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Abstract

We describe a novel and efficient protocol for the following problem: A wants to buy some
good from B if the price is less than a. B would like to sell, but only for more than b,
and neither of them wants to reveal the secret bounds. Will the deal take place? Our
solution uses an oblivious third party T who learns no information about a or b, not even
whether a > b. The protocol needs only a single round of interaction, ensures fairness,
and is not based on general circuit evaluation techniques. It uses a novel construction,
which combines homomorphic encryption with the Φ-hiding assumption and which may be
of independent interest. Applications include bargaining between two parties and secure
and efficient auctions in the absence of a fully trusted auction service.

Keywords: Bidding, Auctions, Homomorphic cryptosystems, Φ-Hiding assumption, Pri-
vate information retrieval, Multiparty computation.

1 Introduction

Suppose A wants to buy some good from B if the price is less than a. B would like to sell, but
only for more than b, and neither of them wants to reveal the secret bounds a and b. Will the
deal take place? We call this the problem of private bidding : Ideally, A and B have a trusted
device at hand, in which they privately enter a and b. The device outputs either “yes” if a > b
or “no,” but no further information. Only if the result is “yes” does A have to reveal a and
the deal takes place at this price (other policies could be applied here). This work presents a
fair and efficient protocol for private bidding that uses a partially trusted third party T , who
learns no information about a or b.

An efficient solution for private bidding enables new forms of electronic business transactions
that are impossible in face-to-face situations. The recent success of Web auction services shows
that person-to-person auctions are an important concept in online trading. These services do
not (yet) offer privacy to the bidders, although privacy is becoming more and more important
in the online world. Private bidding is also reminiscent of bargaining, once a very popular
method to determine a price and still used in many places.

The technical aspects of private bidding are by no means new to cryptography. In fact, the
problem was introduced almost twenty years ago as the “millionaire’s problem” [Yao82]: Two
parties want to determine who is richer without disclosing anything else about their wealth. A
∗This is IBM Research Report RZ 3131 (May 25, 1999).
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number of early solutions for this problem have become part of the folklore. None of them is
efficient, though, because for l-bit numbers a and b, the work is in Θ(2l).

The development of techniques for general secure multiparty computation subsequently
showed that any two- or multi-party function can be computed securely [GMW87, BGW88,
CCD88, AF90, Gol98]. Thus, A and B can perform private bidding efficiently even without
help from a third party! However, the generic two-party constructions do not ensure fairness in
an efficient way; and if a third party is involved for this purpose, it is unclear how to maintain
the privacy of the losing bid.

In contrast, our protocol is fair and efficient: it requires only two messages between bidders
A and B and two messages between each bidder and T . The protocol does not use the general
method based on circuits and gains its efficiency through the help of the semi-trusted party T .
A and B trust T to perform some service for them, but they do not want T to learn anything
about their bids. Thus, T can misbehave on its own and try to get information about a or b,
but it does not collude with either A or B.

Our solution is based on a combination of homomorphic public-key encryption and a number-
theoretic construction relying on the φ-hiding assumption, which was first used for private
information retrieval (PIR) schemes with low communication [CMS99]. This construction may
be of independent interest.

The protocol guarantees fairness for A and B in the following sense: A learns the result
of a > b if and only if B learns it. Without help from a neutral party, ensuring fairness be-
tween distrusting parties is a notoriously time-consuming task in the digital world and typically
requires many rounds of interaction (e.g. [BGMR90]). Recent work on fair exchange (see the
references in Sect. 1.3) shows how a third party can provide fairness in practical protocols, even
if it is not involved in regular transactions and only used if needed. Fairness is ensured here
because both parties commit to their inputs. The winner has to reveal its number and the other
party can verify that this was the number used in the protocol without disclosing the losing
bid.

1.1 Overview of the Protocol

We give a short description here; the complete protocol can be found in Section 3. Let a, b ∈
[0, 2l − 1] be A’s and B’s inputs, respectively. The idea behind the protocol is that T blindly
compares the bits of a and b, starting with the most significant bit. At the first index where
the bits differ, a result flag is registered (invisibly for T ) that determines whether a > b. The
result is retrieved by A and B using the mechanism of the PIR protocol based on the Φ-hiding
assumption.

We say that a modulus m = p′q′ hides a prime p if p′ and q′ are large (e.g. 500-bit) primes
such that p′ = 2q1 + 1 with q1 prime and p′ = 2pq2 + 1, where p, q2 are odd primes and p is
short (e.g. 100 bits). Thus, p divides φ(m). The Φ-hiding assumption (ΦHA) is: for a randomly
chosen m that hides a prime p0 and an independent, randomly chosen short prime p1, it is hard
to distinguish whether p0 or p1 is a factor of φ(m). Given a number m that hides p, a list of
short primes p1, . . . , pn, and a starting value g ∈ Zm (that has no pth roots modulo m), suppose
one raises g to the power

∏
i pi modulo m. The result has a pth root modulo m if and only

if p = pi for some pi in the list; however, determining this or finding i is assumed to be hard
without knowledge of m’s factorization (see Section 2.3).

