
An Asynchronous Protocol for Distributed Computation of
RSA Inverses and its Applications

Christian Cachin

IBM Research
Zurich Research Laboratory

CH-8803 R̈uschlikon, Switzerland
cca@zurich.ibm.com

April 25, 2003

A shorter version of this paper appears inProc. 22nd ACM Symposium on Principles of Distributed
Computing (PODC 2003), Boston (MA), USA.

Abstract

This paper presents an efficient asynchronous protocol to compute RSA inverses with respect to a
public RSA modulusN whose factorization is secret and shared among a group of parties. Given
two numbersx ande, the protocol computesy such thatye ≡ x (mod N). A synchronous protocol
for this task has been presented by Catalano, Gennaro, and Halevi (Eurocrypt 2000), but the standard
approach for turning this into an asynchronous protocol would require a Byzantine-agreement sub-
protocol. Our protocol adopts their approach, but exploits a feature of the problem in order toavoid
the use of a Byzantine agreement primitive. Hence, it leads to efficient asynchronous protocols for
threshold signatures and for Byzantine agreement based on the strong RSA assumption, without the
use of random oracles.

1 Introduction

RSA [28] is the most widely used public-key cryptosystem today. Methods for sharing an RSA key
among a group of parties in a distributed system, and for using the key in a fault-tolerant way have
therefore received considerable attention [14, 15, 7, 18]. They are the subject ofthreshold cryptogra-
phy[13].

For example, it is well-known how to distribute an RSA signature scheme amongn > 2t parties in
a synchronous network such that a majority of them can securely issue signatures together, despite the
fact that up tot may be faulty and misbehave in arbitrary, malicious ways. Given an RSA public key
(N, e), whereN is the product of two large primes, such schemes work by sharing the RSA “decryption
exponent”d = e−1 mod ϕ(N) among the parties, whereϕ(·) is the Euler function. To signm, the
parties jointly computeσ such thatσe ≡ m (mod N). The valuesN , e, andd are chosen when the
signature scheme is set up and remain unchanged afterwards.

Several RSA-based cryptosystems have been proposed [17, 12] recently, wheree is given dynam-
ically together with a valuex, and the problem is to computey such thatye ≡ x (mod N). We call
this theRSA inversion problem. Catalano, Gennaro, and Halevi [9] present a protocol that solves it in
the threshold setting. Their protocol computesd as the modular inverse ofe with the shared modulus
ϕ(N), from whichy = xd mod N is easily obtained.

Most threshold cryptographic protocols, including those mentioned so far, assume a synchronous
network with a broadcast channel connecting all parties. Although this assumption is justified in princi-
ple by the existence of suitable clock synchronization and Byzantine agreement protocols that provide
broadcast, the approach may lead to rather expensive solutions in practice, for example, when deployed

1

in a distributed system over a wide-area network with only loosely synchronized clocks. Such systems
are also vulnerable to timing attacks.

In this paper, we consider the problem of computing an RSA inverse in anasynchronousdistributed
system, consisting ofn communicating parties linked only by point-to-point channels, where local
clocks are not synchronized and no a priori bound on message delay exists.

We present a protocol for asynchronous distributed RSA inversion that is quite practical, achieves
resiliencen > 4t, and usesO(n3) messages andO(n4(κ + µ)) communication, whereκ is a security
parameter andµ the length of the RSA modulus. Moreover, it is deterministic in the sense that it does
not rely on a randomized Byzantine agreement primitive; a randomized solution would not only be more
expensive but also preclude one of its applications: toimplementrandomized asynchronous Byzantine
agreement using cryptography.

The protocol employs one distributed multiplication step like the synchronous RSA inversion proto-
col of Catalano et al. [9]. In contrast to their protocol and to the generic approach of turning synchronous
protocols with broadcast into asynchronous ones [2, 3], however, our protocol does not rely onByzan-
tine agreementfor implementing the distributed multiplication step; this works because RSA inversion
is self-verifiable, i.e., the result can be checked by every participant locally. This surprising observation
is one of the main contributions of this paper, and it leads to a very simple and attractive protocol.

The difficulty with the multiplication step is that all parties must use a consistent combination of
sharings, excluding, for example, sharings created by apparently faulty parties. This is ensured by
broadcast and by Byzantine agreement in the synchronous protocol and also in a generic asynchronous
protocol. Instead, we carry out the operationt + 1 times in parallel, each time with a different leader
who ensures consistency. Since at least one of these leaders is guaranteed to be correct, at least one
operation terminates. As soon as a party terminates the first parallel protocol instance with the correct
result, it sends the result to all other parties and aborts the remaining protocols. This works only because
the RSA operation is deterministic and because the result can be checked locally by every party.

We discuss two applications of our protocol:threshold RSA signaturesfor asynchronous networks
and an efficientcommon coinprotocol for implementing asynchronous Byzantine agreement, based on
the strong RSA assumption. An important feature of the resulting protocols in both cases is that they do
not use the so-calledrandom oracle modelfor their security analysis. The random oracle model allows
to design practical cryptosystems, but only yields heuristic evidence for their security.

Almost all knownthreshold RSAschemes require a synchronous network with broadcast; the only
exception is the non-interactive signature scheme of Shoup [29], which makes crucial use of the random
oracle model, however. Using our protocol, we obtain asynchronous threshold implementations of the
RSA signature schemes by Gennaro, Halevi, and Rabin [17] and by Cramer and Shoup [12], which are
based on the strong RSA assumption. They represent the first implementations of threshold signatures
in asynchronous networks without random oracles.

Asynchronous Byzantine agreement protocols rely on randomization, which can be implemented by
so-calledcommon coinprotocols [10]. In modern cryptography, such a common coin is known as an
unpredictable threshold pseudo-random function. So far, all efficient implementations of this primitive
have relied on the random oracle model or on synchronous networks and broadcast channels. We observe
that our protocol can be combined with the verifiable pseudo-random function of Micali, Rabin, and
Vadhan [21] to yield an efficient threshold pseudo-random function for asynchronous networks and
a randomized Byzantine agreement protocol based on the strong RSA assumption. This is the first
asynchronous network implementation of such a function in the standard model, and it gives the most
efficient cryptographic asynchronous Byzantine agreement protocol without random oracles.

Related work. This work builds on several cryptographic techniques developed over the last years: the
“non-interactive” verifiable secret sharing scheme of Pedersen [24] (which actually rely on synchronous
clocks and a broadcast channel and therefore involve interaction), the method of sharing the RSA func-
tion by using secret sharing over the integers [14, 15, 26, 18], the zero-knowledge proofs of modular

2

relations under the strong RSA assumption [16], and the synchronous RSA inversion protocol [9].
Of course, RSA inverses may also be computed in an asynchronous network using thegeneric

approach of secure multi-party computation [2, 3]. But such methods are prohibitively expensive for
practical use and invoke many instances of asynchronous Byzantine agreement sub-protocols.

A threshold pseudo-random function without random oracles may also be obtained under the deci-
sional Diffie-Hellman assumption from the constructions of Naor and Reingold [22] and Nielsen [23].
The function can be evaluated by an asynchronous protocol, but it requires a number of rounds that is
directly proportional to the security parameter.

