
Erasure-Coded Byzantine Storage with Separate Metadata

Elli Androulaki∗ Christian Cachin∗ Dan Dobre† Marko Vukolić‡

20 February 2014

Abstract

Although many distributed storage protocols have been introduced, a solution that combines the
strongest properties in terms of availability, consistency, fault-tolerance, storage complexity and the
supported level of concurrency, has been elusive for a long time. Combining these properties is
difficult, especially if the resulting solution is required to be efficient and incur low cost.

We present AWE, the first erasure-coded distributed implementation of a multi-writer multi-
reader read/write storage object that is, at the same time: (1) asynchronous, (2) wait-free, (3) atomic,
(4) amnesic, (i.e., with data nodes storing a bounded number of values) and (5) Byzantine fault-
tolerant (BFT) using the optimal number of nodes. Furthermore, AWE is efficient since it does
not use public-key cryptography and requires data nodes that support only reads and writes, further
reducing the cost of deployment and ownership of a distributed storage solution. Notably, AWE
stores metadata separately from k-out-of-n erasure-coded fragments. This enables AWE to be the
first BFT protocol that uses as few as 2t+ k data nodes to tolerate t Byzantine nodes, for any k ≥ 1.

1 Introduction

Background. Erasure coding is a key technology that saves space and retains robustness against faults
in distributed storage systems. In short, an erasure code splits a large data object into n fragments
such that from any k of them the input value can be reconstructed. The utility of erasure coding is
demonstrated by large-scale erasure-coding storage systems that have been deployed today [22, 27].
These distributed storage systems offer large capacity, high throughput, and resilience to faults.

Whereas the storage systems in production use today only tolerate component crashes or outages,
storage systems in the Byzantine failure model survive also more severe faults, ranging from arbitrary
state corruption to malicious attacks on components. In this paper, we consider a model where clients
directly access a storage service provided by distributed servers, called nodes — a fraction of the nodes
may be Byzantine, whereas clients may fail as well, but only by crashing.

Although Byzantine-fault tolerant (BFT) erasure-coded distributed storage systems have received
some attention in the literature [4, 9, 14, 16, 19], our understanding of their properties lies behind that
of replicated storage. In fact, most existing BFT erasure-coded storage approaches have drawbacks that
prevented their wide-spread use. For example, they relied on the nodes storing an unbounded number of
values [16], required the nodes to communicate with each other [9], used public-key cryptography [9,
19], or might have blocked clients due to concurrent operations of other clients [19].

We consider an abstract wait-free storage register with atomic semantics [21], accessed concurrently
by multiple readers and writers (MRMW). Wait-free termination means that any client operation termi-
nates irrespective of the behavior of the Byzantine nodes and of other clients. This is not easy to achieve
with Byzantine nodes [1] even in systems that replicate the data. Therefore, previous works have often
∗IBM Research - Zurich, Rüschlikon, Switzerland, {lli,cca}@zurich.ibm.com.
†NEC Labs Europe, Germany, dan.dobre@neclab.eu.
‡Eurécom, Sophia Antipolis, France, vukolic@eurecom.fr.

1

used a weaker notion of liveness called finite-write (FW) termination, which ensures that read operations
progress only in executions with a finite number of writes.

Contribution. This paper introduces AWE, the first asynchronous, wait-free distributed BFT erasure-
coded storage protocol with optimal resilience. As in previous work, we assume there are n nodes
and up to t of them may exhibit non-responsive (NR-)arbitrary faults, that is, Byzantine corruptions.
The best resilience that has been achieved so far is n > 3t, which is optimal for Byzantine storage [24].
However, our protocol features a separation of metadata and erasure coded fragments; with this approach
our protocol may reduce the number of data nodes, i.e., those that store a fragment, to lower values than
n for k ≤ t. In particular, our protocol takes only 2t+ k data nodes; this idea saves resources, as in the
separation of agreement and execution for BFT services [28]. For implementing the metadata service,
n > 3t nodes are still needed.

Our protocol employs simple, passive data nodes; they cannot execute code and they only support
read and write operations, such as the key-value stores (KVS) provided by popular cloud storage ser-
vices. The metadata service itself is an atomic snapshot object, which has only weak semantics and may
be implemented in a replicated asynchronous system from simple read/write registers [3]. The protocol
is also amnesic [11], i.e., the nodes store a bounded number of values and may erase obsolete data. The
protocol uses only simple cryptographic hash functions but no (expensive) public-key operations.

In summary, protocol AWE, introduced in Section 3, is the first erasure-coded distributed imple-
mentation of a MRMW storage object that is, at the same time: (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (5) tolerates the optimal number of Byzantine nodes, and (6) does not use public-
key cryptography. Furthermore, AWE can be implemented from non-programmable nodes (KVS) that
only support reads and writes (in the vein of Disk Paxos [1]). In practice, the KVS interface is offered by
commodity cloud storage services, which could be used as AWE data nodes to reduce the cost of AWE
deployment and ownership. While some of these desirable properties have been achieved in different
combinations so far, they have never been achieved together with erasure-coded storage, as explained
later. Combining these properties has been a longstanding open problem [16].

Related work. We provide a brief overview of the most relevant literature on the subject. Table 1
summarizes this section.

Earlier designs for erasure-coded distributed storage have suffered from potential aborts due to con-
tention [15] or from the need to maintain an unbounded number of fragments at data nodes [16]. In the
crash-failure model, ORCAS [14] and CASGC [10] achieve optimal resilience n > 2t and low commu-
nication overhead, combined with wait-free (ORCAS) and FW-termination (CASGC), respectively.

In the model with Byzantine nodes, Cachin and Tessaro (CT) [9] introduced the first wait-free proto-
col with atomic semantics and optimal resilience n > 3t. CT uses a verifiable information dispersal pro-
tocol but needs node-to-node communication, which lies outside our model. Hendricks et al. (HGR) [19]
present an optimally resilient protocol that comes closest to our protocol among the existing solutions. It
offers many desirable features, that is, it has as low communication cost, works asynchronously, achieves
optimal resilience, atomicity, and is amnesic. Compared to our work, it uses public-key cryptography,
achieves only FW-termination instead of wait-freedom, and requires processing by the nodes, i.e., the
ability to execute complex operations beyond simple reads and writes.

