
which works ifgcd(F(0),e) = 1. Then,d = aL?Ry + b is the inverse ot modulo ¢, as is easy to
verify. However,d is not reconstructed since this would revéand the factorization olV. Instead,
P, computes a share dfasd; = aL?R(i) + b using its share oRy; then it revealg; = 2% mod N.
Fromt + 1 suchy;, the resulty = 2¢ (mod N) can easily be recovered.

10

So far the description parallels [9], but the difference is in the computation of the sharings. To create
Q(z), every P; creates a sharing polynomi@;(z) with a random constant term using the semi-weak
AVSS protocol from the previous sectiof)(z) is now the sum of up ta sharing polynomialg);(z)
with dealerP;. The problem is that all parties must arrive at the s&ne). In the synchronous model
with broadcast, agreement on faulty partigswvho did not properly share a polynomial is immediately
available. In our asynchronous model, this is not the case, so we use a single péegcléngo choose
a setS of parties whose sharings should be combined; this works only because we assume the leader to
be correct. Thus)(z) is setto) ;s Q;(z), andR(z) andH (z) are computed in the same way.

It will be shown in Section 5 how to remove the assumption of a correct leader.

Since H(z) needs to be of degre® and Protocow-AVSS for semi-weak sharing creates only
sharings of degree less than- 2¢, the maximum resilience of ProtocAINV1 is limited ton > 4t.

The message complexity of ProtoddNV1 is O(n?) because every party runs an instance of weak
AVSS as a dealer and the weak AVSS protocol cre@tegs) messages. The communication complexity
of the inversion protocol is dominated by tekare messages and by weak AVSS, which contain an
integer of length\f = 2t 4+ 5log K + 5log L 4+ 2log N bits. With the assumption¥ > K > L > n,
logN = O(p), andlog K = O(k), we haveM = O(x + p). Since each weak AVSS instance
incursO(n?u + n(x + log M')) communication, the total communication of the inversion protocol is
O(n3(k +).

Theorem 1. Under the RSA assumption, Protog®INV1 implements RSA inversion with a shared
secret key for > 4¢ with a correct leader and a passive adversary.

The proof of Theorem 1 is based on the following lemma, which strengthens a lemma of Catalano
et al. [9].

Lemma 2. Let X be a random variable with uniform distribution ovf,n, — 1] andY a random
variable with uniform distribution ovej0, n,, — 1] for n, < n,; let f,e,b € N be relatively prime to
each other and bounded from above by some< n,,. Then

NyMm 1lm m

nge 2| f bl

dXe+Yf,Xe+Yd) <

Proof. Recall that

2d(Xe +Yf, Xe+Yb) = Y ’Pr[Xe+Yf:m]—Pr[Xe+Yb:m]. 1)

0<z<nzet+nym

Split the sum into three parts: two minor parts, oK = < n,m andn,e < z < nge + nym, and a
major part, forn,m < z < nge. Itis straightforward to verify that the contribution of the first minor
part is bounded by

PrXe < n,m| < By (2)

Nye

Analogously, the contribution of the second minor part is bounded by

Pr[Xe > nge] < By

®3)

Ng€

11

Protocol AINV1 with correct leader P, for party P, and tag ID ./

upon initialization:
Fi — L

upon (ID.4,in ,start e, N,z,S5;): ISy, ...,S, forman(n,t + 1) sharing ofp(N) overZ
qi <R [O,KN — 1}, Ti <R [O,KQN — 1]
share in parallelwith semi-weaki -random sharing and tak|sh .i:

—q; € [0, KN — 1] with (n,t 4 1,t)-sharing oveZ 5 Il this defines); € Z[z]

—r; € [0, K2N?% — 1] with (n,t + 1,t)-sharing ovefZ y Il this definesk; € 7Z[z]

