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Abstract

This chapter gives an introduction to protocols for state-machine replication in groups that are con-
nected by asynchronous networks and whose members are subject to arbitrary or “Byzantine” faults.
It explains the principles of such protocols and covers the following topics: broadcast primitives,
distributed cryptosystems, randomized Byzantine agreement protocols, and atomic broadcast proto-
cols.

1 Introduction

Coordinating a group of replicas to deliver a service, while some of them are actively trying to prevent
the coordination effort, is a fascinating topic. It stands at the heart of Pease et al.’s classic work [25] on
reaching agreement in the presence of faults, which ignited an impressive flow of papers elaborating on
this problem over the last 30 years.

In this chapter, we survey protocols to replicate a state machine in an asynchronous network over a
group of n parties or replicas, of which up to t are subject to so-called Byzantine faults. No assumptions
about the behavior of the faulty parties are made; they may deviate arbitrarily from the protocol, as if
corrupted by a malicious adversary. The key mechanism for replicating a deterministic service among
the group is a protocol for the task of atomic broadcast [17, 32, 33]. It guarantees that every correct
party in the group receives the same sequence of requests from the clients. This approach allows to build
highly resilient and intrusion-tolerant services on the Internet.

The model considered here is motivated by practice. The parties are connected pairwise by reliable
authenticated channels. Protocols may use cryptographic methods, such as public-key cryptosystems
and digital signatures. A trusted entity takes care of initially generating and distributing private keys,
public keys, and certificates, such that every party can verify signatures by all other parties, for example.
The system is asynchronous: there are no bounds on the delivery time of messages and no synchronized
clocks. This is an important aspect because systems whose correctness relies on timing assumptions are
vulnerable to attackers that simply slow down the correct parties or delay the messages sent between
them.

The chapter is organized as follows. We first introduce some building blocks for atomic broad-
cast; they consist of two broadcast primitives, distributed cryptosystems, and randomized Byzantine
agreement protocols. Then we present the structure of some recent asynchronous atomic broadcast pro-
tocols. Finally, we illustrate some issues with service replication that arise specifically in the presence
of Byzantine faults. We focus on the asynchronous model and leave out many other protocols that have
been formulated for synchronous networks.
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2 Building Blocks

2.1 Broadcast Primitives

We present two broadcast primitives, which are found in one way or other in all agreement and atomic
broadcast protocols tolerating Byzantine faults. As such protocols usually invoke multiple instances of
a broadcast primitive, every message is tagged by an identifier of the instance in practice (and where
applicable, the identifier is also included in every cryptographic operation).

Every broadcast instance has a designated sender, which broadcasts a request m to the group at
the start of the protocol. All parties should later deliver m, though termination is not guaranteed with
a faulty sender. To simplify matters, we assume that the sender is a member of the group (i.e., that
requests from clients to the service are relayed through a party) and that all requests are unique.

Consistent broadcast. Consider a group of n parties P1, . . . , Pn. In consistent broadcast, a desig-
nated sender Ps first executes c-broadcast with request m and thereby starts the protocol. All parties
terminate the protocol by executing c-deliver with request m. Consistent broadcast ensures only that
the delivered request is the same for all receivers. In particular, it does not guarantee that every party
delivers a request with a faulty sender.

The following definition is implicit in the work of Bracha and Toueg [37, 3] but has been formulated
more recently [4] to be in line with the corresponding notions for systems with crash failures [13].

Definition 1 (Consistent broadcast). A protocol for consistent broadcast satisfies:

Validity: If a correct sender Ps c-broadcasts m, then all correct parties eventually c-deliver m.

Consistency: If a correct party c-delivers m and another correct party c-delivers m′, then m = m′.

Integrity: For any request m, every correct party c-delivers m at most once. Moreover, if the sender
Ps is correct, then m was previously c-broadcast by Ps.

The echo broadcast protocol implements consistent broadcast with a linear number of messages
and uses digital signatures. Its idea is that the sender distributes the request to all parties and expects
dn+t+1

2 e parties to act as witnesses for the request; they attest this by signing their reply to the sender.