Outline. The paper is organized as follows. Section 2 presents the system model and the cryptographic
assumptions used. It also contains the definition of the RSA inversion problem. A variation of asyn-
chronous verifiable secret sharing is introduced in Section 3; this protocol is used by the preliminary
inversion protocol presented in Section 4. The complete inversion protocol is given in Section 5, and
the applications to threshold signatures and verifiable random functions are described in Section 6.

2 System Model and Problem Statement

We adopt the basic system model from [6, 5], which describes an asynchronous network of parties with
a computationally bounded adversary.

The computational model is parameterized by a security parameterκ; a functionε(κ) is called
negligibleif for all c > 0 there exists aκ0 such thatε(κ) < 1

κc for all κ > κ0.
We say that two probability distributionsPX andPY arestatistically indistinguishableif their dis-

tanced(PX , PY) = 1
2

∑
x

∣∣PX(x) − PY (x)
∣∣ is negligible. The distance of two random variables is

defined as the distance between the associated probability distributions.
The notationa←R S denotes the (uniformly) random choice of an elementa from a setS, and[·, ·]

denotes an interval ofZ.

Cryptographic assumptions. An RSA modulusN is the product of two primes of equal length.
W.l.o.g. the length ofN is µ ≥ κ bits. A safeprimeP is a prime such thatP−1

2 is prime. A safe
RSA modulusN is the product of two safe primesP andQ, which comprise the secret key. TheRSA
operationis to computeme mod N for givenm ande. TheRSA inversion operationis to computey
such thatye = x mod N for givenx ande; y is called theRSA inverseof x ande.

TheRSA assumptionis that for a givene > 1 a randomly generated RSA modulusN , any proba-
bilistic polynomial-time algorithm computes the RSA inverse ofe and a randomx ∈ ZN at most with
negligible probability.

Theflexible RSA problemis for a randomly generated RSA modulusN and a randomx ∈ ZN to
find e > 1 andy ∈ Z∗N such thatye ≡ x (mod N). Thestrong RSA assumptionis that any probabilistic
polynomial-time algorithm solves the flexible RSA problem at most with negligible probability. Solving
the flexible RSA problem is potentially easier than computing RSA inverses becausee may depend on
the choice ofy. The strong RSA assumption has first been used by Barić and Pfitzmann [1] and by
Fujisaki and Okamoto [16].

Given the secret key1 ϕ(N) = (P − 1)(Q − 1), RSA inversion is easily carried out by computing
d = e−1 mod ϕ(N) and then raisingx to the powerd moduloN . We will show how to compute this
in an asynchronous distributed system whereϕ(N) is shared among a group of parties.

2.1 System Model

Network. The network consists ofn partiesP1, . . . , Pn, which are probabilistic interactive Turing
machines (PITM) [20] that run in polynomial time (inκ). There is an adversary, which is a PITM that

1Knowingϕ(N) is equivalent to the factors ofN .

3

runs in polynomial time inκ. Some parties are controlled by the adversary and calledcorrupted; the
remaining parties are calledhonest. An adversary that corrupts at mostt parties is calledt-limited.
There is also an initialization algorithm, which is run by a trusted party before the system starts. On
inputκ, n, t, and further parameters, it generates the state information used to initialize the parties. The
initial state information for the corrupted parties is given to the adversary. In other words, the adversary
is static, which simplifies the protocol presentation.

We assume that every pair of honest parties is linked by asecure asynchronous channelthat provides
privacy and authenticity with scheduling determined by the adversary. Formally, we model such a
network as follows. All communication is driven by the adversary. There exists a global set of messages
M, whose elements are identified by alabel(s, r, l) denoting the senders, the receiverr, and the lengthl
of the message. The adversary sees the labels of all messages inM, but not their contents. The adversary
may also add messages originating from corrupted senders.M is initially empty. The system proceeds
in steps. At each step, the adversary performs some computation, chooses an honest partyPi, and selects
some messagem ∈M with label(s, i, l). Pi is thenactivatedwith m on its communication input tape.
When activated,Pi reads the contents of its communication input tape, performs some computation, and
generates one or more response messages, which it writes to its communication output tape. A response
messagemmay contain a destination address, which is the indexj of a party. Such anm is added toM
with label(i, j, |m|) if Pj is honest; ifPj is corrupted,m is given to the adversary. In any case, control
returns to the adversary. This step is repeated arbitrarily often until the adversary halts.

These steps define a sequence of events, which we view as logical time. We sometimes use the
phrase “at a certain point in time” to refer to an event like this.

Theviewof a party consists of its initialization data, all messages it has received, and the random
choices it made so far.

Termination. We definetermination of a protocol instance only to the extent that the adversary
chooses to deliver messages among the honest parties [6]. Technically, termination of a protocol follows
from a bound on the number of messages that honest parties generate on behalf of a protocol, which
must be independent of the adversary.

We say that a message isassociatedto a particular protocol instance if it was generated by an honest
party on behalf of the protocol.

Themessageandcommunication complexitiesof a protocol are defined as the number and as the bit
length, respectively, of all associated messages, generated by honest parties. They are random variables
that depend on the adversary and onκ.

Recall that the adversary runs in time polynomial inκ. We assume that the parametern is bounded
by a fixed polynomial inκ, independent of the adversary, and that the same holds for all messages in the
protocol (longer messages are simply ignored).

For a particular protocol, aprotocol statisticX is a family of real-valued, non-negative random
variables{XA(κ)}, parameterized by adversaryA and security parameterκ, where eachXA(κ) is a
random variable induced by running the system withA. (Message complexity is an example of such a
statistic.) We restrict ourselves to protocol statistics that are bounded by a polynomial in the adversary’s
running time.

We say that a protocol statisticX is uniformly boundedif there exists a fixed polynomialp(κ) such
that for all adversariesA, there is a negligible functionεA, such that for allκ ≥ 0,

Pr[XA(κ) > p(κ)] ≤ εA(κ).

A protocol statisticX is calledprobabilistically uniformly boundedif there exists a fixed polynomial
p(κ) and a fixed negligible functionδ such that for all adversariesA, there is a negligible functionεA,
such that for alll ≥ 0 andκ ≥ 0,

Pr[XA(κ) > lp(κ)] ≤ δ(l) + εA(κ).

4

If X is probabilistically uniformly bounded byp, then for all adversariesA, we haveE[XA(κ)] =
O(p(κ)), with a hidden constant that is independent ofA. Additionally, if Y is probabilistically uni-
formly bounded byq, thenX ·Y is probabilistically uniformly bounded byp·q, andX+Y is probabilis-
tically uniformly bounded byp + q. Thus, (probabilistically) uniformly bounded statistics are closed
under polynomial composition, which is their main benefit for analyzing the composition of randomized
protocols [5].

Protocol execution and notation. We now introduce our notation for writing asynchronous protocols.
Recall that a party is always activated with an input message; this message is added to an internal input
buffer upon activation.

In our model, protocols are invoked by the adversary. Every protocolinstanceis identified by a
unique stringID , also called thetag, which is chosen by the adversary when it invokes the instance.

There may be several protocol instances executing at a given party, but no more than one is active
concurrently. When a party is activated, all instances are inwait states. A wait state specifies a condition
defined on the received messages contained in the input buffer and other local state variables. If one or
more instances are in a wait state whose condition is satisfied, one such instance is scheduled arbitrarily,
and this instance runs until it reaches another wait state. This process continues until no more instances
are in a wait state whose condition is satisfied. Then, the activation of the party is terminated, and
control returns to the adversary.