To be fair, much of the (cryptographic) overhead inherent in the CT and HGR protocols defends
against poisonous writes from Byzantine clients, i.e., malicious client behavior that leaves the nodes
in an inconsistent state. We do not consider Byzantine clients in this work, since permitting arbitrary
client behavior is problematic. Such a client might write garbage to the storage system at any time and
wipe out the stored value. Furthermore, the standard formal correctness notions such as linearizability
fail when clients misbehave (apart from crashing). Hendricks [18] discusses correctness notions in the

2

Protocol BFT Liveness Data nodes Type Amnesic Cryptogr.
ORCAS [14] — Wait-free 2t+ 1 Proc. — N/A
CASGC [10] — FW-term. 2t+ 1 Proc. X∗ N/A
CT [9] X∗ Wait-free ∗ 3t+ 1 Msg. — Public-key
HGR [19] X∗ FW-term. 2t+ k, for k > t Proc. X∗ Public-key
M-PoWerStore [12] X∗ Wait-free ∗ 3t+ 1 Proc. — Hash func. ∗

DepSky [4] X∗ Obstr.-free 3t+ 1 R/W ∗ — Public-key
AWE (Sec. 3) X∗ Wait-free ∗ 2t+ k, for k ≥ 1 ∗ R/W ∗ X∗ Hash func. ∗

Table 1: Comparison of erasure-coded distributed storage solutions. An asterisk (∗) denotes optimal
properties. The column labeled Type states the computation requirements on nodes: Proc. denotes pro-
cessing; Msg. means sending messages to other nodes, in addition to processing; R/W means a register
object supporting only read and write.

presence of Byzantine clients. However, even without the steps that protect against poisonous writes,
HGR still requires processing by the nodes and is not wait-free.

The M-PoWerStore protocol [12] employs a cryptographic “proof of writing” for wait-free atomic
erasure-coded distributed storage. It is the first wait-free BFT solution without node-to-node commu-
nication. Similar to other protocols, M-PoWerStore uses nodes with processing capabilities and is not
amnesic.

Several systems have recently addressed how to store erasure-coded data on multiple redundant
cloud services but only few of them focus on wait-free concurrent access. HAIL [5], for instance, uses
Byzantine-tolerant erasure coding and provides data integrity through proofs of retrievability; however,
it does not address concurrent operations by different clients. DepSky [4] achieves regular semantics
and uses lock-based concurrency control; therefore, one client may block operations of other clients.

A key aspect of AWE lies in the differentiation of (small) metadata from (large) bulk data: this
enables a modular protocol design and an architectural separation for implementations. The FARSITE
system [2] first introduced such a separation for replicated storage; their data nodes and their metadata
abstractions require processing, however, in contrast to AWE. Non-explicit ways of separating metadata
from data can already be found in several previous erasure coding-based protocols. For instance, the
cross checksum, a vector with the hashes of all n fragments, has been replicated on the data nodes to
ensure consistency [9, 16].

Finally, a recent protocol called MDStore [6] has shown that separating metadata from bulk data
permits to reduce the number of data nodes in asynchronous wait-free BFT distributed storage imple-
mentations to only 2t + 1. When protocol AWE is reduced to use replication with the trivial erasure
code (k = 1), it uses as few nodes as MDStore to achieve the same wait-free atomic semantics; unlike
AWE, however, MDStore is not amnesic and uses processing nodes.

Structure. The paper continues with the model in Section 2 and presents Protocol AWE in Section 3.
The communication and storage complexities of AWE are compared to those of existing protocols in
Section 4. Section 5 contains a formal proof for the properties of AWE.

2 Definitions

System model. We consider an asynchronous distributed system of components (or processes) that
communicate with each other. The components contain a set C of m clients, a set D of n data nodes
d1, . . . , dn, and further process abstractions. The components interact asynchronously via exchanging
events. A protocol specifies a collection of programs with instructions for all components.

3

A component may fail by crashing or by exhibiting Byzantine faults; the latter means they may
deviate arbitrarily from their specification. We assume that clients can only crash; on the other hand, up
to t data nodes can be Byzantine and behave adversarially (NR-arbitrary faults). A component that does
not fail is called correct.

Notation. Protocols are presented in a modular way using an event-based notation [7]. A component
is specified through its interface, containing the events that it exposes to other components that may
call it, and its properties, which define its behavior. A component may react to a received event by
doing computation and triggering further events. Every component is named by an identifier. Events
are qualified by the component identifier to which the event belongs and may take parameters. An event
Sample of a component m with a parameter x is denoted by 〈 m-Sample | x 〉.

Components interact asynchronously with others through exchanging events. We assume that all
events communicated from one component to another are delivered in FIFO-order. There are two kinds
of events in a component’s interface: input events that it receives from other components, typically to
invoke its services, and output events, through which the component delivers information or signals a
condition to another component. The behavior of a component is typically stated through a number of
properties or through a sequential implementation.

Objects and histories. An object is a special type of component for which every input event (called
an invocation in this context) triggers exactly one output event (called a response). Every such pair of
invocation and response define an operation of the object. An operation completes when its response
occurs.

A history σ of an execution of an objectO consists of the sequence of invocations and responses ofO
occurring in σ. An operation is called complete in a history if it has a matching response. An operation o
precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o completes before
o′ is invoked in σ. If o precedes o′ then o′ follows o. A sequence of events π preserves the real-time
order of a history σ if for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations
are concurrent if neither one of them precedes the other. A sequence of events is sequential if it does not
contain concurrent operations. We often simplify the terminology by exploiting that every sequential
sequence of events corresponds naturally to a sequence of operations.

An execution is well-formed if the events at every object are alternating invocations and matching
responses, starting with an invocation. An execution is fair, informally, if it does not halt prematurely
when there are still steps to be taken or triggered events to be consumed (see the standard literature for
a formal definition [23]).

Registers. A read/write register r is an object that stores a value from a domain V and supports exactly
two operations, for writing and reading the value. More precisely:

• A Write operation to r is triggered by an invocation 〈 r-Write | v 〉 that takes a value v ∈ V as
parameter and terminates by generating a response 〈 r-WriteAck 〉 with no parameter.

• A Read operation from r is triggered by an invocation 〈 r-Read 〉 with no parameter; the register
signals that the read operation completes by triggering a response 〈 r-ReadResp | v 〉, which
contains a parameter v ∈ V .

The behavior of a register is given through its sequential specification, which requires that every r-Read
operation returns the value written by the last preceding r-Write operation in the execution, or the special
symbol ⊥ 6∈ V if no such operation exists. For simplicity, we will assume that every distinct value is
written only once.

4

In this work, any client may invoke the operations of the emulated register object; such registers are
also called multi-reader multi-writer (MRMW) registers. Furthermore, we assume that all clients invoke
a well-formed sequence of operations.

Consistency and availability. Recall that clients interact with an object O through its operations,
defined in terms of an invocation and a response event of O. We say that a client c executes an operation
between the corresponding invocation and response events. When accessed concurrently by multiple
processes, executions of objects considered in this work are linearizable, that is, the object appears to
execute all operations atomically.

Definition 1 (View). A sequence of events π is called a view of a history σ at a client c w.r.t. an object O
whenever:

1. π is a sequential permutation of some subsequence of complete operations in σ;

2. all complete operations executed by c appear in π; and

3. π satisfies the sequential specification of O.