Algorithm 1 (Echo broadcast [30]). All parties use digital signatures.

upon c-broadcast(m): // only Ps
send message (send,m) to all

upon receiving a message (send,m) from Ps:
compute signature σ on (echo, s,m)
send message (echo,m, σ) to Ps

upon receiving dn+t+1
2 e messages (echo,m, σi) with valid σi: // only Ps

let Σ be the list of all received signatures σi
send message (final,m,Σ) to all

upon receiving a message (final,m,Σ) from Ps with dn+t+1
2 e valid

signatures in Σ:
c-deliver(m)

Theorem 2. Algorithm 1 implements consistent broadcast for n > 3t.
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Proof sketch. Validity and integrity are straightforward to verify. Consistency follows from the obser-
vation that the request m in any final message with dn+t+1

2 e valid signatures in Σ is unique. To see
this, consider the set of parties that issued the dn+t+1

2 e signatures: because there are only n distinct
parties, every two sets of signers overlap in at least one correct party. Such sets are also called Byzantine
quorums [20]; quorum systems are the subject of Chapter 5.

The message complexity of echo broadcast is O(n) and its communication complexity is O(n2(k+
|m|)), where k denotes the length of a digital signature. Using a non-interactive threshold signature
scheme, the communication complexity can be reduced to O(n(k + |m|)) [4].

Reliable broadcast. Reliable broadcast is characterized by a r-broadcast event and a r-deliver event
analogous to consistent broadcast. Reliable broadcast additionally ensures agreement on the delivery of
the request in the sense that either all correct parties deliver some request or none delivers any request;
this property has been called totality [4]. In the literature, consistency and totality are often combined
into a single condition called agreement. This primitive is also known as the “Byzantine generals prob-
lem.”

Definition 2 (Reliable broadcast). A protocol for reliable broadcast is a consistent broadcast protocol
that satisfies also:

Totality: If some correct party r-delivers a request, then all correct parties eventually r-deliver a re-
quest.

The classical implementation of reliable broadcast by Bracha [3] uses two rounds of message ex-
changes among all parties. Intuitively, it works as follows. After receiving the request from the sender,
a party echoes it to all. After receiving such echo messages from a Byzantine quorum of parties, a party
indicates to all others that it is ready to deliver the request. When a party receives a sufficient number of
those ready indications, it delivers the request.

Algorithm 3 (Bracha broadcast [3]).

upon r-broadcast(m): // only Ps
send message (send,m) to all

upon receiving a message (send,m) from Ps:
send message (echo,m) to all

upon receiving dn+t+1
2 e messages (echo,m) and not having sent

a ready-message:
send message (ready,m) to all

upon receiving t+ 1 messages (ready,m) and not having sent
a ready-message:
send message (ready,m) to all

upon receiving 2t+ 1 messages (ready,m):
r-deliver(m)

Theorem 4. Algorithm 3 implements reliable broadcast for n > 3t.

Proof sketch. Consistency follows from the same argument as in Theorem 2, since the request m in
any ready message of a correct party is unique. Totality is implied by the “amplification” of ready
messages from t+1 to 2t+1 with the fourth upon clause of the algorithm. Specifically, if a correct party
has r-delivered m, it has received a ready message with m from 2t + 1 distinct parties. Therefore,
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at least t + 1 correct parties have sent a ready message with m, which will be received by all correct
parties and cause them to send a ready message as well. Because n − t ≥ 2t + 1, all correct parties
eventually receive enough ready messages to terminate.

The message complexity of Bracha broadcast isO(n2) and its communication complexity isO(n2|m|).
Because it does not need digital signatures, which are usually computationally expensive operations,
Bracha broadcast is often preferable to echo broadcast depending on the deployment conditions.

Several complex agreement and atomic broadcast protocols use either the consistent or the reliable
broadcast primitive, and one can often substitute either primitive for the other one in these protocols,
with appropriate modifications. Selecting one of these primitives and an implementation involves a
trade-off between computation time and message complexity. It is an interesting question to determine
the experimental conditions under which either primitive is more suitable; Moniz et al. [24] present
some initial answers.