-0 € [0, K*L3N? — 1] with (n, 2t + 1,t)-sharing oveZ y /I this definesH; € Z|[z]
if 2 = ¢then

wait for the completionof the parallel sharings
from a setS of ¢ + 1 parties, i.e.,
for some|S| =t + 1, all sharings
with tagsID|sh.j forj € S
denote the received shares®y;, R;;, andH ;;, respectively
let M be the collection of completing messages
from the sharings i
send messagsubset , S, M) to all parties

upon receiving messag@D./, subset S, M) from P;:
if 1 # £ then
deliver the completing messageshit to the
parallel sharinggD|sh.j forj € S
wait for the completionof the parallel
sharings from the parties i, i.e., all
sharings with tag$D|sh.j for j € S
denote the received shares®y;, R,
andHj;, respectively
Fi = 8i)jes Qi+ e jes Rji+ 2 jes Hii
send messageshare |, F;) to all parties

upon receiving messag@D./, share , F;) from P; for the first timeand F; # L:
F— FU{(.F})}
if | F| =2t + 1 then
interpolatel” € Z[z] of degree2t such that
F(j) = Fjforall (4, F;) € F
apply the extended Euclidean algorithm to
computes andb such that F'(0) + be = 1
di —a) jesRyi+b
yi — 2% mod N
send messaggartial ,y;) to all parties

upon receiving messag@D./, partial ,y;) from P; for the first time:
Y = YU{(,y)}
if |Y| =t+ 1then
Y
Y jgyeyyi™” mod N
output(/D./,out ,inverse ,y)

Figure 2: ProtocolAINV1 for asynchronous RSA inversion with a shared secret.

12

Now

3 ‘Pr[Xe+Yf — 2] — Pr[Xe+ Yb=a]

nym<z<nge
= Z Z PriXe=z—y,Yf=y|-Pr[Xe=z—y,Yb=1y]
nym<z<nge |0<y<nym
= Z Z Pr[Xe=x —y](Pr]Y f =y] — Pr[Yb=y])
nym<z<ngzge |0<y<nym
1
= > Y. —PYf=y -PrYb=y
nym<z<nge |0<y<nym r
yel(z—y)
1
=~ Y | X mlyr=y- Y PiYo=y)| @
r nym<z<ngze |0<y<ngm 0<y<nym
yeel(z—y) yeel(z—y)

fly bly

All probabilities in the inner sums are equal;%). There are approximatel’s}é%m terms in the first inner
sum and approximately4™ terms in the second one. Thus, the difference of the sums is approximately

nym 1 nym 1 1<m m>

ef ny ebny_e

o

Since the outer sum in (4) includes no more thaa terms, (4) is bounded byfﬂ — 4| Combining
this with (1)—(3) gives

()

Tym m m

2d(Xe+Yf, Xe+YDd) <2
(Xe+Y[Xe+Vh) < 270 4 |5 T

and the lemma follows. O

Proof of Theorem 1Let S € Z[z] denote the polynomial associated with the sharing@V), and
let Q;, R;, H; be the polynomials used in the protocol. Recall the maximum absolute values of their
coefficients and of the constant term:

polynomial | coefficients| constant term

S KIL*N L?’N
Qi K2[*N KIL2N
R; K3L3N? K?L*N?
H; K5LSN? 0

Furthermore, the coefficients of all polynomials are divisibleZbgnd their constant terms by?.
Livenessolds because the leadBrdoes not crash by assumption, and, therefore, all honest parties
receive the messagsubset ,S, M) that determines which sharings to combine. Because the three
sharings created by the partiesSrare executed in parallel, an honest party completes them together,
or not at all. By theweak agreemeryiroperty of the semi-weak AVSS protocol, at least 1 honest
parties are guaranteed to complete the sharings givéh ithese honest parties receive all shares and
output ashare message in theubset activation. Observe that — 2¢ > 2t + 1 is necessary for the
sharing ofH; by the properties of the modified protoa@lAVSS. Since at leastt+ 1 share messages
are released, every honest party receives enough of them to conpautéteh ~ message and to make
progress. Applying the same argument again, every honest party receives padigjh messages
to terminate the protocol.

13

Correctnesdollows from the same argument as used by Catalano et al. [9] and the modifications
for the asynchronous case mentioned in the protocol description. In particubaist be large enough
such that the probability that the Euclidean algorithm fails is negligibficiencyis clear from protocol
inspection.