Definition 2 (Linearizability [21]). A history σ is linearizable w.r.t. an object O if there exists a se-
quence of events π such that:

1. π is a view of σ at all clients w.r.t. O; and

2. π preserves the real-time order of σ.

The goal of this work is to describe a protocol that emulates a linearizable register abstraction among
the clients; such a register is also called atomic. Some of the clients may crash and some nodes may be
Byzantine, but every client operation should terminate in all cases, irrespective of how other clients and
nodes behave.

Definition 3 (Wait-freedom [20]). A protocol is called wait-free if every operation invoked by a correct
client eventually completes.

Cryptography. We make use of cryptographic hash functions. One can imagine that the cryptographic
schemes are implemented by a distributed oracle accessible to all components [7]. A hash function H
maps a bit string x of arbitrary length to a short, unique representation of fixed length. We use a collision-
free hash function; this property means that no process, not even a Byzantine component, can find two
distinct values x and x′ such that H(x) = H(x′).

3 Protocol AWE

This section introduces the asynchronous wait-free erasure-coded Byzantine distributed storage protocol
(AWE).

3.1 Abstractions

Erasure code. An (n, k)-erasure code (EC) with domain V is given by an encoding algorithm, denoted
Encode, and a reconstruction algorithm, called Reconstruct. Given a (large) value v ∈ V , algorithm
Encodek,n(v) produces a vector [f1, . . . , fn] of n fragments, which are from a domain F . A fragment
is typically much smaller than the input, and any k fragments contain all information of v, that is,
|V| ≈ k|F|.

5

For an n-vector F ∈
(
F ∪ {⊥}

)n, whose entries are either fragments or the symbol ⊥, algorithm
Reconstructk,n(F) outputs a value v ∈ V or ⊥. An output value of ⊥ means that the reconstruction
failed. The completeness property of an erasure code requires that an encoded value can be reconstructed
from any k fragments. In other words, for every v ∈ V , when one computes F ← Encodek,n(v) and
then erases up to n− k entries in F by setting them to ⊥, algorithm Reconstructk,n(F) outputs v. More
details are available in the literature [25, 26].

Metadata service. The metadata service is implemented by a standard atomic snapshot object [3],
called dir, that serves as a directory. A snapshot object extends the simple storage function of a register
to a service that maintains one value for each client and allows for better coordination. Like an array
of multi-reader single-writer (MRSW) registers, it allows every client to update its value individually;
for reading it supports a scan operation that returns the vector of the stored values, one for every client.
More precisely, the operations of dir are:

• An Update operation to dir is triggered by an invocation 〈 dir-Update | c, v 〉 by client c that takes
a value v ∈ V as parameter and terminates by generating a response 〈 r-UpdateAck 〉 with no
parameter.

• A Scan operation on dir is triggered by an invocation 〈 dir-Scan 〉 with no parameter; the snap-
shot object returns a vector V of m = |C| values to c as the parameter in the response 〈 r-
ScanResp | V 〉, with V [c] ∈ V for c ∈ C.

The sequential specification of the snapshot object follows directly from the specification of an array of
mMRSW registers (hence, the snapshot initially stores the special symbol⊥ 6∈ V in every entry). When
accessed concurrently from multiple clients, its operations appear to take place atomically, i.e., they are
linearizable. Snapshot objects are weak — they can be implemented from read/write registers [3], which,
in turn, can be implemented from a set of a distributed processes subject to Byzantine faults. Wait-free
amnesic implementations of registers with the optimal number of n > 3t processes are possible using
existing constructions [13, 17].

3.2 Protocol overview

The high-level architecture of AWE uses the metadata directory dir to maintain pointers to the fragments
stored at the data nodes. As in standard implementations of multi-writer distributed storage [7], every
value is associated to a timestamp, which consists of a sequence number sn and the identifier c of
the writing client, i.e., ts = (sn, c) ∈ Timestamps = N0 × (C ∪ {⊥}); timestamps are initialized
to T0 = (0,⊥). The metadata contains the timestamp of the most recently written value for every
client, and readers determine the value to read by retrieving all timestamps, determining their maximum,
and accessing the fragments associated to the highest timestamp. Comparisons among timestamps use
the standard ordering, where ts1 > ts2 for ts1 = (sn1, c1) and ts2 = (sn2, c2) if and only if sn1 >
sn2 ∨ (sn1 = sn2 ∧ c1 > c2).

The directory stores an entry for every writer; it contains the timestamp of its most recently written
value, the identities of those nodes that have acknowledged to store a fragment of it, a vector with the
hashes of the fragments for ensuring data integrity, and additional metadata to support concurrent reads
and writes. The linearizable semantics of protocol AWE are obtained from the atomicity of the metadata
directory.

At a high level, the writer first invokes dir-Scan on the metadata to read the highest stored timestamp,
increments it, and uses this as the timestamp of the value to be written. Then it encodes the value to
n fragments and sends one fragment to each data node. The data nodes store it and acknowledge the
write. After the writer has received acknowledgments from t + k data nodes, it writes their identities

6

(together with the timestamp and the hashes of the fragments) to the metadata through dir-Update. The
reader proceeds accordingly: it first invokes dir-Scan to obtain the entries of all writers; it determines
the highest timestamp among them and extracts the fragment hashes and the identities of the data nodes;
finally, it contacts the data nodes and reconstructs the value after obtaining k fragments that match the
hashes in the metadata.

Although this simplified algorithm achieves atomic semantics, it does not address timely garbage-
collection of obsolete fragments, the main problem to be solved for amnesic erasure-code distributed
storage. It is easy to see that overwriting the fragments during the next write operation may cause a
reader to stall.

Protocol AWE uses two mechanisms to address this: first, the writer retains those values that may be
accessed concurrently and exempts them from garbage collection so that their fragments remain intact
for concurrent readers, which gives the reader enough time to retrieve its fragments. Secondly, some of
the retained values may also be frozen in response to concurrent reads; this forces a concurrent read to
retrieve a value that is guaranteed to exist at the data nodes rather than simply the newest value, thereby
effectively limiting the amount of stored values. A similar freezing method has been used for wait-
free atomic storage with replicated data [13, 17], but it must be changed for erasure-coded storage with
separated metadata. The retention technique together with the separation of metadata appears novel.

For the two mechanisms, every reader maintains a reader index, both in its local variable readindex
and in its metadata. The reader index serves for coordination between the reader and the writers. The
reader increments its index whenever it starts a new r-Read and immediately writes it to dir, thereby
announcing its intent to read. Writers access the reader indices after updating the metadata for a write
and before (potentially) erasing obsolete fragments. Every writer w maintains a table frozenindex with
its most recent recollection of all reader indices. When the newly obtained index of a reader c has
changed, then w detects that c has started a new operation at some time after the last write of w.

When w detects a new operation of c, it does not know whether c has retrieved the timestamp
from dir before or after the dir-Update of the current write. The reader may access either value; the
writer therefore retains both the current and the preceding value for c by storing a pointer to them in
frozenptrlist and in reservedptrlist. Clearly, both values have to be excluded from garbage collection
by w in order to guarantee that the reader completes.