2.2 Distributed Cryptography

Distributed cryptography spreads the operation of a cryptosystem among a group of parties in a fault-
tolerant way [11]; such schemes are also called threshold cryptosystems. They are based on secret
sharing methods, and distributed implementations are typically known only for public-key cryptosys-
tems because of their algebraic properties.

Secret sharing. In a (t+ 1)-out-of-n secret sharing scheme, a secret s, element of a finite field F with
q elements, is shared among n parties such that the cooperation of at least t + 1 parties is needed to
recover s. Any group of t or fewer parties should not get any information about s.

Algorithm 5 (Polynomial secret sharing [34]). To share s ∈ Fq, a dealer Pd 6∈ {P1, . . . , Pn} chooses
uniformly at random a polynomial f(X) ∈ Fq[X] of degree t subject to f(0) = s, generates shares
si = f(i), and sends si to Pi for i = 1, . . . , n. To recover s among a group of t+ 1 parties with indices
S, every party reveals its share and all parties together recover the secret by computing

s = f(0) =
∑
i∈S

λS0,isi,

where
λS0,i =

∏
j∈S,j 6=i

j

j − i

are the (easy-to-compute) Lagrange coefficients.

Theorem 6. In Algorithm 5, every group of t or fewer parties has no information about s, i.e., their
shares are statistically independent of s.

We refer to the literature for definitions and a proof of the theorem [36]. Secret sharing schemes
do not directly give fault-tolerant replicated implementations of cryptosystems; if the secret key were
reconstructed for performing a cryptographic operation, all security would be lost because the key would
be exposed to the faulty parties. So-called threshold cryptosystems perform these operations securely;
as an example, a threshold public-key cryptosystem based on the ElGamal cryptosystem is presented
next (details can be found in books on modern cryptography [23, 36, 14]).

Discrete logarithm-based cryptosystems. LetG be a group of prime order q such that g is a generator
of G. The discrete logarithm problem (DLP) means, for a random y ∈ G, to compute x ∈ Zq such that
y = gx. The Diffie-Hellman problem (DHP) is to compute gx1x2 from random y1 = gx1 and y2 = gx2 .

4



It is conjectured that there exist groups in which solving the DLP and the DHP is hard, for example,
the multiplicative subgroup G ⊂ Z∗p of order q, for some prime p = mq+ 1 (recall that q is prime). For
example, this choice with |p| = 2048 and |q| = 256 is considered secure today and used widely on the
Internet.

A public-key cryptosystem consists of three algorithms, K, E, and D. The key generation algorithm K
outputs a pair of keys (pk , sk). The encryption and decryption algorithms, E and D, have the property
that for all (pk , sk) generated by K and for any plaintext message m, it holds D(sk ,E(pk ,m)) = m.

A public-key cryptosystem is semantically secure if no efficient adversary A can distinguish the
encryptions of any two messages. Semantic security provides security against so-called passive attacks,
in which an adversary follows the protocol but tries to infer more information that it is entitled to. An
adversary mounting an active attack may additionally fabricate ciphertext, submit it for decryption, and
obtain the results.

ElGamal cryptosystem and threshold ElGamal. The ElGamal cryptosystem is based on the DHP:
K selects a random secret key x ∈ Zq and computes the public key as y = gx. The encryption of
m ∈ {0, 1}k under public-key y is the tuple (A,B) = (gr,m ⊕ H(yr)), computed using a randomly
chosen r ∈ Zq and a collision-resistant cryptographic hash function H : G → {0, 1}k. The decryption
of a ciphertext (A,B) is m̂ = H(Ax) ⊕ B. One can easily verify that m̂ = m because Ax = grx =
gxr = yr, and therefore, the argument to H is the same in encryption and decryption. The cryptosystem
is semantically secure under the assumption that the DHP is hard.

Algorithm 7 (Threshold ElGamal cryptosystem). Let the secret key x be shared among P1, . . . , Pn
using a polynomial f of degree t over Zq such that Pi holds a share xi = f(i). The public key y = gx

is known to all parties. Encryption is the same as in standard ElGamal above. For decryption, a client
sends a decryption request containing a ciphertext (A,B) to all parties. Upon receiving a decryption
request, party Pi computes a decryption share di = Axi and sends it to the client. Upon receiving
decryption shares from a set of t+ 1 parties with indices S, the client recovers the plaintext as

m̂ = H
(∏
i∈S

di
λS0,i

)
⊕B.