There are two types of messages that protocols process and generate: The first type containsinput
actions, which represent a local activation and carry input to a protocol, andoutput actions, which
signal termination and potentially carry output of a protocol; such messages are calledlocal events. The
second message type is an ordinary point-to-point network message, which is to be delivered to the peer
protocol instance running on another party; such messages are also calledprotocol messages.

All messages are denoted by a tuple(ID , . . .); the tagID denotes the protocol instance to which
this message isassociated. Input actions are of the form(ID , in , type, . . .), and output actions are of
the form(ID ,out , type, . . .), with typedefined by the protocol specification. All other messages of the
form (ID , type, . . .) are protocol messages, wheretypeis defined by the protocol implementation.

We describe protocols in a modular way: A protocol instance may invoke another protocol instance
by sending it a suitable input action and obtain its output via an output action of the sub-protocol. This
is realized by a party-internal mechanism, which, for any message generated by the calling protocol that
contains an input action for a sub-protocol, creates the corresponding protocol instance (if not already
running) and delivers the input action; furthermore, it passes all output actions of the sub-protocol to the
calling protocol by adding them to the input buffer.

The pseudo-code notation used for describing our protocols is as follows. To enter a wait state,
an instance may execute a command of the formwait for condition, wherecondition is an ordinary
predicate on the input buffer and other state variables. Upon executing this command, an instance enters
a wait state with the givencondition.

We specify aconditionin the form ofreceiving messagesor events. In this case,messagesdescribes
a set of one or more protocol messages andeventsdescribes a set of local events (e.g., outputs from
a sub-protocol) satisfying a certain predicate, possibly involving other state variables. Upon executing
this command, an instance enters a wait state, waiting for the arrival of messages satisfying the given
predicate.

There is a global implicitwait for statement that every protocol instance repeatedly executes; it
matches any of theconditionsgiven in the clauses of the formupon condition block. Every time a
conditionis satisfied, the correspondingblock is executed. If there is more than one satisfiedcondition,
all correspondingblocksare executed in an arbitrary order.

5

2.2 Computing RSA Inverses with a Shared Secret Key

A (n, k)-sharingof a secrets is an encoding ofs into a set ofsharesS1, . . . , Sn such that any set of
at leastk shares uniquely definess and any set of less thank shares does not give information about
s. Associated with a sharing is an efficient algorithmreconstruct that reconstructss from any set ofk
shares.

A sharing is called(non-interactively) verifiableif there exists public informationV and an al-
gorithm verify-share such thatPi can determine if a valueS represents a “valid” share with respect
to V by computingverify-share(V, S). More precisely, a sharing is verifiable if for any adversary
that generates a stringV and a set of stringsS∗ that satisfy the predicateverify-share(V, S∗) for all
S∗ ∈ S∗, for any two subsetsS∗0 ,S∗1 ⊂ S∗ of cardinalityk each, the probability thatreconstruct(S∗0) 6=
reconstruct(S∗1) is negligible. GivenV , the value returned byreconstruct with all but negligible prob-
ability is called thesecret associated toV .

LetN be an RSA modulus. SupposeP1, . . . , Pn hold the shares of an(n, k)-sharing of the corre-
sponding RSA secret keyϕ(N). A protocol forRSA inversionof x ande with tagID , for somee > n,
is started when a party is activated on(ID , in , start , e,N, x, Si). A party terminates the protocol
by generating an output of the form(ID ,out , inverse , y). All honest parties must be activated like
this and all should outputy such thatye ≡ x (mod N). Recall that our formal system model defines
the notion theassociatedmessages for every instance; they include all messages with tagID or a tag
starting withID generated by honest parties analogous to [5].

The formal definition is divided into liveness, correctness, privacy, and efficiency.

Definition 1. A protocol forRSA inversion overN with a shared secret keyϕ(N) as described above
satisfies the following conditions for anyt-limited adversary:

Liveness: If all honest parties start the protocol and all associated messages are delivered, then all
honest parties terminate except with negligible probability.

Correctness: If an honest party terminates the protocol and outputsy, thenye ≡ x (mod N) except
with negligible probability.

Privacy: The adversary gains no useful information aboutϕ(N).

Efficiency: For everyID , the number messages associated toID is uniformly bounded.

The formalization ofprivacycalls for the existence of a simulator that interacts with the adversary
and produces a view that is indistinguishable from a real protocol execution.

Termination of a protocol in our computational model follows analogously to [5] from the combi-
nation oflivenessandefficiency.

A protocol in this model is also calledrobustbecause it tolerates anactiveadversary, i.e., one that
exhibits Byzantine faults. It is sometimes useful to restrict the adversary topassivecorruptions, which
means that corrupted parties follow the protocol, but the adversary observes their internal state and
obtains information that may lead to a violation of privacy.

3 Verifiable Secret Sharing

Verifiable secret sharing (VSS) is an important primitive in distributed cryptography [11]. We introduce
the notion of weak asynchronous verifiable secret sharing and give a protocol for verifiably sharing a
secret over the integers.

6

3.1 Weak Asynchronous Verifiable Secret Sharing

In weak asynchronous verifiable secret sharing, theagreementproperty of standard asynchronous veri-
fiable secret sharing (AVSS) [8, 4] is relaxed as follows. When the dealer is faulty, some honest parties
may terminate a weak AVSS protocol and others may not, but those who terminate hold consistent shares
and are guaranteed that there are enough honest parties holding shares in order to reconstruct the secret.
In contrast, AVSS guarantees that either all honest parties terminate the protocol successfully or none,
which ensures agreement on the success of the sharing. This difference is analogous to the difference
betweenconsistent broadcastandreliable broadcastin asynchronous networks, using the terminology
of Cachin et al. [5].

We considerdual-threshold sharings, which generalize the standard notion of secret sharing by
allowing the reconstruction threshold to exceed the number of corrupted parties by more than one. In
an(n, k, t) dual-threshold sharing, there aren parties holding shares of a secret, of which up tot may
be corrupted by an adversary, and any group ofk or more honest parties may reconstruct the secret
(n − t ≥ k > t). Such dual-threshold sharings are useful for distributed computation and agreement
problems [6].

An AVSS protocol establishes a sharing of a secrets ∈ [0,M − 1] with tag ID .d as follows.
Every party is initialized on the protocol, and a special partyPd, called thedealer, is activated on
(ID .d, in , share , s). When this occurs, we sayPd sharess ∈ [0,M−1] with tagID .d. A party is said
to complete the sharing with tagID .d when it generates an output of the form(ID .d,out , shared).
Subsequently, a partystarts the reconstruction of the secret with tagID .d when it is activated on
(ID .d, in , reconstruct); it terminates the reconstruction when it outputs(ID .d,out , reconstructed , s).

More precisely, aweak asynchronous verifiable dual-threshold secret sharingprotocol establishes
the following for anyt-limited adversary:

Liveness: If the dealerPd is honest, all honest parties are initialized on a sharingID .d, and all asso-
ciated messages are delivered, then all honest parties complete the sharing except with negligible
probability.