Let S be a semantically secure public-key system with (probabilistic) encryption function
ET : X → C and decryption function DT : C → X that satisfies the following homomorphic
property. Let (X ,+, 0) denote an Abelian group on messages and (C, ·, 1) an Abelian group
on ciphertexts; for x0, x1 ∈ X , it holds ET (x0 + x1) = ET (x0) · ET (x1). (S also has to satisfy
DT (ET (x0 + x1)) 6= DT (ET (x0 − x1)), see Section 2.4.) At the beginning of the protocol, T
chooses a public-key/secret-key pair for S, publishes ET and keeps DT secret.
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A and B choose random xl, xl−1, . . . , x0 ∈ X and sl−1, . . . , s0 ∈ X . A chooses a random
modulus mA that hides a short prime pA; similarly B chooses mB that hides pB. Let λ be a
one-way map from X to primes of the same length as pA, pB such that λ(xj + sj) = pA and
λ(xj − sj) = pB for j = 1, . . . , l. A prepares

yA,j = ET (xj − xj+1 + ajsj)

(where al−1, . . . , a0 are the bits of a) and B prepares

yB,j = ET (−bjsj)

(where multiplication of sj ∈ X by a bit aj is interpreted in the natural way). Together, they
compute zj = yA,j · yB,j for j = l − 1, . . . , 0 and send xl, zl−1, . . . , z0 and mA,mB to T .

T computes cl = xl, chooses gA,l ∈ ZmA and gB,l ∈ ZmB at random and repeats for
j = l − 1, . . . , 0:

1. cj = cj+1 +DT (zj);

2. gA,j = (gA,j+1)λ(cj) mod mA;

3. gB,j = (gB,j+1)λ(cj) mod mB;

T sends gA,0 to A and gB,0 to B. The bidders can determine whether a > b by checking whether
gA,0 has a pAth root modulo mA using the factorization of mA (and similarly for B). Note that
during T ’s loop on j = l− 1, . . . , it holds that cj = xj as long as aj = bj , then λ(cj) is equal to
pA or pB once, but is different from pA and pB afterwards.

1.2 Applications

Apart from two-party private bidding by itself, our protocol can be used for bargaining on the
Internet and as a building block for secure auction protocols.

The Internet is already a popular place to conduct auctions, as can be seen from the liter-
ature (e.g. [BS98, KF98]), but even more so from the recent rise of companies offering online
auctions such as eBay and Onsale.1

Bargaining is an ancient and still very popular method to determine a price, and our protocol
enables efficient bargaining in the digital world. The private bidding protocol is used repeatedly
until the price is fixed. A starts by offering a (too) low amount a and B initially asks a (too)
high price b. They repeat the protocol with changing values until a > b and A (or B, depending
on the policy) has to reveal the closing price. In contrast to face-to-face bargaining, no party
learns anything about the strategy of the other party.

The private bidding protocol forms a building block for sealed-bid auctions with a partially
trusted auction service. Ideally, the bidders want their bids to remain secret unless they win the
auction (and obviously have to announce their bid). In Section 4, we describe briefly a practical
protocol for cryptographically protected sealed-bid auctions with only two auction servers. The
two semi-trusted servers are assumed not to collude. One server learns some information about
the bids (namely their partial order) and the other server learns no information at all. Previous
protocols were based either on general multiparty computation techniques [HTK98] or ensured
primarily fairness, but not secrecy [FR96].

1A search on April 26, 1999 for “auctions” in news.com turned up 52 news items in April 1999 alone.
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1.3 Related Work

A semi-trusted third party was first used for efficient fair exchange protocols by Franklin and
Reiter [FR97]. The third party has to be present for the transaction, but it is prevented from
learning anything about the messages exchanged by a cryptographic protocol.

The optimistic approach to fair exchange by Asokan, Schunter, Shoup, and Waidner [ASW97,
ASW98] does not need the third party during regular operation of the system; T only handles
exceptions, such as network failures or attempts to cheat. A similar approach for delivering
certified email with an “invisible” third party was independently presented by Micali [Mic97].

A protocol for secure sealed-bid online auctions has been proposed by Franklin and Re-
iter [FR96]. Their auction service consists of s servers of which up to t ≤ b s−1

3 c can be
corrupted. It ensures fairness for the bidders, guarantees that payment can be collected from
the winner, and hides the bids, but only until the bidding period closes. The bids are later
opened collaboratively by the servers and the winner is determined in the open, so that all
servers can see the bids.

The recent work of Harkavy et al. [HTK98] describes an auction service for secure sealed-bid
auctions, in which only the winning bid is disclosed. It is based on general techniques for secure
multiparty computation and can tolerate up to t ≤ b s−1

3 c corrupted servers. The protocols are
practical only for small values of s.

2 Tools

2.1 Preliminaries

The security parameter is denoted by k and we use k′, k′′, . . . to denote additional security
parameters. Wherever k′′, . . . occurs, it is implicitly assumed that there is a polynomial p′(·)
and k′ = Θ(p′(k)). For k′′, . . . the assumption is analogous. The notation [a, b] denotes the
interval {a, . . . , b} ⊂ Z. For an l-bit number a, let al−1, . . . , a0 be its binary representation such
that a =

∑l−1
j=0 ai2

j . The binary representation of ar ∈ [0, 2l − 1] is denoted by ar,l−1, . . . , ar,0.
The concatenation of strings is denoted by ‖.

For a positive integer m, let QRm denote the subgroup of squares in Z∗m. The Euler totient
function of an integer m, denoted by φ(m), is defined as the number of positive integers ≤ m
that are relatively prime to m.

An algorithm is a (probabilistic) Turing machine. A probabilistic polynomial-time (PPT)
algorithm runs in polynomial time except for an exponentially small fraction of its random
choices.

The statistical difference between two probability distributions PX and PY is denoted by
|PX − PY |. A quantity εk is called negligible (as a function of k) if for all c > 0 there exists a
constant k0 such that εk < 1

kc for all k > k0; otherwise, it is called noticeable or non-negligible.
The formal security notion is defined in terms of indistinguishability of probability ensembles

indexed by k, but extension from a single random variable to an ensemble is usually assumed
implicitly.

Two probability ensembles X = {Xk} and Y = {Yk} are called statistically indistinguishable
(written X

s
≈ Y ) if |PXk − PYk | is negligible.