Theorem 8. Algorithm 7 implements a (t+1)-out-of-n threshold cryptosystem that tolerates the passive
corruption of t < n/2 parties.

Proof sketch. The decryption is correct because∏
i∈S

di
λS0,i =

∏
i∈S

Axiλ
S
0,i = A

P
i∈S xiλ

S
0,i = Ax

from the properties of secret sharing. The system is as secure as the ElGamal cryptosystem because
ciphertexts are computed in the same way. Moreover, the decryption shares (di = Axi) do not reveal
any “useful information” about the shares of the secret key (xi).

This is a non-interactive threshold cryptosystem, as no interaction among the parties is needed. It
can also be made secure against active attacks [35]. Non-interactive threshold cryptosystems can easily
be integrated in asynchronous protocols.

2.3 Byzantine Agreement

One step up from the broadcast primitives is a protocol to reach agreement despite Byzantine faults. It is
a prerequisite for implementing atomic broadcast. All atomic broadcast protocols, at least in the model
with static groups considered here, either explicitly invoke an agreement primitive or implicitly contain
one.
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The Byzantine agreement problem, also called Byzantine consensus, is characterized by two events
propose and decide; every party executes propose(v) to start the protocol and decide(v) to terminate it
for a value v. In binary agreement, the values are bits.

Definition 3 (Byzantine agreement). A protocol for binary Byzantine Agreement satisfies:

Validity: If all correct parties propose v, then some correct party eventually decides v.

Agreement: If some correct party decides v and another correct party decides v′, then v = v′.

Termination: Every correct party eventually decides.

The result of Fischer, Lynch, and Paterson [12] implies that every asynchronous protocol solving
Byzantine agreement has executions that do not terminate. State machine replication in asynchronous
networks is also subject to this limitation. Roughly at the same time, however, randomized protocols to
circumvent this impossibility were developed [27, 1, 37]. They make the probability of non-terminating
executions arbitrarily small. More precisely, given a logical time measure T , such as the number of
steps performed by all correct parties, define termination with probability 1 as

lim
T→∞

Pr[some correct party has not decided after time T ] = 0.

Algorithm 9 (Binary Randomized Byzantine Agreement [37]). Suppose a trusted dealer has shared
a sequence s0, s1, . . . of random bits, called coins, among the parties, using (t + 1)-out-of-n secret
sharing. A party can access the coin sr using a recover(r) operation, which may involve a protocol that
exchanges some messages, and gives the same coin value to every party. The two upon clauses of the
algorithm below are executed concurrently.

upon propose(v):
r ← 0
loop

send the signed message (1-vote, r, v) to all
receive properly signed (1-vote, r, v′) messages from n− t distinct parties
Π← set of received 1-vote messages including the signatures
v ← value v′ that is contained most often in Π
r-broadcast the message (2-vote, r, v,Π)
wait for r-delivery of (2-vote, r, v′,Π) messages from n− t distinct senders

with valid signatures in Π and correctly computed v′

b← value v′ that is contained most often among the r-delivered 2-vote messages
c← number of r-delivered 2-vote messages with v′ = b
sr ← recover(r)
if c = n− t then
v ← b

else
v ← sr

if b = sr then
send the message (decide, v) to all // note that v = sr = b

r ← r + 1

upon receiving t+ 1 messages (decide, b):
if not decided then

send the message (decide, b) to all
decide(b)
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Every party maintains a value v, called its vote, and the protocol proceeds in global asynchronous
rounds. Every round consists of two voting steps among the parties with all-to-all communication. In
the first voting step, the parties simply exchange their votes, and every party determines the majority
of the received votes. In the second voting step, every party relays the majority vote to all others, this
time using reliable broadcast and accompanied by a set Π that serves as a proof for justifying the choice
of the majority. The set Π contains messages and signatures from the first voting step. After receiving
reliable broadcasts from n−t parties, every party determines the majority of this second vote and adopts
its outcome as its vote v if the tally is unanimous; otherwise, a party sets v to the shared coin for the
round. If the coin equals the outcome of the second vote, then the party decides.