However, the operation of the reader cmay access dir after the dir-Update of one or more subsequent
write operation by w, which means that the nodes would have to retain every value subsequently written
by w as well. To prevent this from happening and to limit the number of stored values, w freezes the
currently written timestamp (as well as the value) and forces c to read this timestamp when it accesses
dir within the same operation. In particular, the writer stores the current timestamp in frozenptrlist at
index c and updates the reader index of c in frozenindex; then, the writer pushes both tables, frozenindex
and frozenptrlist, to the metadata service during its next r-Write. The values designated by frozenptrlist
(they are called frozen) and reservedptrlist (they are called reserved) are retained and excluded from
garbage collection until w detects the next read of c, i.e., the reader index of c increases. Thus, the
current read may span many concurrent writes of w and the fragments remain available until c finishes
reading.

On the other hand, a reader must consider frozen values. When a slow read operation spans multiple
concurrent writes, the reader c learns that it should retrieve the frozen value through its entry in the
frozenindex table of the writer. More precisely, when c retrieves the metadata from dir and finds that
writer w’s frozenindex[c] entry equals its readindex variable, then w has frozen the value designated by
frozenptrlist[c] for c.

The protocol is amnesic because each writer retains at most two values per reader, a frozen value
and a reserved value. Every data node therefore stores at most two fragments for every reader-writer pair
plus the fragment from the currently written value. The combination of freezing and retentions ensures
that readers never wait.

7

3.3 Details

Data structures. We use abstract data structures for compactness. In particular, given a timestamp
ts = (sn, c), its two fields can be accessed as ts.sn and ts.c. A data type Pointers denotes a set of tuples
of the form (ts, set, hash) with ts ∈ Timestamps, set ⊆ [1, n], and hash[i] ∈ Σ∗ for i ∈ [1, n]. Their
initialization value is Nullptr = ((0,⊥), ∅, [⊥, . . . ,⊥]).

A Pointers structure contains the relevant information about one stored value. For example, the
writer locally maintains writeptr ∈ Pointers designating to the most recently written value. More specif-
ically, writeptr.ts contains the timestamp of the written value, writeptr.set contains the identities of the
nodes that have confirmed to have stored the written value, and writeptr.hash contains the cross check-
sum, the list of hash values of the data fragments, of the written value.

The metadata directory dir contains a vector M with a tuple for every client p ∈ C of the form

M [p] =
(
writeptr, frozenptrlist, frozenindex, readindex

)
,

where the field writeptr ∈ Pointers represents the written value, the field frozenptrlist is an array indexed
by c ∈ C such that frozenptrlist[c] ∈ Pointers denotes a value frozen by p for reader c, and the integer
readindex denotes the reader-index of p.

For preventing that concurrently accessed fragments are garbage-collected, the writer maintains two
tables, frozenptrlist, and reservedptrlist, each containing one Pointers entry for every reader in C. The
second one, reservedptrlist, is stored only locally, together with the frozenindex table, which denotes the
writer’s most recently obtained copy of the reader indices. For the operations of the reader, only the
local readindex counter is needed.

Every client maintains the following variables between operations: writeptr, frozenptrlist, frozenin-
dex, and reservedptrlist implement freezing, reservations, and retentions for writers as mentioned, and
readindex counts the reader operations.

When clients access dir, they may not be interested to retrieve all fields or to update all fields. For
clarity we replace the fields to be ignored by ∗ in those dir-Scan and dir-Update operations.

Operations. At the start of a write operation, the writerw saves the current value of writeptr in prevptr,
to be used later during its operation, if w should reserve and retain that value. Then w determines the
timestamp of the current operation, which is stored in writeptr.ts. After computing the fragments of v,
sending them to the data nodes, and obtaining t+ k acknowledgements, the writer updates its metadata
entry. It writes writeptr, pointing to v, together with frozenptrlist and frozenindex, as they resulted after
the previous write to dir. Then w invokes dir-Scan and acquires the current metadata M , which it
uses to determine values to freeze and to retain. It compares the acquired reader indices with the ones
obtained during its last write (as stored in frozenindex). When w detects a read operation by c because
M [c].readindex > frozenindex[c], it freezes the current value (by setting frozenptrlist[p] to writeptr) and
reserves the previously written value (by setting reservedptrlist[p] to prevptr). Finally, the writer deletes
all fragments at the data nodes except for those of the currently written and the retained values.

To determine the timestamps for retrieving fragments, the reader uses the following two functions:

function readfrom(M, c, p, index) is
if index > M [p].frozenindex[c] then

return M [p].writeptr
else // index = M [p].frozenindex[c]

return M [p].frozenptrlist[c]

function highestread(M, c, index) is
max← Nullptr
forall p ∈ C do

ptr← readfrom(M, c, p, index)
if ptr.ts > max.ts then

max←ptr
return max

8

Upon retrieving the array M from dir, the reader sets readptr ← highestread(M, c, readindex), which
implements the logic of accessing frozen timestamps. The two functions above ensure that

readfrom(M, c, p, index) =(
ptr ∈ Pointers :

(ptr = M [p].writeptr ∧ index > M [p].frozenindex[c])
∨ (ptr = M [p].frozenptrlist[c] ∧ index = M [p].frozenindex[c])

)
highestread(M, c, index) =

arg maxptr∈Readset
{

ptr.ts
}

, where Readset = {readfrom(M, c, p, index) | p ∈ C}

The details of protocol AWE appear in Algorithms 1–3.

Remarks. Note that AWE does not need a majority of correct data nodes and neither refers to quorum
systems for correctness; these aspects are all encapsulated in the directory service. For liveness, though,
the protocol needs to obtain responses from t + k data nodes during write operations, which is only
possible if n ≥ 2t+ k.

In the current formulation of AWE, every writer retains exactly two values for each reader, regardless
of whether the reader has completed its operation. In fact, a value continues to be retained for a reader c
until c invokes a subsequent r-Read (and concurrently or later, the writer invokes another r-Write). In
order to avoid retaining unnecessary values, one could introduce an additional field in the metadata for
each reader, through which the reader can signal when it completes a read operation. The writer would
periodically check this and remove the values no longer needed.

The data nodes can be implemented from a key-value store (KVS) abstraction that has become a
prominent interface for cloud-storage systems. A KVS can be implemented from read/write registers,
as shown by Cachin et al. [8], though their implementation does not preserve the space complexity.

4 Complexity comparison

This section compares the communication and storage complexities of AWE to existing erasure-coded
distributed storage solutions, in a setting with n data nodes and m clients. We denote the size of each
stored value v ∈ V by ` = dlog2 |V|e. In line with the intended deployment scenarios, we assume that `
is much larger (by several orders of magnitude) than n2 and m2 , i.e., `� n2 and `� m2.