Two probability ensembles X = {Xk} and Y = {Yk} are called computationally indistin-
guishable (written X

c
≈ Y ) if for every algorithm D that runs in probabilistic polynomial time

(in the length of its inputs), |P[D(1k, Xk) = 1]− P[D(1k, Yk) = 1]| is negligible.
We also need a hash function family H with the following property that generalizes universal

one-way hash functions [NY89]: H consists of efficiently computable functions Hk : Kk ×
{0, 1}∗ → {0, 1}k′ such that for all PPT algorithms D, all input strings x of polynomial length
in k, and polynomially (in k) many strings ∆1, . . . ,∆k′′ ∈ {0, 1}k

′
, the probability for a randomly
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chosen κ ∈ Kk that D outputs x′ such that Hk(κ, x) = Hk(κ, x′) ⊕∆i for some i is negligible.
We call such H a ∆-universal one-way hash function.

A commitment scheme is a protocol between two parties S and R that consists of a commit
phase, in which S commits to some secret value, and of an open phase, in which S reveals the
commitment and R verifies that this is indeed the value committed to in the first phase. A
non-interactive string commitment scheme consists of two families of deterministic algorithms,
{Comk} and {Verk}. Comk(ρ, σ) takes as inputs two binary strings and outputs a commitment
string γ. Verk(γ, ρ, σ) takes as inputs three binary strings and outputs 0 or 1. All strings are
of length polynomial in k. The following properties have to hold:

1. for all σ and ρ, Verk(Comk(ρ, σ), ρ, σ) = 1;

2. for two arbitrary σ0, σ1 and randomly chosen ρ0, ρ1, the commitments γ0 = Comk(ρ0, σ0)
and γ1 = Comk(ρ1, σ1) are computationally indistinguishable;

3. the probability that any PPT algorithm outputs γ, ρ, σ, ρ′, σ′ such that Verk(γ, ρ, σ) = 1
and Verk(γ, ρ′, σ′) = 1 is negligible.

2.2 Multiparty Computation Model

The formal description of our protocol is given in the model of multiparty computation. A
multiparty computation (for n parties) is specified by a (possibly randomized) function f :
({0, 1}∗)n → ({0, 1}∗)n, where Pi holds private input xi and wishes to obtain the ith compo-
nent of (y1, . . . , yn) = f(x1, . . . , xn). The goal of a multiparty protocol is to emulate an ideal
situation, in which a universally trusted party U privately receives x1, . . . , xn, evaluates f and
sends back yi to Pi privately (our oblivious T is a regular party Pj in this model).

We distinguish between passive and active cheating. A passively cheating party (also called
semi-honest) follows the protocol, but keeps all records internally. A protocol for computing
f is secure against passive cheating if whatever the semi-honest parties can compute after
participating in the real protocol could essentially be concluded in the ideal situation from their
private inputs and outputs of f (if f is evaluated by U).

Actively cheating parties, on the other hand, may execute arbitrary code. Security is again
defined relative to what is achievable in the ideal model: A protocol is robust (or secure against
active cheating) if for every cheating strategy, there exists a strategy in the ideal model that
achieves essentially the same. In other words, whatever the corrupted parties can do or compute
while participating in the protocol, they could also achieve in the ideal situation.

Formalizing general multiparty computation is in itself a nontrivial task with its own history,
for which we refer to [Bea91, MR92, Gol98, Can98]. The model used here is given in Section 3.1.

2.3 Φ-Hiding Assumption

Our construction is based on the Φ-hiding assumption (ΦHA) [CMS99], which is related to the
difficulty of factoring and to the higher-residuosity assumption.

Informally, the ΦHA states that it is computationally intractable to decide whether a given
small prime divides φ(m), where m is a composite integer of unknown factorization. (Recall
that computing φ(m) on input m is as difficult as factoring m.) We also need to assume that
it is possible to find efficiently a random composite m such that a given prime p divides φ(m),
but we omit this point for simplicity.

Let Pk′ denote the set of all k′-bit primes. Consider the set Rk′′ that consists of all numbers
m = p′q′ such that p′ and q′ are k′′-bit primes, one of which is a safe prime (a prime of the form
2q1 + 1 with q1 prime) and the other one is a quasi-safe prime of the form 2pq2 + 1, where p, q2
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are odd primes and the length of p is k′ bits. We say that a composite m ∈ Rk′′ hides a prime
p ∈ Pk′ if p|φ(m).

The ΦHA asserts that for a random m ∈ Rk′′ that hides a prime p0 ∈ Pk′ and an independent
random prime p1 ∈ Pk′ , the tuples (m, p0) and (m, p1) are computationally indistinguishable.

The following fact is useful in connection with the ΦHA.

Lemma 1. Let m ∈ Rk′′ such that m hides a k′-bit prime p and let g ∈ Z∗m be of order
φ(m)/2. Choose r ∈ Z∗m randomly with uniform distribution. Then for all numbers e0, e1 that
are relatively prime to φ(m)/2,

ge0r
s
≈ ge1r

and

gpe0r
s
≈ gpe1r.

Proof. Because r is chosen randomly in Zφ(m), the distribution of r mod φ(m)/2 is statistically
indistinguishable from the uniform distribution over Zφ(m)/2. As e0 and e1 are relatively prime
to φ(m)/2, the distribution of r · e0/e1 mod φ(m)/2 is also statistically indistinguishable from
the uniform distribution over Zφ(m)/2, which proves the first statement. The second statement
follows analogously.