Correctness: If some honest party completes the sharing, there exists a unique valueV such that every
honest party who completes the sharing holds a valid share with respect toV except with neg-
ligible probability; if the dealer is honest then the secret associated toV is s. Moreover, if at
leastk honest parties have completed the sharing and start the reconstruction, every one of them
reconstructs the secret associated toV except with negligible probability, provided all associated
messages are delivered.

Privacy: If the dealer is honest and shares a values with tag ID .d, and less thank − t honest parties
have started the reconstruction, then the adversary gains no useful information abouts.

Efficiency: For everyID .d, the communication complexity is uniformly bounded.

This definition is adapted from [4]. It guarantees the uniqueness of the shared value, but not thatk
honest parties actually complete the sharing as required for reconstruction; even when an honest party
completes the sharing, it may be that onlyk − t honest parties hold proper shares. To address this
problem, we introduce the notion ofsemi-weak AVSS, which is a weak AVSS protocol that guarantees
additionally:

Weak Agreement: If an honest party completes the sharing, it may send a message to all other honest
parties such that at leastk honest parties complete the sharing upon receiving this message or
have already completed it.

Weak agreement guarantees that a single honest party who completed the sharing can causek honest
parties to complete the sharing, as necessary for reconstruction, simply by sending a suitable message.

7

We say that this messagecompletesthe sharing. Such acompleting messagedoes not contain secret
information; the receiver must already hold a correct share but may not be aware of it before receiving
the completing message. Theweak agreementproperty is related to the concept of “verifiable” (or
“transferable”) broadcast from [5].

3.2 Secret Sharing over the Integers

Polynomial secret sharing is usually done in a finite field, but it works also overZ, provided that extra
randomization is added. This is a well-known technique developed in the context of threshold RSA [14,
15]. LetL = n!. To share a secrets ∈ [0,M − 1] overZ with security parameterK = 2O(κ), choose
k− 1 random valuesF1, . . . , Fk−1 in [−KL2M,KL2M] and letf(z) = L

(
Ls+

∑k−1
i=1 Fiz

i
)
. Denote

the coefficients of thesharing polynomialf by f0, f1, . . . , fk−1; they are divisible byL and their
absolute value is bounded byKL3M .

The share ofPi is f(i) for i = 1, . . . , n computed inZ. It is easy to see that these values form
a (n, k)-sharingbecausesL =

∑
i∈S λ

S
i f(i) for anyS ⊂ {1, . . . , n} of cardinalityk, whereλSi =∏

j∈S\{i}
−j
i−j are the Lagrange interpolation coefficients forS and position 0. This can be computed in

Z because every
∏
j∈S\{i}(i− j) dividesi!(n− i)!, which dividesn! = L.

3.3 A Protocol for Weak AVSS overZN

Protocolw-AVSS combines the verification method of Pedersen’s VSS [24] with secret sharing over the
integers and with the method of Fujisaki and Okamoto [16] to achieve robustness based on the strong
RSA assumption inZN to an asynchronous VSS protocol.

LetK = 2O(κ) be a security parameter,N a safe RSA modulus,g andh two random squares inZ∗N
ands ∈ [0,M − 1] the secret to share.

The dealer first computes(n, k, t)-sharings ofs and of a randoms0 ∈ ZM over the integers, defining
two sharing polynomialsf and f ′, respectively. It also computes verification valuesCj = gfjhf

′
j

mod N for j = 0, . . . , k − 1, wherefj andf ′j denote the coefficients off andf ′.
The communication follows the approach of “echo broadcast” [27] (which is called “consistent

broadcast” in [5]) with a non-interactive(n,m, t) dual-threshold signature schemeS1 [6] for m =
max

{
k, dn+t+1

2 e
}

. Recall that such a threshold signature scheme tolerates up tot corrupted parties and
requiresm valid signature shares for assembling the threshold signature. First, the dealer sends a share
of the secret to all parties and every party answers with anS1-signature share if the share is valid. Then,
upon receivingm S1-shares, the dealer computes the threshold signature and sends it to all parties.
Finally, a party accepts the sharing when it has a valid share and receives a valid threshold signature.
Reconstruction is straightforward and omitted (cf. [4]).

A detailed description is given in Figure 1. The predicateverify-point(C, i, a, b) checks that the
given valuesa and b correspond to the pointsf(i) and f ′(i), respectively, committed to inC =
[C0, . . . , Ck−1]; it is true if and only ifgahb ≡

∏k−1
j=0(Cj)i

j
(mod N). Note thatverify-point is the

share validation algorithm of the resulting sharing with public informationC. Common inputs to the
protocol areN , g, andh. The local output of every party includes its share(si, ti).

The message complexity of Protocolw-AVSS is O(n). Assuming that a threshold signature and
a threshold signature share areO(κ) bits, the communication complexity is dominated by thesend
messages, one of which is of lengthkµ+2(k+log(KL2M)) = O(kµ+κ+logM), sincelogK = O(κ)
andlogL = O(κ). Whenk = Θ(n), the total communication complexity isO(n2µ+ n(κ+ logM)).

It can be shown using standard methods [15, 16, 26, 9] that Protocolw-AVSS implements weak
AVSS overZN for n > k + t under the strong RSA assumption.

For example, incorrectness, the uniqueness of the shared secret follows from the strong RSA as-
sumption as follows. Towards a contradiction, suppose an honestPi terminates the protocol with a valid
shareS = (a, b) of s and some honestPj terminates it with a valid shareS′ = (a′, b′) of s′ 6= s. By
the properties of a valid share,verify-share(Vs, S) andverify-share(Vs′ , S′) are both true. Recall that

8

Protocol w-AVSS for party Pi and tag ID .d

upon initialization:

si ← ⊥; ti ← ⊥
V ← ∅;w ← ⊥

upon (ID .d, in , share , s): // only Pd
F1, . . . , Fk−1, F

′
1, . . . , F

′
k−1 ←R [−KL2M,KL2M]

s0 ←R [0,M − 1]
let f(z) = L

(
Ls+

∑k−1
j=1 Fjz

j
)

andf ′(z) = L
(
Ls0 +

∑k−1
j=1 F

′
jz
j
)

C ← [C0, . . . , Ck−1], whereCj = gfjhf
′
j mod N

for j = 0, . . . , k − 1
for j = 1, . . . , n do

send message(ID .d, send , C, f(j), f ′(j)) to Pj

upon receiving message(ID .d, send , C, a, b) from Pd for the first time:

if si = ⊥ and verify-point(C, i, a, b) then
si ← a; ti ← b
compute anS1-signature shareu

on (ID .d, ready , C)
send message(ID .d, ready , C, u) to Pd

upon receiving message(ID .d, ready , C, uj) from Pj for the first time:

if i = d and uj is a validS1-signature share
on (ID .d, ready , C) then

V ← V ∪ {uj}
r ← r + 1
if r = m then

assemble the shares inV to anS1-threshold
signaturev

send message(ID .d, final , C, v) to all parties

upon receiving message(ID .d, final , C, v):
if w = ⊥ and v is a validS1-signature on(ID .d,

ready , C) and verify-point(C, i, si, ti) then
w ← v
output(ID .d,out , shared)

Figure 1: Protocolw-AVSS for weakK-random AVSS of a secrets ∈ [0,M − 1] overZN .