We examine the worst-case communication and storage costs incurred by a client in the protocol and
distinguish metadata operations (on dir) from operations on the data nodes with data (i.e., erasure-coded
fragments of data values).

For protocol AWE, the metadata of one value written to dir consists of a pointer, containing the
cross checksum with n hash values, the t + k identities of the data nodes that store a data fragment,
and a timestamp. Moreover, the metadata entry of one writer contains also the list of m pointers to
frozen values, the m indices relating to the frozen values, and the writer’s reader index. Assuming a
collision-resistant hash function with output size λ bits and timestamps no larger than λ bits, the total
size of the metadata is O(m2nλ). (Note that a 2λ-bit counter suffices for all protocol executions where
the hash function is secure, as collisions in hash functions can be found with about 2λ/2 operations.)
In the remainder of this section, the size of the metadata is considered to be negligible and is ignored,
though it would incur in practice.

According to the above assumption, the complexity of AWE is dominated by the data itself. When
writing a value v ∈ V , the writer sends a fragment of size `/k and a timestamp of size λ to each of
the n data nodes. Assuming further that ` � λ, the total storage space occupied by v at the data nodes
amounts to n`/k bits. Similarly, a read operation incurs a communication cost of (t+ k)k/` bits.

9

Algorithm 1. Protocol AWE, atomic register instance r for client c (part 1).
Uses

Atomic snapshot object, instance dir
Data nodes, instances d1, . . . , dn

State
// State maintained across write and read operations
writeptr ∈ Pointers, initially Nullptr // Metadata of the currently written value
frozenptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Value frozen and retained for reader p
reservedptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Value reserved and retained for reader p
frozenindex[p] ∈ N0, initially 0, for p ∈ C // Last known reader index of p
readindex ∈ N0, initially 0 // Reader index of c
// Temporary state during operations
prevptr ∈ Pointers, initially Nullptr // Metadata of the value written by c prior to current write
readptr ∈ Pointers, initially Nullptr // Metadata of the value to be read by c
readlist[i] ∈ Σ∗, initially ⊥, for i ∈ [1, n] // List of nodes that have responded during read

upon 〈 r-Write | v 〉 do
prevptr← writeptr
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp |M 〉
(wsn, ∗)← max{M [p].writeptr.ts | p ∈ C} // Highest timestamp field ts in a writeptr in M
writeptr.ts← (wsn + 1, c) // Construct metadata of the currently written value
writeptr.set← ∅
[v1, . . . , vn]← Encodek,n(v)
forall i ∈ [1, n] do

writeptr.hash[i]← H(vi)
invoke 〈 di-Write | writeptr.ts, vi 〉

upon 〈 di-WriteAck | ats 〉 such that ats = writeptr.ts ∧ |writeptr.set| < t+ k do
writeptr.set← writeptr.set ∪ {i}
if |writeptr.set| = t+ k then

// Update metadata at dir with currently written value and with frozen values from previous write
invoke 〈 dir-Update | c, (writeptr, frozenptrlist, frozenindex, ∗) 〉; wait for 〈 dir-UpdateAck 〉
// Obtain current reader indices
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp |M 〉
freets← {prevptr.ts}
forall p ∈ C \ {c} do

(∗, ∗, ∗, index)←M [p]
if index > frozenindex[p] then // Client p may be concurrently reading prevptr or writeptr

freets← freets ∪ {frozenptrlist[p].ts, reservedptrlist[p].ts}
frozenptrlist[p]← writeptr; frozenindex[p]← index
reservedptrlist[p]← prevptr

freets← freets \
⋃

p∈C{frozenptrlist[p].ts, reservedptrlist[p].ts}
forall j ∈ [1, n] do // Clean up all fragments except for current, frozen, and reserved values

invoke 〈 dj-Free | freets 〉
invoke 〈 r-WriteAck 〉

10

Algorithm 2. Protocol AWE, atomic register instance r for client c (part 2).
upon 〈 r-Read 〉 do

forall i ∈ [1, n] do readlist[i]← ⊥
readindex← readindex + 1
invoke 〈 dir-Update | c, (∗, ∗, ∗, readindex) 〉; wait for 〈 dir-UpdateAck 〉
// Parse the content of dir and extract the highest timestamp, potentially frozen for c
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp |M 〉
readptr← highestread(M, c, readindex)
if readptr.ts = (0,⊥) then

invoke 〈 r-ReadResp | ⊥ 〉
else // Contact the data nodes to obtain the data fragments

forall i ∈ readptr.set do
invoke 〈 di-Read | readptr.ts 〉

upon 〈 di-ReadResp | vts, v 〉 such that vts = readptr.ts ∧ readlist[i] = ⊥ do
if v 6= ⊥ ∧H(v) = readptr.hash[i] then

readlist[i]← v
if
∣∣{j|readlist[j] 6= ⊥}

∣∣ = k then
readptr← Nullptr
retval←Reconstructk,n(readlist)
invoke 〈 r-ReadResp | retval 〉

Algorithm 3. Protocol AWE, implementation of data node di.
State

data[ts] ∈ Σ∗, initially ⊥, for ts ∈ Timestamps // Stored data values indexed by timestamp

upon 〈 di-Write | ts, v 〉 do
data[ts]← v
invoke 〈 di-WriteAck | ts 〉

upon 〈 di-Read | ts 〉 do
invoke 〈 di-ReadResp | ts, data[ts] 〉

upon 〈 di-Free | freets 〉 do
forall ts ∈ freets do

data[ts]← ⊥
invoke 〈 di-FreeAck | ts 〉

11

Protocol Communication cost Storage cost
Write Read

ORCAS-A [14] (1 +m)n` 2n` n`

ORCAS-B [14] (1 +m)n`/k 2n`/k mn`/k

CASGC [10] n`/k ∗ ∞ mn`/k

CT [9] (n+m)n`/(k + t) ` ∗ n`/(k + t) ∗

HGR [19] n`/k ∗ ∞ mn`/k

M-PoWerStore [12] n`/k ∗ n`/k ∞
DepSky [4] n`/k ∗ n`/k ∞
AWE (Sec. 3) n`/k ∗ (t+ k)`/k 2m2n`/k

Table 2: Comparison of the communication and space complexities of erasure-coded distributed storage
solutions. There are m clients, n data nodes, the erasure code parameter is k = n − 2t, and the data
values are of size ` bits. An asterisk (∗) denotes optimal properties.

With respect to storage complexity, protocol AWE freezes and reserves two timestamps and their
fragments for each writer-reader pair, and additionally stores the fragments of the last written value
for each writer. This means that the storage cost is at most 2m2n`/k bits in total. The improvement
described in a remark of Section 3.3 reduces this to 2mn`/k in the best case.