2.4 Homomorphic Encryption

We need a public-key cryptosystem S with semantic security and a homomorphic property. Let
k be its security parameter, let Ek : {0, 1}k×X → C denote the public encryption function for a
message x using a random string u, and let Dk : C → X be the corresponding secret decryption
function.

Semantic security asserts that an eavesdropper cannot get partial information about the
plaintext from a cryptogram [GM84]. More precisely, S is semantically secure if for two arbitrary
messages x0 and x1 and randomly chosen u0, u1 ∈ {0, 1}k, the encryptions Ek(u0, x0) and
Ek(u1, x1) are computationally indistinguishable.

The required homomorphic property is that Ek(u, ·) is a group homomorphism for all u.
Specifically, let (X ,+, 0) be an Abelian group on messages (with inverse operation denoted by−)
and let (C, ·, 1) be an Abelian group on ciphertexts. Then for all x0, x1 ∈ X and u0, u1 ∈ {0, 1}k,
there exists u such that Ek(u, x0 + x1) = Ek(u0, x0) · Ek(u1, x1).

We need |X | > 2k
′

for some k′ and the group operation + has to be different from addition
of binary vectors. It should be the case that for randomly chosen x, y ∈ X , it holds that
x+y 6= x−y except with negligible probability. These conditions on S rule out using Goldwasser-
Micali encryption [GM84] based on quadratic residuosity repeated k′ times. However, there are
alternatives if one switches to higher residues: higher-residuosity encryption as proposed by
Benaloh [Ben94] and the higher-residues public-key system by Naccache and Stern [NS98].
Both are reviewed in Appendix A.

3 Two-Party Private Bidding

A two-party bidding protocol with an oblivious third party is a protocol for two users, A and
B, with secret inputs a and b, respectively, and a third party T to determine whether a > b.
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3.1 Model

A, B, and T are interactive, probabilistic Turing machines that communicate pairwise through
secure channels (which could be realized by standard cryptographic techniques).

The function to compute is given by the function f : A×B×T → {0, 1}×{0, 1}×T , where
A = B = [0, 2l − 1], T = {ε}, and

f(a, b, ε) =


(1, 0, ε) if a > b

(0, 0, ε) if a = b

(0, 1, ε) if a < b.

A’s and B’s inputs a and b are positive l-bit numbers; T ’s input and output space T contains
only the empty word ε, corresponding to T ’s role as an oblivious third party. For simplicity,
we assume that l and the security parameters k, k′, k′′ are implicit inputs to all parties and
adversaries. (Typically, l and the security parameter k are polynomially related, but l could in
fact be bigger; in this case the protocols run in time polynomial in k and l.)

In the two-party bidding protocol, at most one party is assumed to be cheating, either A or
B actively, or T only passively.

We first describe the passive case (see Section 2.2). The passive real adversary is a PPT
algorithm C that has access to the internal view of A, B, or T . At the end of the real protocol,
the adversary outputs an arbitrary function of its view. Slightly abusing notation, we let the
random variables A(a), B(b), and T (ε) denote the parties’ outputs for inputs a ∈ A, b ∈ B,
and ε, and C the adversary’s output.

The passive adversary in the ideal process is a PPT algorithm C that has access to the
view of A, B, or T . The parties give their inputs (iA, iB, iT ) = (a, b, ε) to U (passive), which
computes (oA, oB, oT ) = f(iA, iB, iT ) and sends back the corresponding outputs. All parties
output the value received from U and the adversary outputs an arbitrary function of its view.
Let us denote the ideal-process output random variables for inputs a, b, ε by A(a), B(b), T (ε),
and C.

An actively cheating A or B is under the complete control of an adversary and may halted
at any time. For simplicity, we assume it sends some message whenever it is supposed to do so
and behaves arbitrarily otherwise.

The active adversary in the real process is the same as for the passive case, except that
we assume w.l.o.g. that the corrupt party outputs the empty string (its output can always be
included in C). In the ideal process, the active adversary is similar to the passive case, except
that it may cause the corrupt party P to send an arbitrary value iP to U and that P outputs
the empty string.

The security definition combines correctness and privacy by requiring that for any real
adversary C, there is an ideal adversary C such that for all inputs a, b, ε, the distributions of
(A(a), B(b), T (ε), C) and (A(a), B(b), T (ε), C) are computationally indistinguishable (i.e., the
distinguisher has access to a and b).

Definition 1. A two-party bidding protocol with an oblivious third party is secure if for every
passive real adversary C, there is a passive ideal adversary C whose running time is bounded
by a polynomial in the running time of C such that for all a ∈ A and b ∈ B, the outputs
(A(a), B(b), T (ε), C) and (A(a), B(b), T (ε), C) are computationally indistinguishable.

A protocol is robust if the same condition holds with C and C being active adversaries.

In particular, A should not gain more information about B’s input b than what follows from
A’s input a (or from whatever A could have sent to T ) and f(a, b, ε); likewise, T , should learn
nothing about a or b.
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3.2 Semi-Honest Case

We first describe the protocol for the semi-honest model, where all participants are supposed to
follow the prescribed protocol, but keep all internal records. The extension to a robust protocol
that prevents malicious behavior is presented in the next section.

Let S be a homomorphic public-key cryptosystem as described above such that its message
space X satisfies |X | > 2k

′
. We need a map λ : {0, 1}k′ → Z that associates a k′-bit prime

p with each k′-bit string x in a deterministic and efficiently invertible way. Denote by λ−1(·)
the function that on input p returns a random element of {x′ ∈ X |λ(x′) = p}. (For example,
interpret x as natural number and use a primality test to find the smallest prime greater than
x.)

Setup. T generates a public-key/secret-key pair Ek, Dk and publishes Ek (i.e., sends it to A
and B over the secure channels).