9

the public verification informationVs corresponds to the vectorC of the protocol. But the consistency
property of the underlying “echo broadcast” (cf. [27]) ensures thatVs = Vs′ and thereforegahb ≡ ga′hb′

(mod N). It follows easily thatg
a−a′
b′−b ≡ h (mod N) with all but negligible probability sinceN is a

safe RSA modulus, contradicting the strong RSA assumption.
Theprivacyof the secret can be shown using a standard simulation argument (cf. Lemma 1 in [15]).
Protocolw-AVSS can be modified to implementsemi-weak AVSSover the integers by setting

m = max
{
k + t,

⌈n+ t+ 1
2

⌉}
.

Thecompletingmessage, i.e., the message that may cause an honest party to complete the sharing, is the
final message, which is known to all parties who have completed the sharing. The choice ofm then
ensures that theS1-signature included in the message is sufficient evidence that at leastm−t ≥ k honest
parties hold a share of the secret. Sincen − t ≥ m, the protocol can only create a sharing polynomial
of degree less thann− 2t.

Suitable implementations of the non-interactive threshold signature schemeS1 exist only in the
random oracle model so far [29]. To avoid the random oracle model, one may replaceS1 with a vec-
tor of ordinary digital signatures, one for each party, and distribute the verification keys during setup.
This increases the size of thefinal message and the communication complexity of the protocol by a
factorn.

The same protocol allows to share multiple secretss, s′, . . . in parallel with the same dealer in shar-
ings with reconstruction thresholdsk, k′, All properties are satisfied if the reconstruction threshold
of S1 is set tom = max{m,m′, . . . }. This not only decreases message and computation complexities
compared to separate executions of the sharing protocol, but ensures also that every honest party holding
a share ofs holds also a share ofs′, The latter property is important for the inversion protocol in
the next section.

4 A Preliminary Protocol

We start with a preliminary protocol for computing an RSA inverse. The protocol requires a correct
leader and tolerates crashes and a passive adversary. That is, all parties apart from the leader may crash
and collude to gain knowledge about the secret, but otherwise they follow the protocol.

ProtocolAINV1 uses the approach of the synchronous protocol for computing modular inverses by
Catalano et al. [9], to obtain a sharing ofd = e−1 mod ϕ(N). Given the sharedd, the resulty = xd

mod N is reconstructed easily.
More precisely, the protocol works as follows. The input of everyPi includese, N , x, andSi,

whereSi is Pi’s share ofφ = ϕ(N) in a (n, t + 1, t)-sharing overZN , using a polynomialS(z) =
L
(
Lφ+

∑t
j=1 ajz

j
)

for aj ←R [−KL2N,KL2N]. W.l.o.g., assumeN ≥ K ≥ L2 andK > e > n.
The parties first compute aK-random(n, t + 1, t)-sharing of a randomQ0 ∈ [0,KN − 1], an

analogous sharing of a randomR0 ∈ [0,K2N2 − 1], and aK-random(n, 2t + 1, t)-sharing of0 ∈
[0,K4L3N2 − 1]. These sharings are executed in parallel as mentioned at the end of Section 3.3 and
define integer polynomialsQ(z) andR(z) of degreet andH(z) of degree2t, whereH(0) = 0. As
usual, the shares ofPi areQ(i),R(i), andH(i).

Next, the parties obtain a sharing ofF (0) for F (z) = S(z)Q(z) + eR(z) + H(z) by local multi-
plication and addition of shares only, and collaboratively reconstructF (0) = L4φQ0 + L2eR0. Every
party applies the extended Euclidean algorithm to compute locallya andb such thataF (0) + be = 1,
which works if gcd(F (0), e) = 1. Then,d = aL2R0 + b is the inverse ofe moduloφ, as is easy to
verify. However,d is not reconstructed since this would revealφ and the factorization ofN . Instead,
Pi computes a share ofd asdi = aL2R(i) + b using its share ofR0; then it revealsyi = xdi mod N .
Fromt+ 1 suchyi, the resulty ≡ xd (mod N) can easily be recovered.

10

So far the description parallels [9], but the difference is in the computation of the sharings. To create
Q(z), everyPi creates a sharing polynomialQi(z) with a random constant term using the semi-weak
AVSS protocol from the previous section.Q(z) is now the sum of up ton sharing polynomialsQi(z)
with dealerPi. The problem is that all parties must arrive at the sameQ(z). In the synchronous model
with broadcast, agreement on faulty partiesPj who did not properly share a polynomial is immediately
available. In our asynchronous model, this is not the case, so we use a single party, theleader, to choose
a setS of parties whose sharings should be combined; this works only because we assume the leader to
be correct. Thus,Q(z) is set to

∑
i∈S Qi(z), andR(z) andH(z) are computed in the same way.

It will be shown in Section 5 how to remove the assumption of a correct leader.
SinceH(z) needs to be of degree2t and Protocolw-AVSS for semi-weak sharing creates only

sharings of degree less thann− 2t, the maximum resilience of ProtocolAINV1 is limited ton > 4t.
The message complexity of ProtocolAINV1 isO(n2) because every party runs an instance of weak

AVSS as a dealer and the weak AVSS protocol createsO(n) messages. The communication complexity
of the inversion protocol is dominated by theshare messages and by weak AVSS, which contain an
integer of lengthM = 2t+ 5 logK + 5 logL+ 2 logN bits. With the assumptionsN � K ≥ L ≥ n,
logN = O(µ), and logK = O(κ), we haveM = O(κ + µ). Since each weak AVSS instance
incursO(n2µ + n(κ + logM)) communication, the total communication of the inversion protocol is
O(n3(κ+ µ)).

Theorem 1. Under the RSA assumption, ProtocolAINV1 implements RSA inversion with a shared
secret key forn > 4t with a correct leader and a passive adversary.

The proof of Theorem 1 is based on the following lemma, which strengthens a lemma of Catalano
et al. [9].

Lemma 2. LetX be a random variable with uniform distribution over[0, nx − 1] andY a random
variable with uniform distribution over[0, ny − 1] for ny � nx; let f, e, b ∈ N be relatively prime to
each other and bounded from above by somem� ny. Then

d(Xe+ Y f,Xe+ Y b) ≤ nym

nxe
+

1
2

∣∣∣∣mf − m

b

∣∣∣∣.
Proof. Recall that

2d(Xe+ Y f,Xe+ Y b) =
∑

0≤x<nxe+nym

∣∣∣Pr[Xe+ Y f = x]− Pr[Xe+ Y b = x]
∣∣∣. (1)

Split the sum into three parts: two minor parts, for0 ≤ x < nym andnxe ≤ x < nxe + nym, and a
major part, fornym ≤ x < nxe. It is straightforward to verify that the contribution of the first minor
part is bounded by

Pr[Xe < nym] <
nym

nxe
. (2)

Analogously, the contribution of the second minor part is bounded by

Pr[Xe ≥ nxe] <
nym

nxe
. (3)

11

Protocol AINV1 with correct leader P` for party Pi and tag ID .`

upon initialization:

Fi ← ⊥
upon (ID .`, in , start , e,N, x, Si): // S1, . . . , Sn form an(n, t+ 1) sharing ofϕ(N) overZ

qi ←R [0,KN − 1]; ri ←R [0,K2N − 1]
share in parallelwith semi-weakK-random sharing and tagID |sh .i:

– qi ∈ [0,KN − 1] with (n, t+ 1, t)-sharing overZN // this definesQi ∈ Z[z]
– ri ∈ [0,K2N2 − 1] with (n, t+ 1, t)-sharing overZN // this definesRi ∈ Z[z]
– 0 ∈ [0,K4L3N2 − 1] with (n, 2t+ 1, t)-sharing overZN // this definesHi ∈ Z[z]

if i = ` then
wait for thecompletionof the parallel sharings

from a setS of t+ 1 parties, i.e.,
for some|S| = t+ 1, all sharings
with tagsID |sh .j for j ∈ S

denote the received shares byQji,Rji, andHji, respectively
letM be the collection of completing messages

from the sharings inS
send message(subset ,S,M) to all parties

upon receiving message(ID .`, subset ,S,M) from P`:

if i 6= ` then
deliver the completing messages inM to the

parallel sharingsID |sh .j for j ∈ S
wait for thecompletionof the parallel

sharings from the parties inS, i.e., all
sharings with tagsID |sh .j for j ∈ S

denote the received shares byQji,Rji,
andHji, respectively

Fi ← Si
∑

j∈S Qji + e
∑

j∈S Rji +
∑

j∈S Hji

send message(share , Fi) to all parties

upon receiving message(ID .`, share , Fj) from Pj for the first timeand Fi 6= ⊥:

F ← F ∪ {(j, Fj)}
if |F| = 2t+ 1 then

interpolateF ∈ Z[z] of degree2t such that
F (j) = Fj for all (j, Fj) ∈ F

apply the extended Euclidean algorithm to
computea andb such thataF (0) + be = 1

di ← a
∑

j∈S Rji + b

yi ← xdi mod N
send message(partial , yi) to all parties

upon receiving message(ID .`,partial , yj) from Pj for the first time:

Y ← Y ∪ {(j, yj)}
if |Y| = t+ 1 then

y ←
∏
j:(j,yj)∈Y yj

λYj mod N

output(ID .`,out , inverse , y)

Figure 2: ProtocolAINV1 for asynchronous RSA inversion with a shared secret.

12

Now ∑
nym≤x<nxe

∣∣∣Pr[Xe+ Y f = x]− Pr[Xe+ Y b = x]
∣∣∣

=
∑

nym≤x<nxe

∣∣∣∣∣ ∑
0≤y<nym

Pr[Xe = x− y, Y f = y]− Pr[Xe = x− y, Y b = y]

∣∣∣∣∣
=

∑
nym≤x<nxe

∣∣∣∣∣ ∑
0≤y<nym

Pr[Xe = x− y]
(
Pr[Y f = y]− Pr[Y b = y]

)∣∣∣∣∣
=

∑
nym≤x<nxe

∣∣∣∣∣ ∑
0≤y<nym
y:e|(x−y)

1
nx

Pr[Y f = y]− Pr[Y b = y]

∣∣∣∣∣
=

1
nx

∑
nym≤x<nxe

∣∣∣∣∣ ∑
0≤y<nym
y:e|(x−y)

f |y

Pr[Y f = y]−
∑

0≤y<nym
y:e|(x−y)

b|y

Pr[Y b = y]

∣∣∣∣∣ (4)

All probabilities in the inner sums are equal to1ny . There are approximatelynymef terms in the first inner

sum and approximatelynymeb terms in the second one. Thus, the difference of the sums is approximately

nym

ef

1
ny
− nym

eb

1
ny

=
1
e

(
m

f
− m

b

)
. (5)

Since the outer sum in (4) includes no more thannxe terms, (4) is bounded by|mf −
m
b |. Combining

this with (1)–(3) gives

2d(Xe+ Y f,Xe+ Y b) ≤ 2
nym

nxe
+
∣∣∣∣mf − m

b

∣∣∣∣
and the lemma follows.

Proof of Theorem 1.Let S ∈ Z[z] denote the polynomial associated with the sharing ofϕ(N), and
let Qi, Ri, Hi be the polynomials used in the protocol. Recall the maximum absolute values of their
coefficients and of the constant term:

polynomial coefficients constant term
S KL3N L2N
Qi K2L3N KL2N
Ri K3L3N2 K2L2N2

Hi K5L5N2 0

Furthermore, the coefficients of all polynomials are divisible byL and their constant terms byL2.
Livenessholds because the leaderP` does not crash by assumption, and, therefore, all honest parties

receive the message(subset ,S,M) that determines which sharings to combine. Because the three
sharings created by the parties inS are executed in parallel, an honest party completes them together,
or not at all. By theweak agreementproperty of the semi-weak AVSS protocol, at least2t + 1 honest
parties are guaranteed to complete the sharings given inS. These honest parties receive all shares and
output ashare message in thesubset activation. Observe thatn− 2t ≥ 2t+ 1 is necessary for the
sharing ofHi by the properties of the modified protocolw-AVSS. Since at least2t+1 share messages
are released, every honest party receives enough of them to compute apartial message and to make
progress. Applying the same argument again, every honest party receives enoughpartial messages
to terminate the protocol.

13

Correctnessfollows from the same argument as used by Catalano et al. [9] and the modifications
for the asynchronous case mentioned in the protocol description. In particular,e must be large enough
such that the probability that the Euclidean algorithm fails is negligible.Efficiencyis clear from protocol
inspection.

To proveprivacy, we describe a simulatorSIM that interacts with the adversary. The simulator takes
as inpute, x, y, andN such thatye ≡ x (mod N), and may invoke the simulator for the weak AVSS
protocol.

We may assume that the adversary corruptsP1, . . . , Pt and thatSIM is given an(n, t+ 1, t) sharing
of N (in the place ofφ = ϕ(N)), defining an integer polynomial̂S(z). Its shares are also held by the
corrupted parties.

Supposey = xD forD ∈ [0, ϕ(N)]; SIMchoosest valuesD1, . . . , Dt at random from[−KL2N,KL2N]
and computesyi such that there is a polynomiald(z) = L

(∑t
i=1Diz

i + LD
)

of degreet that satisfies
yi ≡ xd(i) (mod N). This may be done with standard techniques (cf. Lemma 2 in [26]).

Now SIM executes thestart activation on behalf of an honestPi as prescribed by the protocol and
invokes the simulator for the weak AVSS protocol. This defines integer polynomialsQ̂i, R̂i, andĤi.

W.l.o.g. assumeP` choosesS such thatP` is the only honest party inS. This defines alsôQS(z) =∑
j∈S Q̂j(z), R̂

S(z) =
∑

j∈S R̂j(z), andĤS(z) =
∑

j∈S Ĥj(z).
When executing asubset activation forPi, SIM answers with

F̂Si = Ŝ(i)Q̂S(i) + eR̂S(i) + ĤS(i).

When executing ashare activation forPi, SIM answers withyi, and inpartial activations,SIM
proceeds as prescribed by the protocol.

We now show that the simulated execution is statistically indistinguishable from the real execution.
First, note that the valueŝqd and r̂d shared byP` are statistically indistinguishable from arbitrary

values in the respective intervals by the privacy condition of AVSS.
From theshare messages, the adversary learns the polynomialF̂S(z) = ŜS(z)Q̂S(z)+eR̂S(z)+

ĤS(z), of which Ŝ and the additive contributions from̂Qd, R̂d, andĤd are unknown.
By comparing the size of the coefficients in̂Hd(z) with Ŝ(z)Q̂d(z) andeR̂d(z) in the table above,

observe that the coefficients of̂Hd(z) exceed the magnitude of the others by at least a factorK (this is
where we needK ≥ L2 andK > e). (The same applies toHd(z) with respect toS(z)Q(z) andeR(z)
in the real execution.) It follows using a standard argument thatF̂S(z) is statistically indistinguishable
from Ĥd(z), except for the constant term (and likewise forFS(z)).