To proveprivacy, we describe a simulat@&lM that interacts with the adversary. The simulator takes
as inpute, z, y, and N such that) = = (mod N), and may invoke the simulator for the weak AVSS
protocol.

We may assume that the adversary corrupts . ., P, and thatSIM is given an(n, t + 1, t) sharing
of N (in the place ofp = ¢(IV)), defining an integer polynomial(z). Its shares are also held by the
corrupted parties.

Supposg = z” for D € [0, o(N)]; SIMchooses valuesDy, . .., D; at random fromj— K LN, K L? N]
and computeg; such that there is a polynomid{z) = L(Z§:1 Dz + LD) of degreef that satisfies
yi = 2% (mod N). This may be done with standard techniques (cf. Lemma 2 in [26]).

Now SIM executes thetart activation on behalf of an honeB} as prescribed by the protocol and
invokes the simulator for the weak AVSS protocol. This defines integer polynojalg;, and ;.

W.I.Ao.g assumé’, choosesS such ththg is the only hpnest party i§. This defines aIs@S(z) =
s @i(2), BS(2) = Y05 Ri(2), and A8 (2) = Y0 Hi(2).

When executing aubset activation forP;, SIM answers with
FP = 5(1)Q% (i) + R (i) + HS(i).

When executing ahare activation forP;, SIM answers withy;, and inpartial activations SIM
proceeds as prescribed by the protocol.

We now show that the simulated execution is statistically indistinguishable from the real execution.

First, note that the valueg; and,; shared byP, are statistically indistinguishable from arbitrary
values in the respective intervals by the privacy condition of AVSS.

From theshare messages, the adversary learns the polynoﬁﬁalz) SS(2)Q%(2)+eRS(2) +
HS(), of which S and the additive contributions frof,, Rd, ande are unknown.

By comparing the size of the coefficientsify(z) with S(z)Q4(z) andeRy(z) in the table above,
observe that the coefficients &f;(z) exceed the magnitude of the others by at least a fdct¢this is
where we need > L? andK > e). (The same applies tH,(z) with respect to5(z)Q(z) andeR(z)
in the real execution.) It follows using a standard argumentfi4t) is statistically indistinguishable
from Hy(z), except for the constant term (and likewise fof (z)).

Thus, the only difference is in the constant terms. They are givedd{)) = L*NUxy +
L?eUj2p2 and FS(0) = L*¢Ugn + L?eUg2y2, WhereUy, denotes a random variable with uni-
form distribution on[0, M — 1]. After dividing out L?, we may apply Lemma 2 with, = K2?N?,
ny = KN, f =¢, m=b= N and obtain

P+Q-1

. 1
S S S A - - | =
AFOF0) < mEs ‘ Ke|(P-1(@Q-1) ’ OWN), ®
recalling thatV = P@ is an RSA modulus angd = (P —1)(Q — 1) for the second step. In other words,
they are statistically indistinguishable for the adversary and the theorem follows. O

5 The Main Inversion Protocol

This section presents the complete protocol, which is@last i.e., tolerates Byzantine faults.

Let us first discuss how to make Proto@dNV1 robust, still under the assumption thitis hon-
est. Recall from Section 3.3 that the AVSS sub-protocol yields a commitment V&dtwits sharing
polynomial. LetC's denote such a commitment to the polynomial used to shaterresponding to the

14

shareS; of P;, and assumé€'s is made available initially to every party. Lélg;, Cr;, andCp; for
Jj € [1,n] denote the commitments resulting from the AVSS sub-protocols invoked by Prétih¢dlL.

The semi-weak AVSS sub-protocol is already robust andstiiesset message may remain un-
changed. However, additional steps are needed in the inversion protocol to prevent honest parties from
acceptingshare and partial messages with incorrect data. Since these are point-to-point mes-
sages, the standard two-party techniques for proving statements about relations modulo a cavmposite
are sufficient [16]; the method works under the strong RSA assumption.