A chooses random and independent values xl, xl−1, . . . , x0 ∈ X and sl−1, . . . , s0 ∈ X (in
the domain of Ek) and a key κ for the ∆-universal one-way hash function Hk and sends
them to B over the secure channel.

Bid preparation. A chooses a random tA ∈ {0, 1}k
′

that defines a k′-bit prime pA = λ(tA).
Next, she generates a random mA ∈ Rk′′ that hides pA. For j = l−1, . . . , 0, she computes

δA,j = Hk(κ, xj + sj)⊕ tA,

she chooses uj ∈ {0, 1}k at random and encrypts

yA,j =

{
Ek(uj , xj − xj+1) if aj = 0
Ek(uj , xj − xj+1 + sj) if aj = 1.

Similarly, B chooses a random tB ∈ {0, 1}k
′

that defines a k′-bit prime pB = λ(tB) and
generates a random mB ∈ Rk′′ that hides pB. For j = l − 1, . . . , 0, B computes

δB,j = Hk(κ, xj − sj)⊕ tB,

chooses u′j ∈ {0, 1}k at random and lets

yB,j =

{
Ek(u′j , 0) if bj = 0
Ek(u′j ,−sj) if bj = 1.

A sends yA,l−1, . . . , yA,0, δA,l−1, . . . , δA,0,mA to B over the secure channel. Then B com-
putes (in C)

zj = yA,j · yB,j

for j = l − 1, . . . , 0. He sends

κ, xl, zl−1, . . . , z0, δA,l−1, . . . , δA,0, δB,l−1, . . . , δB,0, mA,mB (1)

to T .

Evaluation. T lets cl = xl. T chooses gA,l ∈ QRmA by selecting a random element of ZmA
and squaring it and chooses gB,l ∈ QRmB similarly. Then T repeats the following steps
for j = l − 1, . . . , 0:

1. cj = cj+1 +Dk(zj);

2. qA,j = λ(Hk(κ, cj)⊕ δA,j); gA,j = (gA,j+1)qA,j mod mA;

3. qB,j = λ(Hk(κ, cj)⊕ δB,j); gB,j = (gB,j+1)qB,j mod mB;
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Finally, T chooses rA ∈ ZmA and rB ∈ ZmB randomly and independently, computes

hA = (gA,0)rA ;

hB = (gB,0)rB ;

and sends hA over the secure channel to A and hB over the secure channel to B.

Result extraction. A tests whether hA has a pAth root modulo mA and outputs 1 (concluding
that a > b) if the test succeeds, and 0 otherwise. Note that she can test this using the
factorization of mA by checking whether

hA
φ(mA)/pA ≡ 1 (mod mA).

Similarly, B outputs 1 (concluding a < b) if hB has a pBth root and 0 otherwise.

The communication requirements of the protocol are minimal: after T has initially dis-
tributed Ek, at most one round of interaction is required between every pair of participants.
The protocol can be reordered such that there are only three communication steps.

1. A sends κ;xl, xl−1, . . . , x0; sl−1, . . . , s0; yA,l−1, . . . , yA,0; δA,l−1, . . . , δA,0; mA to B.

2. B sends κ;xl; zl−1, . . . , z0; δA,l−1, . . . , δA,0; δB,l−1, . . . , δB,0; mA,mB to T .

3. T sends hA to A and hB to B.

The idea behind the protocol is that T blindly compares the bits of a and b, starting with
the most significant bit. It helps to consider the following relation that can be readily verified:
for j = l − 1, . . . , 0, we have

cj = xj +
l−1∑
j′=j

sj′(aj′ − bj′). (2)

A and B obtain the result of the comparison using the mechanism of the ΦHA-based PIR
protocol.

Theorem 2. Under the ΦHA and the security assumption for the public-key cryptosystem S,
the protocol above is a secure two-party bidding protocol with an oblivious third party.

Proof (Sketch). According to Definition 1, we have to show that cheating parties do not gain
an advantage in the real protocol compared to the ideal process. Because we consider first only
passive cheating, the proof that (a, b, A(a), B(b), T (ε))

c
≈ (a, b, A(a), B(b), T (ε)) establishes the

correctness of the protocol and C
c
≈ C establishes privacy.

Correctness. Fix inputs a and b and assume a ≥ b. Let j∗ be the index of the most significant
bit where a and b differ (aj∗ = 1 and bj∗ = 0) and let j∗ = −1 if a = b. For j = l, . . . , j∗ + 1,
we have

cj = xj (3)

and therefore, qA,j , qB,j are essentially random primes. At index j∗, T obtains cj∗ = xj∗ + sj∗

and qA,j∗ = pA, but qB,j∗ is a random prime. For smaller j, the primes qA,j , qB,j are again
essentially random because for j = j∗ − 1, . . . , 0,

cj = sj∗ + xj +
j∗−1∑
j′=j

sj′(aj′ − bj′) (4)
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where sj∗ is a random element of X and the sum consists of random values that are independent
of sj∗ . The outputs of A and B directly depend on whether hA and hB have a pAth or pBth
root, respectively. hA has a pAth root because qA,j∗ = pA and further exponentiating cannot
eliminate that.

On the other hand, if gB,l and rB have no pBth root and qB,j 6= pB for all j, then hB has no
pBth root. It is easy to see that both conditions are satisfied except with exponentially small
probability (in k′) because pB and qB,j are all random primes of size Θ(2k

′
) and rB is random.

The other cases a < b and a = b follow analogously. This shows that the outputs A(a),
B(b), and T (ε) agree with f(a, b, ε) except with negligible probability.