Thus, the only difference is in the constant terms. They are given byF̂S(0) = L4NUKN +
L2eUK2N2 andFS(0) = L4φUKN + L2eUK2N2 , whereUM denotes a random variable with uni-
form distribution on[0,M − 1]. After dividing outL2, we may apply Lemma 2 withnx = K2N2,
ny = KN , f = φ,m = b = N and obtain

d
(
F̂S(0), FS(0)

)
≤ KN

K2N2

N

e

∣∣∣∣Nφ − 1
∣∣∣∣ =

1
Ke

∣∣∣∣ P +Q− 1
(P − 1)(Q− 1)

∣∣∣∣ = O(
√
N), (6)

recalling thatN = PQ is an RSA modulus andφ = (P −1)(Q−1) for the second step. In other words,
they are statistically indistinguishable for the adversary and the theorem follows.

5 The Main Inversion Protocol

This section presents the complete protocol, which is alsorobust, i.e., tolerates Byzantine faults.
Let us first discuss how to make ProtocolAINV1 robust, still under the assumption thatP` is hon-

est. Recall from Section 3.3 that the AVSS sub-protocol yields a commitment vectorC to its sharing
polynomial. LetCS denote such a commitment to the polynomial used to shareφ, corresponding to the

14

shareSi of Pi, and assumeCS is made available initially to every party. LetCQj , CRj , andCHj for
j ∈ [1, n] denote the commitments resulting from the AVSS sub-protocols invoked by ProtocolAINV1.

The semi-weak AVSS sub-protocol is already robust and thesubset message may remain un-
changed. However, additional steps are needed in the inversion protocol to prevent honest parties from
acceptingshare and partial messages with incorrect data. Since these are point-to-point mes-
sages, the standard two-party techniques for proving statements about relations modulo a compositeN
are sufficient [16]; the method works under the strong RSA assumption.

First, for the message(share , Fi), the senderPi carries out a zero-knowledge proof of knowl-
edge with every receiver thatFi has been computed correctly with respect toCS , CQj , CRj , andCHj
for j ∈ S. The receiver accepts the message only if the proof is correct. Second, for the message
(partial , yi), the senderPi carries out a zero-knowledge proof of knowledge with every receiver that
yi has been computed correctly with respect toa, b, andCRj for j ∈ S (the receiver uses its own values
a andb computed upon receivingshare messages). The receiver accepts the message only if the proof
is correct.

It remains to show how to cope with a corrupted leaderP`. We employ the well-known method of
running the preliminary inversion protocolt+1 times in parallel with different leaders, which guarantees
that at least one leader is honest and the corresponding protocol terminates. As soon as a party terminates
the first parallel protocol instance with the correct result, it sends the result to all other parties, aborts
the remaining instances, and halts. Every party who receives the correct result like this also aborts all
inversion protocols. Note that every party may verify that a claimed resulty is correct by checking that
ye ≡ x (mod N). (The idea of stopping early with the correct, self-verifiable result can be traced back
to early work on agreement, e.g., [25].)

This approach works only because RSA inversion is deterministic and the result is self-verifiable;
thus, all protocol copies output the same result for all parties and every party can check locally that the
output is correct if they receive the result from another party. Note that privacy is maintained since all
t+ 1 copies ofAINV1 run completely independently of each other.

This idea is realized in ProtocolAINV2, which implements robust RSA inversion. The formal
description is given in Figure 3, and the proof of the following theorem is now immediate.

Theorem 3. Under the strong RSA assumption, ProtocolAINV2 implements (robust) RSA inversion
with a shared secret key forn > 4t.

Since ProtocolAINV2 involves runningO(t) copies of ProtocolAINV1, the message complexity
of the robust RSA inversion protocol isO(tn2), or O(n3) in the likely case thatt = Θ(n). The
communication complexity isO(tn3(κ+ µ)) orO(n4(κ+ µ)), respectively.

It is an open problem to devise an efficient RSA inversion protocol with optimal resiliencen > 3t.

6 Applications

6.1 Threshold RSA Signatures

Standard RSA signatures can be proved secure only in therandom oracle model. Random oracles are
a heuristic tool to analyze the security of cryptographic primitives by pretending that a hash function
is implemented by a distributed oracle, which answers with a random value for every distinct point on
which it is queried. They are used because the cryptosystems in this model are typically more efficient
than the corresponding systems in the standard model, where proofs must be based only on intractability
assumptions. The scheme of Shoup [29] implements non-interactive threshold RSA signatures in the
random oracle model.

Two related RSA signature schemes that avoid the random oracle model have been proposed recently
by Gennaro, Halevi, and Rabin [17] (GHR) and by Cramer and Shoup [12] (CS). Both rely on thestrong
RSA assumptionand involve the RSA-inversion of an elementxwith a freshe for every signature. These

15

Protocol AINV2 for party Pi and tag ID

upon (ID , in , start , e,N, x, Si): // S1, . . . , Sn form a(t+ 1, n) sharing ofsL overZ
for j = 1, . . . , t+ 1 do

start robust protocolAINV1 with leaderj,
inputse,N, x, Si and tagID |sub .j

upon (ID |sub .j, out , inverse , y):
if ye ≡ x (mod N) then

send message(ID , inverse , y) to all other parties
abort all protocolsAINV1 with tagsID |sub .j

for j ∈ [1, t+ 1]
output(ID ,out , inverse , y)
halt

upon receiving message(ID , inverse , y):
if ye ≡ x (mod N) then

send message(ID , inverse , y) to all other parties
abort all protocolsAINV1 with tagsID |sub .j

for j ∈ [1, t+ 1]
output(ID ,out , inverse , y)
halt

Figure 3: ProtocolAINV2 for asynchronous RSA inversion with a shared secret.

schemes can be implemented in a distributed system using threshold cryptography by sharingϕ(N) and
carrying out a distributed RSA inversion protocol, as shown by Catalano et al. [9] for synchronous
systems.

In both schemes, the public key contains a safe RSA modulusN , but the rest is slightly different:

• For the GHR scheme, the public key contains also a randoms ∈ Z∗N . A signature on a message
m is generated by computinge = h(m, r), using a randomized hash functionh with random
inputr, and then by computing the RSA inverseσ of s andemoduloN , resulting in the signature
(σ, r). A signature(σ, r) on a messagem is verified by computinge = h(m, r) and checking
thatσe ≡ s (mod N). The hash function must be division-intractable and it must be possible to
efficiently compute a valuer when givenm ande such thate = h(m, r); the latter property can
be achieved by embedding a trap-door in the hash functionh (for details, see [17]).

• For CS signatures, the public key contains also two random squaress andx ∈ Z∗N , and a suffi-
ciently large random primef . A signature on a messagem is obtained by first selecting a random
primee of the same length asf and a random squarez ∈ Z∗N . Then, using a hash functionh, the
valuex′ = zfs−h(m) mod N and the RSA inversey of xsh(x′) ande moduloN are computed;
the signature is(e, y, z). To verify a signature, one checks thate is prime and thatye ≡ xsh(x′)

(mod N) with x′ = zfs−h(m) (for details, see [12]).