First, for the messagéshare |, F;), the sendelP; carries out a zero-knowledge proof of knowl-
edge with every receiver thdt; has been computed correctly with respectt9 Cq;, Cgr;, andCg;
for j € S. The receiver accepts the message only if the proof is correct. Second, for the message
(partial ,y;), the sendeP; carries out a zero-knowledge proof of knowledge with every receiver that
y; has been computed correctly with respeai tb, andCr; for j € S (the receiver uses its own values
a andb computed upon receivinghare messages). The receiver accepts the message only if the proof
is correct.

It remains to show how to cope with a corrupted leaBlerWe employ the well-known method of
running the preliminary inversion protocol1 times in parallel with different leaders, which guarantees
that at least one leader is honest and the corresponding protocol terminates. As soon as a party terminates
the first parallel protocol instance with the correct result, it sends the result to all other parties, aborts
the remaining instances, and halts. Every party who receives the correct result like this also aborts all
inversion protocols. Note that every party may verify that a claimed rgsaltorrect by checking that
y¢ =z (mod N). (The idea of stopping early with the correct, self-verifiable result can be traced back
to early work on agreement, e.g., [25].)

This approach works only because RSA inversion is deterministic and the result is self-verifiable;
thus, all protocol copies output the same result for all parties and every party can check locally that the
output is correct if they receive the result from another party. Note that privacy is maintained since all
t + 1 copies ofAINV1 run completely independently of each other.

This idea is realized in Protoc#INV2, which implements robust RSA inversion. The formal
description is given in Figure 3, and the proof of the following theorem is now immediate.

Theorem 3. Under the strong RSA assumption, ProtogdNV2 implements (robust) RSA inversion
with a shared secret key for > 4t.

Since ProtocoAINV2 involves runningO(t) copies of ProtocoAINV1, the message complexity
of the robust RSA inversion protocol & (tn?), or O(n?) in the likely case that = ©(n). The
communication complexity i©(tn?(x + p)) or O(n*(k + p)), respectively.

It is an open problem to devise an efficient RSA inversion protocol with optimal resilienc8t.

6 Applications

6.1 Threshold RSA Signatures

Standard RSA signatures can be proved secure only imtidom oracle modelRandom oracles are
a heuristic tool to analyze the security of cryptographic primitives by pretending that a hash function
is implemented by a distributed oracle, which answers with a random value for every distinct point on
which it is queried. They are used because the cryptosystems in this model are typically more efficient
than the corresponding systems in the standard model, where proofs must be based only on intractability
assumptions. The scheme of Shoup [29] implements non-interactive threshold RSA signatures in the
random oracle model.

Two related RSA signature schemes that avoid the random oracle model have been proposed recently
by Gennaro, Halevi, and Rabin [17] (GHR) and by Cramer and Shoup [12] (CS). Both rely stincthe
RSA assumptioand involve the RSA-inversion of an elemeantith a freshe for every signature. These

15

Protocol AINV2 for party P; and tag 1D

upon (ID,in ,start ,e,N,x,S;): Il Sy,...,S,forma(t+ 1,n) sharing ofsL overZ
forj=1,...,t+1do
start robust protocoAINV1 with leadery,
inputse, N, z, S; and taglD|sub .j

upon (ID|sub .j,out ,inverse ,y):
if y* =2 (mod N) then
send messagdD, inverse ,y) to all other parties
abortall protocolsAINV1 with tags/D|sub .j
forj e [1,t +1]
output(/D,out ,inverse ,y)
halt

upon receiving messag@D, inverse ,y):
if y* =2 (mod N) then
send messagdD, inverse ,y) to all other parties
abortall protocolsAINV1 with tags/D|sub .j
forj e [1,¢t+ 1]
output(/D,out ,inverse ,y)
halt

Figure 3: ProtocolAINV2 for asynchronous RSA inversion with a shared secret.

schemes can be implemented in a distributed system using threshold cryptography bygshsiagd
carrying out a distributed RSA inversion protocol, as shown by Catalano et al. [9] for synchronous

systems.
In both schemes, the public key contains a safe RSA modulusut the rest is slightly different:

e For the GHR scheme, the public key contains also a rande?,. A signature on a message
m is generated by computing = h(m,r), using a randomized hash functiénwith random
inputr, and then by computing the RSA invers®f s ande moduloV, resulting in the signature
(o,r). A signature(o,r) on a message: is verified by computing = h(m,r) and checking
thato® = s (mod N). The hash function must be division-intractable and it must be possible to
efficiently compute a value when givenm ande such that = h(m,r); the latter property can
be achieved by embedding a trap-door in the hash funéti@ar details, see [17]).