Privacy. The proof is by contradiction. Suppose the protocol is not secure. Then there is
a probabilistic polynomial-time real adversary C̃ such that no corresponding polynomial-time
ideal adversary C exists that achieves

(a, b, A(a), B(b), T (ε), C̃)
c
≈ (a, b, A(a), B(b), T (ε), C)

for all a, b.

Cheating A or B. Suppose C̃ has access to B’s communication and internal records. What
such a C̃ might do, for which there is no corresponding C, is to gain more information about
A’s input a than what follows from B’s own output of f(a, b, ε). In other words, w.l.o.g. there
are values a′, a′′, b ∈ [0, 2l − 1] with a′ 6= a′′ and a′ > b and a′′ > b such that C̃ can distinguish
A’s input a′ from a′′ by observing B. Let C ′ denote C̃’s output random variable if A’s input is
a′ and B’s input is b and let C ′′ denote C̃’s output random variable if A’s input is a′′ and B’s
input is b. C ′ and C ′′ are distinguishable by a probabilistic polynomial-time algorithm with
noticeable probability.

B’s (and C̃’s) view consists of κ, xl, . . . , x0, sl−1, . . . , s0, δA,l−1, . . . , δA,0, δB,l−1, . . . , δB,0,
yA,l−1, . . . , yA,0, yB,l−1, . . . , yB,0, mA,mB, and hB; suppose for the moment that it also includes
pA and the integer factorization of mA. The only part that the adversary cannot simulate itself
is yA,l−1, . . . , yA,0 and hB.

As a′ > b and a′′ > b, the adversary cannot obtain its advantage from T ’s response hB: in
both cases, T starts with gB,l that has order φ(m)/2 except with exponentially small probability,
and T raises this modulo mB to primes qB,j and to a random rB ∈ ZmB that are relatively prime
to φ(m)/2 except with exponentially small probability. According to Lemma 1, T ’s replies to
B are statistically indistinguishable and this cannot cause a noticeable difference between C ′

and C ′′.
This implies that C̃ gains its advantage only from observing yA,l−1, . . . , yA,0 and δA,l−1,

. . . ,δA,0. We can use C̃ to construct an algorithm D̃ to break the security assumption of S as
follows. Let J ⊆ [0, l − 1] be the indices of the bits where a′ and a′′ differ.

D̃ takes as inputs a ∈ [0, 2l − 1] and w ∈ X . D̃ chooses a random j∗ ∈ J and emulates the
bidding protocol for A, B, and T with inputs a, b, ε. In the emulation of A, D̃ replaces xj∗ by
w+xj∗+1 if aj∗ = 0 or by w+xj∗+1−sj∗ if aj∗ = 1. The emulation of the protocol is continued
and the adversary C̃ is called with the view of B as input. D̃ outputs whatever C̃ outputs.

Above we have defined how D̃ operates on arbitrary inputs. If D̃ is run on inputs a′ and a
randomly chosen w′ ∈ X , then its output has the same distribution as C ′ by construction. If
D̃ is run on a′′ and an independently chosen random w′′ ∈ X , the output distribution is C ′′.

Because C ′ and C ′′ are distinguishable, D̃ can be used to distinguish encryptions of w′ 6= w′′

with noticeable probability, contradicting the semantic security of S.
A passively cheating A can be handled analogously.

Cheating T . For the second part of the proof, suppose the adversary C̃ has access to T ’s
view, which includes the values in (1) and their decryptions. What such a C̃ might do, for
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which there is no corresponding C, is to gain information about A’s or B’s input a and b.
W.l.o.g. there are values a′, a′′, b′, b′′ ∈ [0, 2l − 1] with a′ 6= a′′ or b′ 6= b′′ such that C̃ can with
noticeable probability distinguish A and B’s inputs a′ and b′ from a′′ and b′′ by observing T ’s
view. Assume w.l.o.g. a′ > a′′ and b′ = b′′.

Define C ′ as the random variable of C̃’s output for A and B’s inputs a′ and b′ and define
C ′′ analogously for a′′ and b′′. There is a probabilistic polynomial-time algorithm that can
distinguish C ′ and C ′′ with noticeable probability.

From T ’s view, C̃ can gain information about A’s inputs either through a relation among
the xj , sj or by exploiting pA|φ(mA). We show that the first case implies collisions in H and
the second case contradicts the ΦHA.

Suppose C̃ exploits the system of 2l equations

tA = Hk(κ, xj + sj)⊕ δA,j
tB = Hk(κ, xj − sj)⊕ δB,j

for j = 0, . . . , l − 1 with unknown tA, tB. As shown in the correctness part, T knows only the
values in (3) and (4) and they satisfy at most one equation in the system above. If C̃ is able to
determine the value side of a second equation, this implies Hk(κ, xj + sj) = Hk(κ, x′) ⊕ δ′ for
some j, some x′ 6= xj + sj and some δ′ that is a sum of δA’s or δB’s. But this corresponds to a
collision in the ∆-universal one-way hash function H.

In the other case, we use C̃ to construct an algorithm D̃ to contradict the ΦHA as follows.
D̃ takes as inputs two numbers p ∈ Pk′ , m ∈ Rk′′ and two values a, b ∈ [0, 2l − 1]. D̃ emulates
the protocol for A(a) and B(b) as prescribed, except that it modifies A to choose tA = λ−1(p)
and mA = m. Then C̃ is called with T ’s view as input and D̃ outputs whatever C̃ outputs.

Observe that for a random m ∈ Rk′′ and p0 ∈ Pk′ that is hidden by m, the output distribu-
tion of D̃(m, p0, a

′, b′) is equal to C ′ by construction (and analogously, D̃(m, p0, a
′′, b′′) is equal

to C ′′). Define D′ as the output distribution of D̃(m, p1, a
′, b′) for a random m ∈ Rk′′ and an

independently chosen random p1 ∈ Pk′ . Then D′ is efficiently distinguishable from either C ′ or
C ′′ with noticeable probability and this contradicts the ΦHA.