Table 2 shows the communication and storage costs of protocol AWE and the related protocols.
We use the wait-free semantics achieved by AWE and others as the base case; in CASGC [10] and
HGR [19], a read operation concurrent with an unbounded number of writes may not terminate, hence
we state their cost as ∞. In contrast to AWE, DepSky [4] is neither wait-free nor amnesic and M-
PoWerStore [12] is not amnesic. It is easy to see that AWE performs better than most storage solutions
in terms communication complexity.

5 Analysis

In this section we prove that protocol AWE, given by Algorithms 1–3, emulates an atomic read/write
register and is wait-free.

Whenever the metadata directory dir contains an entry ts = M [c].frozenptrlist[p].ts we say that
timestamp ts is frozen by c for p. If ts is frozen by some c for any p, then ts is simply frozen. Fur-
thermore, considering the state of writer c, a timestamp ts is said to be retained by c for p when either
frozenptrlist[p].ts = ts (this includes that ts is frozen by c for p) or when reservedptrlist[p].ts = ts (which
means that ts is reserved by c for p). A timestamp is retained by c when it is retained by c for some p.
We call the timestamp M [c].writeptr.ts the written timestamp of c.

Lemma 1 (Frozen timestamps). At any time the timestamps that a client has frozen are no larger than
its written timestamp. More precisely, for all c, p ∈ C,

M [c].writeptr.ts > M [c].frozenptrlist[p].ts.

Moreover, during any dir-Update operation of c, the timestamp M [c].writeptr.ts and all timestamps
M [c].frozenptrlist[p].ts may only increase.

Proof. From Algorithm 1 it follows that for any client c, the timestamps stored inM [c].writeptr.ts in suc-
cessive r-Write operations of c increase. From the same algorithm, it is clear thatM [c].frozenptrlist[p].ts
is only updated through a r-Write operation of c, and is set to the written timestamp of the preceding
r-Write operation of c, which is strictly smaller than the written timestamp stored in M [c].writptr.ts.
The second inequality follows analogously. Thus, the values stored in M [c].frozenptrlist[p].ts only in-
crease.

12

We define the timestamp of a register operation o as follows: (i) for an r-Write operation, the
timestamp of o is the value assigned to variable writeptr.ts during o; (ii) when o is an r-Read operation,
then its timestamp is the value assigned to variable readptr.ts by highestread. Note that the timestamp of
an r-Read operation is (0,⊥) if and only if o returns⊥. Furthermore, we say that a value v is associated
to a timestamp ts whenever the timestamp of the register operation that writes v is ts.

According to highestread, the timestamp in the returned pointer may be frozen (taken from the
frozenptrlist field of M) or written (taken from the writeptr field of M), but not both.

Lemma 2 (Read frozen timestamp). If the timestamp ts of a r-Read operation or by client c has been
frozen for c by a client w, then w executes two r-Write operations concurrently to or, where the dir-
Scan operation of the former r-Write operation ow,1 and the dir-Update operation of the latter r-Write
operation ow,2 occur between dir-Update and dir-Scan operations of or. Moreover, the timestamp of the
r-Read operation or is ts, the one associated with the value written by ow,1.

Proof. From Algorithm 2 it follows that for highestread within or to return a frozen timestamp, then, if
M is the metadata snapshot returned by the dir-Scan operation during or, it holdsM [w].frozenindex[c] =
readindex. This means that w invoked dir-Update with the most recent value of readindex before the
dir-Scan during or. To do that, w must have detected the change of the readindex entry in M [c] caused
by or through the dir-Scan operation invoked during ow,1. From Algorithm 1, this can only be the
operation through which w wrote the value associated to ts.

Lemma 3 (Partial order). Let o and o′ be two distinct operations on register r with timestamps ts and
ts′, respectively, such that o precedes o′. Then ts ≤ ts′. Furthermore, if o′ is of type r-Write, then ts < ts′.

Proof. We distinguish between two cases, depending on the type of o.

Case 1: If o is of type r-Write, the claim follows directly from Lemma 1 and from the algorithm of the
writer. In particular, if o′ is of type r-Read, then, if there is no concurrent r-Write operation of
the same client w as o, ts is returned as written timestamp by the readfrom function when called
for w and reader of o′. In addition, if o′ runs concurrently with a r-Write of w, then one of the
two hold: (i) ts (or a higher timestamp if many r-Write operations have intervened) is frozen for
o′ and is returned by the readfrom operation invoked by highestread in o′ for w, (ii) ts (or a higher
timestamp if many r-Write operations have intervened) has not yet been frozen by w, in which
case a written timestamp greater or equal to ts (by Lemma 1) is returned by the readfrom operation
invoked by highestread in o′ for w.

Case 2: If o is of type r-Read, then let ts∗ be the maximum value of the timestamp field ts in a writeptr
at the time when the dir-Scan operation invoked by o returns. Note that highestread obtains ts as
this maximum or as a frozen timestamp. Lemma 1 implies now that ts ≤ ts∗.

We now show that ts ≤ ts′ by distinguishing two cases. First, if o′ is of type r-Write, the writer
calls dir-Scan after o completes and determines the maximum value of the ts field in any writeptr.
Then it increments that timestamp to obtain ts′. This ensures that ts′ > ts∗ ≥ ts, as claimed.

Second, if o′ is of type r-Read, then ts′ may either have been a written timestamp or a frozen
timestamp (at the time when the client obtained the response of its dir-Scan). If ts′ has been
written, then ts′ is the maximum value of the ts field in any writeptr, which is at least as large as
ts∗ by Lemma 1 and by the atomicity of dir.

Alternatively, if ts′ has been frozen by writer w, then Lemma 2 applies and shows that there exist
two r-Write operations byw that are concurrent to o′, of which the first writes the value associated
to ts′. As such, if tsw is the timestamp returned by the readfrom function invoked by any r-Read
operation o that precedes o′ and for writer w, then tsw ≤ ts′. Since this can be extended to all
writers, it holds that ts ≤ ts′.

13

Lemma 4 (Unique writes). If o and o′ are two distinct operations of type r-Write with timestamps ts
and ts′, respectively, then ts 6= ts′.

Proof. If o and o′ are executed by different clients, then the two timestamps differ in their second com-
ponent. If o and o′ are executed by the same client, then the client executed them sequentially. By
Lemma 3, it holds ts 6= ts′.

Lemma 5 (Integrity). Let or be an operation of type r-Read with timestamp tsr that returns a value
v 6= ⊥. Then there is a unique operation ow of type r-Write that writes v with timestamp tsw = tsr.

Proof. Operation or by client c returns v and is, thus, complete. This means that the client has processed
k events of type di-ReadResp from distinct nodes in a set Dk; according to the protocol, the client has
verified that the response from every di ∈ Dk contains a timestamp vtsi and a fragment vi such that
vtsi = tsr and H(vi) = readptr.hash[i].