e For CS signatures, the public key contains also two random sgeamdr € Z%,, and a suffi-
ciently large random primg¢. A signature on a messageis obtained by first selecting a random
primee of the same length agand a random squarec Z};. Then, using a hash functidn the
valuez’ = /s ™M™ mod N and the RSA inversg of 2s"(*) ande modulo N are computed:;
the signature ige, y, z). To verify a signature, one checks thais prime and thay® = xsh@)
(mod N) with 2/ = 2z/s~(") (for details, see [12]).

Using the asynchronous RSA inversion protocol presented in this paper, we obtain the first implemen-
tations of RSA threshold signatures in asynchronous networks as follows.

Suppose there is a distinguished partywho serves as a gateway for signature requests from clients
and starts the instance of the distributed signature protocol. Paityassumed to be honest and not
to crash. Recall that both signature schemes are deterministic apart from the initial choice of a random
value { ande, respectively), and that the only distributed computation is the RSA inversion.

Thus, the protocols for asynchronous RSA threshold signatures proceed as follows. First, the parties
compute a random value using the standard approach: Every party shares a random secret using AVSS,

16

the distinguished parti; announces a subsgiof ¢t + 1 parties whose sharings have terminated success-
fully, all parties together reconstruct the secrets indicated lgnd every party adds the reconstructed
secrets. The result is the desired random value, which is needed in both signature schemes. Second, the
parties carry out the RSA inversion protocol together. Finally, every party computes the signature and
outputs it.

In absence of an honest, we run the sketched protocok- 1 times in parallel; this may result in
up tot + 1 different signatures on the same message, which is unlikely to cause problems in most appli-
cations, however. Otherwise, a different protocol may be used that executes a multi-valued Byzantine
agreement [5] to determine a set of parties who have successfully shared their secrets and the random
value for the signature protocol.

6.2 Verifiable Random Functions and Byzantine Agreement

A verifiable random function (VRR$ a pseudo-random function that provides a non-interactively ver-
ifiable proof for the correctness of its output. A pseudo-random fungtiomith a secret seesl maps

k-bit strings toA-bit strings [19]; its output is computationally indistinguishable from a random function
for any polynomial-time observer. Micali, Rabin, and Vadhan [21] formalized the notion of a verifiable
random function: given &-bit input z, knowledge of the seesd allows to computey = f,(x) to-
gether with a unique verification value or “proo#’,. This proof convinces every verifier of the fact
thatv = f,(z) with respect to the given public key of the VRF. The difficulty is thatmust not reveal
anything abouyf; on inputs different from.

The VRF construction of [21] is based on the unpredictability of the RSA inversion operation (the
construction is too complex to be recalled here, however). In order to obtdireshold verifiable
random functionin asynchronous networks, only the RSA inversion step has to be distributed; all other
operations are deterministic, given the public key and the shared initialization data of the scheme.

Our asynchronous RSA inversion protocol yields the first threshold VRF based on RSA (the strong
RSA assumption, to be precise), which is not based on generic multi-party computation methods. The
VRF construction executes a sequence of RSA inversions; our asynchronous distributed implementa-
tion succeeds without using a Byzantine agreement primitive since every inversion operation is self-
verifiable, as is the final VRF output.

An interesting application of this threshold VRF is to implement asynchronous Byzantine agreement
by using the VRF as a common coin sub-protocol (cf. [8, 6]). Thus, our inversion protocol yields also an
efficient cryptographic asynchronous Byzantine agreement protocol under the strong RSA assumption,
and without random oracles. Apart from this, verifiable random functions have many other interesting
applications.

References

[1] N. Bari¢ and B. Pfitzmann, “Collision-free accumulators and fail-stop signature schemes without
trees,” inProc. EUROCRYPT '97p. 480-494, 1997.