Using the asynchronous RSA inversion protocol presented in this paper, we obtain the first implemen-
tations of RSA threshold signatures in asynchronous networks as follows.

Suppose there is a distinguished partyPs who serves as a gateway for signature requests from clients
and starts the instance of the distributed signature protocol. PartyPs is assumed to be honest and not
to crash. Recall that both signature schemes are deterministic apart from the initial choice of a random
value (r ande, respectively), and that the only distributed computation is the RSA inversion.

Thus, the protocols for asynchronous RSA threshold signatures proceed as follows. First, the parties
compute a random value using the standard approach: Every party shares a random secret using AVSS,

16

the distinguished partyPs announces a subsetS of t+1 parties whose sharings have terminated success-
fully, all parties together reconstruct the secrets indicated byS, and every party adds the reconstructed
secrets. The result is the desired random value, which is needed in both signature schemes. Second, the
parties carry out the RSA inversion protocol together. Finally, every party computes the signature and
outputs it.

In absence of an honestPs, we run the sketched protocolt + 1 times in parallel; this may result in
up tot+ 1 different signatures on the same message, which is unlikely to cause problems in most appli-
cations, however. Otherwise, a different protocol may be used that executes a multi-valued Byzantine
agreement [5] to determine a set of parties who have successfully shared their secrets and the random
value for the signature protocol.

6.2 Verifiable Random Functions and Byzantine Agreement

A verifiable random function (VRF)is a pseudo-random function that provides a non-interactively ver-
ifiable proof for the correctness of its output. A pseudo-random functionfs with a secret seeds maps
κ-bit strings toλ-bit strings [19]; its output is computationally indistinguishable from a random function
for any polynomial-time observer. Micali, Rabin, and Vadhan [21] formalized the notion of a verifiable
random function: given aκ-bit input x, knowledge of the seeds allows to computev = fs(x) to-
gether with a unique verification value or “proof”πx. This proof convinces every verifier of the fact
thatv = fs(x) with respect to the given public key of the VRF. The difficulty is thatπx must not reveal
anything aboutfs on inputs different fromx.

The VRF construction of [21] is based on the unpredictability of the RSA inversion operation (the
construction is too complex to be recalled here, however). In order to obtain athreshold verifiable
random functionin asynchronous networks, only the RSA inversion step has to be distributed; all other
operations are deterministic, given the public key and the shared initialization data of the scheme.

Our asynchronous RSA inversion protocol yields the first threshold VRF based on RSA (the strong
RSA assumption, to be precise), which is not based on generic multi-party computation methods. The
VRF construction executes a sequence of RSA inversions; our asynchronous distributed implementa-
tion succeeds without using a Byzantine agreement primitive since every inversion operation is self-
verifiable, as is the final VRF output.

An interesting application of this threshold VRF is to implement asynchronous Byzantine agreement
by using the VRF as a common coin sub-protocol (cf. [8, 6]). Thus, our inversion protocol yields also an
efficient cryptographic asynchronous Byzantine agreement protocol under the strong RSA assumption,
and without random oracles. Apart from this, verifiable random functions have many other interesting
applications.

References

[1] N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-stop signature schemes without
trees,” inProc. EUROCRYPT ’97, pp. 480–494, 1997.

[2] M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computation,” inProc. 25th An-
nual ACM Symposium on Theory of Computing (STOC), pp. 52–61, 1993.

[3] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computation with optimal resilience,”
in Proc. 13th ACM Symposium on Principles of Distributed Computing (PODC), pp. 183–192,
1994.

[4] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous verifiable secret sharing
and proactive cryptosystems,” inProc. 9th ACM Conference on Computer and Communications
Security (CCS), pp. 88–97, 2002.

17

[5] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broadcast
protocols (extended abstract),” inProc. CRYPTO 2001, pp. 524–541, Springer, 2001.

[6] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantinople: Practical asynchro-
nous Byzantine agreement using cryptography,” inProc. 19th ACM Symposium on Principles of
Distributed Computing (PODC), pp. 123–132, 2000.

[7] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive security: Long-term protection
against break-ins,”RSA Laboratories’ CryptoBytes, vol. 3, no. 1, 1997.

[8] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with optimal resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 42–51, 1993.

[9] D. Catalano, R. Gennaro, and S. Halevi, “Computing inverses over a shared secret modulus,” in
Proc. EUROCRYPT 2000, pp. 190–206, Springer, 2000.

[10] B. Chor and C. Dwork, “Randomization in Byzantine agreement,” inRandomness and Computa-
tion (S. Micali, ed.), vol. 5 ofAdvances in Computing Research, pp. 443–497, JAI Press, 1989.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving
simultaneity in the presence of faults,” inProc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 383–395, 1985.

[12] R. Cramer and V. Shoup, “Signature schemes based on the strong RSA problem,”ACM Transac-
tions on Information and System Security, vol. 3, no. 3, pp. 161–185, 2000.

[13] Y. Desmedt, “Threshold cryptography,”European Transactions on Telecommunications, vol. 5,
no. 4, pp. 449–457, 1994.

[14] Y. Desmedt and Y. Frankel, “Shared generation of authenticators and signatures,” inProc. CRYPTO
’91, pp. 457–469, Springer, 1992.

[15] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung, “Optimal-resilience proactive public-key
cryptosystems,” inProc. 38th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 384–393, 1997.

[16] E. Fujiksaki and T. Okamoto, “Statistical zero knowledge protocols to prove modular polynomial
relations,” inProc. CRYPTO ’97, pp. 16–30, Springer, 1997.

[17] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign signatures without the random oracle,”
in Proc. EUROCRYPT ’99, pp. 123–139, Springer, 1999.

[18] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk, “Robust and efficient sharing of RSA func-
tions,” Journal of Cryptology, vol. 13, pp. 273–300, 2000.

[19] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”Journal of the
ACM, vol. 33, pp. 792–807, Oct. 1986.

[20] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof sys-
tems,”SIAM Journal on Computing, vol. 18, pp. 186–208, Feb. 1989.

[21] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” inProc. 40th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 120–130, 1999.

[22] M. Naor and O. Reingold, “Number-theoretic constructions of efficient pseudo-random functions,”
in Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 458–467, 1997.

18

[23] J. B. Nielsen, “A threshold pseudorandom function construction and its applications,” inProc.
CRYPTO 2002, pp. 401–416, Springer, 2002.

[24] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in
Proc. CRYPTO ’91, pp. 129–140, Springer, 1992.

[25] M. O. Rabin, “Randomized Byzantine generals,” inProc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 403–409, 1983.

[26] T. Rabin, “A simplified approach to threshold and proactive RSA,” inProc. CRYPTO ’98, pp. 89–
104, Springer, 1998.

[27] M. Reiter, “Secure agreement protocols: Reliable and atomic group multicast in Rampart,” inProc.
2nd ACM Conference on Computer and Communications Security, pp. 68–80, 1994.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-
key cryptosystems,”Communications of the ACM, vol. 21, pp. 120–126, Feb. 1978.

[29] V. Shoup, “Practical threshold signatures,” inProc. EUROCRYPT 2000, pp. 207–220, Springer,
2000.

19