3.3 Robust Protocol

The above protocol is not robust: an actively cheating A or B might gain information on the
other party’s input or disrupt the joint computation of f(a, b, ε). For example, A might choose
the xj and sj such that T maps them to some prime p̃ 6= pA that also divides mA and retrieve
information about b in this way. As T is cheating only passively, we use it to ensure fairness
between A and B, meaning that A learns its component of the result f(a, b, ε) if and only if B
learns it.

The basic idea is to have A and B check each other for compliance with the protocol
specification. In particular, A and B prove to each other that they have constructed their
inputs to T correctly. A and B both send the same inputs to T , who checks that they are
equal. In case of mismatch, T aborts and outputs a special symbol; otherwise, it proceeds as
above. Furthermore, we can no longer have A choose the xj and sj . A joint random selection
protocol based on a commitment scheme is used instead.

The modifications to the protocol in the previous section are as follows.

Setup. A generates 2l + 1 uniformly random values σ0, . . . , σ2l ∈ X and commits to them,
obtaining γA = Comk(ρA, σ0‖ · · · ‖σ2l). A sends γA to B. B chooses 2l + 1 uniformly
random values τ0, . . . , τ2l ∈ X , commits to them in γB = Comk(ρB, τ0‖ · · · ‖τ2l), and
sends γB to A.

Only after receiving the other party’s commitment does A reveal ρA, σ0, . . . , σ2l and B
reveal ρB, τ0, . . . , τ2l (over the secure channel).
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A checks that Verk(γB, ρB, τ0‖ · · · ‖τ2l) = 1. If not, A sends a special symbol abort to T ,
outputs abort, and halts. B checks that Verk(γB, ρB, σ0‖ · · · ‖σ2l) = 1. If not, B sends a
special symbol abort to T , outputs abort, and halts.

Otherwise, both A and B obtain xj = σj + τj for j = l, l − 1, . . . , 0 and sj = σj+l + τj+l
for j = 1, . . . , l.

Bid preparation. After A has determined pA, mA and the δA,j as above, she forwards pA,
mA, δA,l−1, . . . , δA,0, and the integer factorization of mA to B.

B computes pB, mB and the δB,j as above. He sends pB, mB, δB,l−1, . . . , δB,0 to A,
together with the integer factorization of mB.

A checks that mB ∈ Rk′′ (using an efficient primality test) and that pB|φ(mB). A also
tests that

pB = λ(Hk(κ, xj − sj)⊕ δB,j)

for j = l− 1, . . . , 0. If a test fails, A sends a special symbol abort to T , outputs abort, and
halts. Otherwise, A computes the encryptions yA,j as above and sends

κ, xl, zl−1, . . . , z0, δA,l−1, . . . , δA,0, δB,l−1, . . . , δB,0, mA,mB (5)

to T over the secure channel.

Similarly, B checks that mA ∈ Rk′′ and that pA|φ(mA). B also tests that

pA = λ(Hk(κ, xj + sj)⊕ δA,j)

for j = l − 1, . . . , 0. If any test fails, B sends abort to T , outputs abort, and halts.
Otherwise, B computes the encryptions yB,j as above and sends

κ, xl, zl−1, . . . , z0, δA,l−1, . . . , δA,0, δB,l−1, . . . , δB,0, mA,mB (6)

to T over the secure channel.

Evaluation. T compares the values received from A and from B. In case one of the messages
was abort or if some values in (5) and in (6) are not equal, T sends back abort to A and
B, outputs abort itself, and halts. Otherwise, T proceeds as above.

Result extraction. If A (or B) receive abort, output abort and halt; otherwise same as above.

Because neither party can influence the random choice of the xj and sj , they correspond
to the random choices in the semi-honest protocol (except with negligible probability). It is
easy to see that active cheating by A (or B) can succeed in producing mA 6∈ Rk′′ (or mB)
only with negligible probability. It follows from Lemma 1 that hA (and hB) do not reveal more
information than in the protocol for the semi-honest case.

Because T answers only if both parties agree on their submitted values, deviating from
the protocol is prevented (input substitution by the ideal adversary C may not occur). This
eliminates all attacks that are not also possible in the passive case and reduces the security
proof to Theorem 2.

Theorem 3. Under the ΦHA and the security assumption for the public-key cryptosystem S,
the modified protocol above is a robust two-party bidding protocol with an oblivious third party.

12



4 Auctions with Two Servers

Based on the private bidding primitive, we can realize a protocol for sealed-bid auctions among
n parties P1, . . . , Pn with secret bids a1, . . . , an and two semi-trusted auction servers T and V .
T plays the same role as in the two-party protocol, obliviously comparing two bids. V chooses
the random values for n instances of the private bidding protocol. The bidders encrypt their
bids, send them to V , but are not involved further. V determines the highest bid through n
successive queries to T and learns a partial order of a1, . . . , an, but not more.

A more detailed description follows (without proof). The participants are P1, . . . , Pn, T and
V . The input to Pr is an l-bit number ar ∈ [0, 2l−1]; T and V have no inputs. The only output
of the protocol is a number rmax ∈ [1, n] produced by V such that rmax = arg maxr∈[1,n] ar.