[2] M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computatioRfoic. 25th An-
nual ACM Symposium on Theory of Computing (ST@@)52-61, 1993.

[3] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computation with optimal resilience,”
in Proc. 13th ACM Symposium on Principles of Distributed Computing (PQPg)183-192,
1994.

[4] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous verifiable secret sharing
and proactive cryptosystems,” Proc. 9th ACM Conference on Computer and Communications
Security (CCS)pp. 88-97, 2002.

17

[5] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broadcast
protocols (extended abstract),”froc. CRYPTO 20Q1pp. 524-541, Springer, 2001.

[6] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantinople: Practical asynchro-
nous Byzantine agreement using cryptographyProc. 19th ACM Symposium on Principles of
Distributed Computing (PODCpp. 123-132, 2000.

[7] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive security: Long-term protection
against break-insRSA Laboratories’ CryptoBytesol. 3, no. 1, 1997.

[8] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with optimal resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (ST@pC%#2-51, 1993.

[9] D. Catalano, R. Gennaro, and S. Halevi, “Computing inverses over a shared secret modulus,” in
Proc. EUROCRYPT 200@p. 190-206, Springer, 2000.

[10] B. Chor and C. Dwork, “Randomization in Byzantine agreementRamdomness and Computa-
tion (S. Micali, ed.), vol. 5 ofAdvances in Computing Researpip. 443-497, JAl Press, 1989.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving
simultaneity in the presence of faults,”Rroc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS$pp. 383—-395, 1985.

[12] R. Cramer and V. Shoup, “Signature schemes based on the strong RSA proh@vhTransac-
tions on Information and System Securitgl. 3, no. 3, pp. 161-185, 2000.

[13] Y. Desmedt, “Threshold cryptographyguropean Transactions on Telecommunicatjord. 5,
no. 4, pp. 449-457, 1994.

[14] Y. Desmedtand Y. Frankel, “Shared generation of authenticators and signatuRss£i€RYPTO
'91, pp. 457-469, Springer, 1992.

[15] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung, “Optimal-resilience proactive public-key
cryptosystems,” irProc. 38th IEEE Symposium on Foundations of Computer Science (FOCS)
pp. 384-393, 1997.

[16] E. Fujiksaki and T. Okamoto, “Statistical zero knowledge protocols to prove modular polynomial
relations,” inProc. CRYPTO '97pp. 1630, Springer, 1997.

[17] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign signatures without the random oracle,”
in Proc. EUROCRYPT '99p. 123-139, Springer, 1999.

[18] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk, “Robust and efficient sharing of RSA func-
tions,” Journal of Cryptologyvol. 13, pp. 273-300, 2000.

[19] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functidaarhal of the
ACM, vol. 33, pp. 792-807, Oct. 1986.

[20] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof sys-
tems,”SIAM Journal on Computingol. 18, pp. 186—-208, Feb. 1989.

[21] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functionsPioc. 40th IEEE Symposium
on Foundations of Computer Science (FOG). 120-130, 1999.

[22] M. Naor and O. Reingold, “Number-theoretic constructions of efficient pseudo-random functions,”
in Proc. 38th IEEE Symposium on Foundations of Computer Science (FPR3)58—-467, 1997.

18

[23] J. B. Nielsen, “A threshold pseudorandom function construction and its applicationBfom
CRYPTO 2002pp. 401-416, Springer, 2002.

[24] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in
Proc. CRYPTO '91pp. 129-140, Springer, 1992.

[25] M. O. Rabin, “Randomized Byzantine generals,Hroc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS$)p. 403—-409, 1983.

[26] T. Rabin, “A simplified approach to threshold and proactive RSAPiiac. CRYPTO '98pp. 89—
104, Springer, 1998.

[27] M. Reiter, “Secure agreement protocols: Reliable and atomic group multicast in Rampratin
2nd ACM Conference on Computer and Communications Secppityp8—80, 1994.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-
key cryptosystemsCommunications of the ACMol. 21, pp. 120-126, Feb. 1978.

[29] V. Shoup, “Practical threshold signatures,”®Rnoc. EUROCRYPT 200®p. 207-220, Springer,
2000.

19