According to the code, the value readptr is computed from a writeptr or a frozenptr[c] entry stored
in the metadata directory dir. This pointer must have been computed during the write operation with
timestamp tsw and was later stored in dir by the same client. Note that by Lemma 4, no other write has
timestamp tsw. From the algorithm of the writer, it follows that the entries in readhash were generated
as hash values of the fragments, i.e., readhash[i] = H(v̄i), where v̄i for i = 1, . . . , n represent the
erasure-coded fragments of some value v̄.

Based on the check by the reader and the security property of the hash function, this means that
vi = v̄i for all i ∈ Dk. The completeness of the erasure code now implies that the reconstruction yields
v̄ = v, the value associated to tsw and written by ow.

Lemma 6 (Read concurrent with multiple writes). Consider an operation or of type r-Read invoked
by a reader c, with timestamp tsr. At the time when c determines tsr (by highestread), there are at least
k distinct correct data nodes that store a data fragment (different from ⊥) under timestamp tsr and they
do not free this fragment before c completes or.

Proof. Suppose that tsr = (sn, w) and the writer is client w. Consider a sequence ow,1, . . . , ow,m
of r-Write operations executed by w with respective timestamps tsw,1, . . . , tsw,m, of which some are
concurrent to or. Now consider the linearization of dir and let ow,i be the last one among these r-
Write operations whose dir-Update (denoted by dir-Updatew,i) precedes the dir-Update operation of
the reader during or (denoted by dir-Updater). Let readindex denote the reader’s index at the time
when c invokes dir-Updater.

W.l.o.g. suppose that dir-Updater follows at least one dir-Update operation that is triggered by an
r-Write operation of w; furthermore, suppose that w executes at least one more r-Write operation dir-
Updatew,i+1 after dir-Updatew,i.

We claim that tsr = tsw,i ∨ tsr = tsw,i+1. To show this, we distinguish four cases, considering the
linearization of operations on dir. Let dir-Scanw,i denote the second invocation of dir-Scan during ow,i,
the one from which the writer takes readindex.

Case 1: Suppose that dir-Updater precedes dir-Scanw,i; this means thatw detects the concurrent read or
during ow,i, in the sense that w updates its variable frozenindex[c] to readindex.

(Case 1.a) If the dir-Scan operation of the reader c during or, denoted by dir-Scanr, precedes dir-
Updatew,i+1, then c obtains tsr = tsw,i as the highest timestamp stored in M by the algorithm.

(Case 1.b) Otherwise, dir-Scanr follows dir-Updatew,i+1; then the reader c obtains M such that
M [w].frozenindex[c] is equal to readindex and tsr = M [w].frozenptrlist[c].ts = tsw,i, according
to readfrom in the protocol and because M [w].frozenindex[c] is equal to readindex.

14

Case 2: Suppose that dir-Updater follows dir-Scanw,i. This means that dir-Updater takes place be-
tween dir-Scanw,i and dir-Updatew,i+1 and w detects the concurrent read or only during ow,i+1,
after executing dir-Scanw,i+1. The same two sub-cases may occur now.

(Case 2.a) If dir-Scanr precedes dir-Updatew,i+1, then tsr = tsw,i, analogous to Case 1.a.

(Case 2.b) Otherwise, dir-Scanr follows dir-Updatew,i+1 and the reader obtains tsr = tsw,i+1.
To see this, suppose that (Case 2.b.i) dir-Scanr precedes the dir-Updatew,i+2 in the subsequent
r-Write operation of w or there is no such r-Write; then, the value readindex of c remains greater
than M [w].frozenindex[c] and thus c sets tsr = tsw,i+1. Alternatively (Case 2.b.ii), suppose that
dir-Scanr follows dir-Updatew,i+2; then, according to the protocol, the writer has already set
M [w].frozenindex[c] = readindex during dir-Updatew,i+2 and c sets tsr = tsw,i+1 analogous to
Case 1.b.

Suppose the reader determines that readptr.ts = tsr; then the correct nodes in readptr.set store a
fragment of the associated value because at least t + k nodes in readptr.set have sent a di-WriteAck
for tsr to the writer. Accounting for the up to t faulty nodes, at least k correct nodes have once stored
a fragment in data[tsr]. It remains to argue why these nodes do not free this fragment before c com-
pletes or.

In Case 1.a, the writer detects the concurrent read during ow,i and therefore excludes the data frag-
ments associated to tsr from garbage collection for c, by setting frozenptrlist[r].ts to tsr in its state.
According to the logic of the protocol, tsr remains frozen and the corresponding fragments are retained
at least until c invokes a subsequent read operation.

In Case 2.a, almost the same happens during ow,i+1, when the writer detects the concurrent read. The
writer sets reservedptrlist[r].ts to tsr in its state. Again according to the protocol, tsr remains reserved
and the writer retains the corresponding fragments at least until c invokes a subsequent read.

Intuitively, Cases 1.a and 2.a demonstrate why w retains two values during a write (the one being
written and the one written before): w does not know which one of the two the reader is about to access.

In Case 2.b.i, if the writer detects the concurrent read during ow,i+2, then it reserves and retains tsr
and the claim follows analogously to Case 2.a.

In Cases 1.b and 2.b.ii, the reader accesses a frozen value. Again, according to the protocol, tsr
remains frozen and is retained at least until c invokes a subsequent read operation. The lemma follows.

Theorem 7 (Atomicity). Given a atomic snapshot object dir, protocol AWE emulates an atomic MRMW
register r.

Proof. We show that every execution σ of the protocol is linearizable with respect to an MRMW register.
By Lemma 5, the timestamp of a r-Read either has been written by some r-Write operation or r-Read
returns ⊥.

We first construct an execution τ from σ by completing all operations of type r-Write for those
values v that have been returned by some r-Read operation. Then we obtain a sequential permutation π
from τ as follows: (1) order all operations according to their timestamps; (2) among the operations
with the same timestamp, place the r-Read operations immediately after the unique r-Write with this
timestamp; and (3) arrange all non-concurrent operations in the same order as in τ . Note that concurrent
r-Read operations with the same timestamp may appear in arbitrary order.

For proving that π is a view of τ at a client c w.r.t. a register, we must show that every r-Read
operation returns the value written by the latest preceding r-Write that appears before in π or ⊥ if there
is no such operation.

Let or be an operation of type r-Read with timestamp tsr that returns a value v. If v = ⊥, then by
construction or is ordered before any write operation in π. Otherwise, it holds v 6= ⊥ and according
to Lemma 5, there exists an r-Write operation ow that writes v with the same timestamp. In this case,

15

ow is placed in π before or by construction. No other r-Write operation appears between ow and or
because all other write operations have a different timestamp and therefore appear in π either before ow
or after or.