We assume P1, . . . , Pn and T are connected to V by secure channels.
During setup, T generates a public-key/secret-key pair Ek, Dk and publishes Ek. V chooses

random values for i ∈ [1, n]

– κi ∈ K and xi,l, xi,j , si,j ∈ X for j ∈ [0, l − 1],

– tAi , t
B
i ∈ {0, 1}k

′
,

– pAi ∈ Pk′ and mA
i ∈ Rk′′ hiding pAi and pBi ∈ Pk′ and mB

i ∈ Rk′′ hiding pBi ,

to be used in n parallel copies of the two-party private bidding protocol. V determines δAi,j =
Hk(κi, xi,j + si,j)⊕ ti and δBi,j = Hk(κi, xi,j − si,j)⊕ ti. V sends all values to P1, . . . Pn over the
secure channels.

Each party Pr prepares two encryptions of its bid ai per parallel copy as in the standard
protocol, one in A’s role and one in B’s role. Two copies are needed because it is yet unknown
whether Pr will play the role of A or B. The values returned from Pr to V are

yAr,i,j =

{
Ek(ur,i,j , xi,j − xi,j+1) if ar,j = 0
Ek(ur,i,j , xi,j − xi,j+1 + si,j) if ar,j = 1

and

yBr,i,j =

{
Ek(u′r,i,j , 0) if ar,j = 0
Ek(u′r,i,j ,−si,j) if ar,j = 1

for i ∈ [1, n] and j ∈ [0, l − 1].
V chooses a random permutation π1, . . . , πn of [1, n] and lets imax = 1. To find the winning

bidder, V and T repeat for i = 2, . . . , n:

1. V compares the bids of Pπi and Pπimax
using T ’s help; V computes zi,j = yAπi,i,j · y

B
πimax ,i,j

and sends xi,l, zi,j , δAi,j , δ
B
i,j , m

A
i ,m

B
i to T for j ∈ [0, l − 1].

2. T performs the evaluation step on the received values as in the two-party protocol and
sends back the numbers hAi ∈ ZmAi and hBi ∈ ZmBi .

3. V determines the winner (Pπi or Pπimax
) by testing whether hAi has a pAi th root. If and

only if the test succeeds does V set imax to i.

Finally, V outputs rmax = πimax , thereby declaring that party Prmax wins the auction.
It is straightforward to verify that the protocol is correct and private, with the exception

that V learns the partial order of the bids, but nothing else about them. A semi-honest T does
not gain information about the bids; but if a malicious T conspires with at least one bidder, it
could see all comparisons in the open, so that all servers can see the bids.

The bidders need only one round of interaction with the auction service; the auction servers
need O(n) rounds of interaction. The workload (and communication complexity) of one bidder
is O(kln), whereas the total work of the auction is O(kln2).
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A Homomorphic Encryption Schemes

We describe two ways to implement the homomorphic public-key cryptosystem S with plaintext
space X in the sense of Section 2.4. Given a homomorphic public-key system S ′ with plaintext
space X ′ of cardinality M ≥ 3, such a system can be built using dlogM |X |e-fold application of
S ′ and a suitable M -ary representation of X .

A.1 The Benaloh System

Benaloh’s dense probabilistic encryption [Ben94] is based on the higher-residuosity assumption;
its underlying principle is closely related to the ΦHA. For some odd r = O(log k), a key is
generated as follows. Choose n = pq as the product of two k-bit primes p and q such that
r|φ(n) = (p − 1)(q − 1), but r and (p − 1)(q − 1)/r are relatively prime. Choose some y ∈ Z∗n
such that y(p−1)(q−1)/r 6≡ 1 (mod n). The public key is the pair (n, y) and the secret key is
(p, q).

The encryption function Ek,r : Z∗n × [0, r − 1] → Z
∗
n is given by Ek,r(u, x) = yxur mod n

for a randomly chosen u ∈ Z∗n.
Decryption is done by exploiting that a ciphertext z ∈ Z∗m encrypts plaintext 0 if and only

if z(p−1)(q−1)/r ≡ 1 (mod n) (i.e., if z has rth roots modulo n). Because r is small, decryption
is done by exhaustive search for the smallest x ∈ [0, r− 1] such that y−xz is an encryption of 0.
The decryption complexity can be lowered to O(

√
r) by using the baby-step giant-step method.

The semantic security of this system is equivalent to the higher-residuosity assumption: for
given r, a randomly chosen public key (n, y), a random z0 ∈ Z∗n that has rth roots and a random
z1 ∈ Z∗n with no rth roots, (n, y, z0) and (n, y, z1) are computationally indistinguishable.
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A.2 The Naccache-Stern System

This system proposed by Naccache and Stern [NS98] works by embedding a trap door in the
discrete logarithm and hiding it by an RSA modulus of unknown factorization. It is much more
efficient than the Benaloh system in terms of the expansion rate (which can even be linear
according to the authors), but it needs a stronger security assumption.

For some small B = O(log k), let r be a square-free odd B-smooth integer of length O(k′)
bits; the rest is almost the same as the Benaloh system. Let n = pq be a product of two k-bit
primes p and q such that r|φ(n) = (p−1)(q−1), but r and (p−1)(q−1)/r are relatively prime.
Choose some g ∈ Z∗n the order of which is a large multiple of r in Z∗n. Methods to generate
such n are discussed in [NS98]. A public key is a triple (n, r, g), and the corresponding secret
key is (p, q).

The encryption function Ek : Z∗n × [0, r− 1]→ Z
∗
n is given by Ek(u, x) = gxur mod n for a

randomly chosen u ∈ Z∗n.
The difference to the Benaloh system lies in the decryption method because exhaustive

search over x ∈ [0, r − 1] would take exponential time. Decryption is done by exploiting the
smoothness of r to compute the discrete logarithm to base g, using Chinese remaindering.
Details can be found in [NS98].

The semantic security of this system is equivalent to the higher-residuosity assumption in
the case where n is of the special form described above, such that φ(n) contains a B-smooth
divisor r.
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