It remains to show that π preserves the real-time order of σ. Consider two operations o and o′ in
τ with timestamps tso and ts′o, respectively, such that o precedes o′. From Lemma 3, we have ts′ ≥ ts.
If ts′ > ts then o′ appears after o in π by construction. Otherwise ts′ = ts and o′ must be an operation
of type r-Read. If o is of type r-Write, then o′ appears after o since we placed each r-Read after the
r-Write with the same timestamp. Otherwise, o is a r-Read and the two r-Read operations appear in π
in the same order as in τ by construction.

Theorem 8 (Wait-freedom). Given an atomic snapshot object dir and assuming that n ≥ 2t + k,
protocol AWE is wait-free.

Proof. As the atomic snapshot dir operates correctly, all its operations eventually complete indepen-
dently of other processes. It remains to show that no r-Write and no r-Read operation blocks.

For a r-Write operation, the client needs to receive t + k di-WriteAck events from distinct data
nodes before completing. As there are n nodes and up to t may be faulty, the assumption n ≥ 2t + k
implies this.

During a r-Read operation, the reader needs to obtain k valid fragments, i.e., fragments that pass
the verification of their hash value. According to Lemma 6, there are at least k correct data nodes
designated by readptr.set that store a fragment under timestamp tsr until the operation completes. As
the reader contacts these nodes and waits for k fragments, these fragments eventually arrive and can be
reconstructed to the value written by the writer by the completeness of the erasure code.

6 Conclusion

This paper has presented AWE, the first erasure-coded distributed implementation of a multi-writer
multi-reader read/write storage object that is, at the same time: (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (i.e., with data nodes storing a bounded number of values) and (5) Byzantine fault-
tolerant (BFT) using the optimal number of nodes. AWE is efficient since it does not use public-key
cryptography and requires data nodes that support only reads and writes, further reducing the cost of
deployment and ownership of a distributed storage solution. Notably, AWE stores metadata separately
from k-out-of-n erasure-coded fragments. This enables AWE to be the first BFT protocol that uses as
few as 2t+ k data nodes to tolerate t Byzantine nodes, for any k ≥ 1.

Future work should address how to optimize protocol AWE and to reduce the storage consumption
for practical systems; this could be done at the cost of increasing its conceptual complexity and losing
some of its ideal properties. For instance, when the metadata service is moved from a storage abstraction
to a service with processing, it is conceivable that fewer values have to be retained at the nodes.

Acknowledgment

We thank Alessandro Sorniotti, Nikola Knežević, and Radu Banabic for inspiring discussions during the
early stages of this work. This work is supported in part by the EU CLOUDSPACES (FP7-317555) and
SECCRIT (FP7-312758) projects.

References

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine disk Paxos: Optimal resilience with
Byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

16

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In Proc. 5th Symp. Operating Systems Design and Implementa-
tion (OSDI), 2002.

[3] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. Journal of the ACM, 40(4):873–890, 1993.

[4] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSky: Dependable and secure
storage in a cloud-of-clouds. In Proc. 6th European Conference on Computer Systems (EuroSys),
pages 31–46, 2011.

[5] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and integrity layer for cloud
storage. In Proc. 16th ACM Conference on Computer and Communications Security (CCS), pages
187–198, 2009.

[6] C. Cachin, D. Dobre, and M. Vukolić. BFT storage with 2t + 1 data replicas. Report
arXiv:1305.4868, CoRR, 2013.

[7] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed Pro-
gramming (Second Edition). Springer, 2011.

[8] C. Cachin, B. Junker, and A. Sorniotti. On limitations of using cloud storage for data replication.
Proc. WRAITS, 2012.

[9] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed storage. In
Proc. International Conference on Dependable Systems and Networks (DSN-DCCS), pages 115–
124, 2006.

[10] V. R. Cadambe, N. Lynch, M. Medard, and P. Musial. Coded atomic shared memory emulation for
message passing architectures. CSAIL Technical Report MIT-CSAIL-TR-2013-016, MIT, 2013.

[11] G. Chockler, R. Guerraoui, and I. Keidar. Amnesic distributed storage. In G. Taubenfeld, editor,
Proc. 21th International Conference on Distributed Computing (DISC), volume 4731 of Lecture
Notes in Computer Science, pages 139–151. Springer, 2007.

[12] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolić. PoWerStore: Proofs of writing
for efficient and robust storage. In Proc. ACM Conference on Computer and Communications
Security (CCS), 2013.

[13] D. Dobre, M. Majuntke, and N. Suri. On the time-complexity of robust and amnesic storage.
In T. P. Baker, A. Bui, and S. Tixeuil, editors, Proc. 12th Conference on Principles of Distributed
Systems (OPODIS), volume 5401 of Lecture Notes in Computer Science, pages 197–216. Springer,
2008.

[14] P. Dutta, R. Guerraoui, and R. R. Levy. Optimistic erasure-coded distributed storage. In G. Tauben-
feld, editor, Proc. 22th International Conference on Distributed Computing (DISC), volume 5218
of Lecture Notes in Computer Science, pages 182–196. Springer, 2008.

[15] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. A decentralized algorithm for erasure-
coded virtual disks. In Proc. International Conference on Dependable Systems and Networks
(DSN-DCCS), pages 125–134, 2004.

17

[16] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-tolerant erasure-
coded storage. In Proc. International Conference on Dependable Systems and Networks (DSN-
DCCS), pages 135–144, 2004.

[17] R. Guerraoui, R. R. Levy, and M. Vukolić. Lucky read/write access to robust atomic storage. In
Proc. International Conference on Dependable Systems and Networks (DSN-DCCS), pages 125–
136, 2006.

[18] J. Hendricks. Efficient Byzantine Fault Tolerance for Scalable Storage and Services. PhD thesis,
School of Computer Science, Carnegie Mellon University, July 2009.

[19] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage. In
Proc. 21st ACM Symposium on Operating Systems Principles (SOSP), 2007.

[20] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Sys-
tems, 11(1):124–149, Jan. 1991.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[22] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, et al. Erasure coding in Windows
Azure Storage. In Proc. USENIX Annual Technical Conference, 2012.

[23] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[24] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In D. Malkhi, editor, Proc.
16th International Conference on Distributed Computing (DISC), volume 2508 of Lecture Notes
in Computer Science, pages 311–325. Springer, 2002.

[25] J. S. Plank. Erasure codes for storage applications. Tutorial, presented at the Usenix Conference
on File and Storage Technologies (FAST), 2005.

[26] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.
Journal of the ACM, 36(2):335–348, 1989.

[27] W. Wong. Cleversafe grows along with customers’ data storage needs. Chicago Tribune, Nov.
2013.

[28] J. Yin, J.-P. Martin, A. V. L. Alvisi, and M. Dahlin. Separating agreement from execution in
Byzantine fault-tolerant services. In Proc. 19th ACM Symposium on Operating Systems Principles
(SOSP), pages 253–268, 2003.

18

	Introduction
	Definitions
	Protocol AWE
	Abstractions
	Protocol overview
	Details

	Complexity comparison
	Analysis
	Conclusion