Lemma 10. If all correct parties start some round r with vote v0, then all correct parties terminate
round r with vote v0.

Proof. It is impossible to create a valid Π for a 2-vote message with a vote v 6= v0 because v must be
set to the majority value in n− t received 1-vote messages and n− t > 2t.

Lemma 11. In round r ≥ 0, the following holds:

1. If a correct party sends a decide message for v0 at the end of round r, then all correct parties
terminate round r with vote v0.

2. With probability at least 1
2 , all correct parties terminate round r with the same vote.

Proof. Consider the assignment of b and c in round r. If some correct party obtains c = n − t and
b = v0, then no correct party can obtain a majority of 2-vote messages for a value different from
v0 (there are only n 2-vote messages and they satisfy the consistency of reliable broadcast). Those
correct parties with c = n− t set vote v to v0; every other correct party sets v to sr. Hence, if sr = v0,
all correct parties terminate round r with vote v0.

Claim a) now follows upon noticing that a correct party only sends a decide message for v0 when
v0 = b = sr.

Claim b) follows because the first correct party to assign b and c does so before any information
about sr is known (to the adversary). To see this note that at least t+ 1 shares are needed for recovering
sr, but a correct party only reveals its share after assigning b and c. Thus, sr and v0 are statistically
independent and sr = v0 holds with probability 1

2 .

Theorem 12. Algorithm 9 implements binary Byzantine agreement for n > 3t, where termination holds
with probability 1.

The theorem follows easily from the preceding lemmas. The protocol achieves optimal resilience
because reaching agreement in asynchronous networks with t ≥ n/3 Byzantine faults is impossible,
despite the use of digital signatures [37]. Since Algorithm 9 reaches agreement with probability at least
1
2 in every round, the expected number of rounds is two, and the expected number of messages isO(n3).

Using cryptographic randomness. The problem with Algorithm 9 is that every round in the execution
uses up one shared coin in the sequence s0, s1, . . .. As coins cannot be reused, this is a problem in
practice. A solution for this is to obtain the shared coins from a threshold-cryptographic function.
Malkhi and Reiter [21] observe that a non-interactive and deterministic threshold signature scheme
yields unpredictable bits, which is sufficient.

More generally, one may obtain the coin value sr from the output of a distributed pseudorandom
function (PRF) [14] evaluated on the round number r and the protocol instance identifier. A PRF is
parameterized by a secret key and maps every input string to an output string that looks random to
anyone who does not have the secret key. A practical PRF construction is a block cipher with a secret
key; distributed implementations, however, are only known for functions based on public-key cryptosys-
tems. Cachin et al. [5] describe a suitable distributed PRF based on the Diffie-Hellman problem. With
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their implementation of the shared coin, Algorithm 9 is practical and has expected message complex-
ity O(n3). It can further be improved to a randomized asynchronous agreement protocol with O(n2)
expected messages [5].

3 Atomic Broadcast Protocols

Atomic broadcast delivers multiple requests in the same order to all parties. Whereas instances of
reliable broadcast may be independent of each other, the total order of atomic broadcast links these
together and requires more complex implementations. The details of the protocols in this section are
therefore omitted.

Analogously to reliable broadcast, atomic broadcast is characterized by an a-broadcast event, exe-
cuted by the sender of a request, and an a-deliver event. Every party may a-broadcast multiple requests;
also a-deliver generally occurs multiple times. The following definition [4] is adapted from the corre-
sponding one in the crash-failure model [13].

Definition 4 (Atomic broadcast). A protocol for atomic broadcast is a reliable broadcast protocol that
satisfies also:

Total order: If two correct parties Pi and Pj both a-deliver two requests m and m′, then Pi a-delivers
m before m′ if and only if Pj a-delivers m before m′.

Some early atomic broadcast protocols [30, 26] used dynamic groups with a membership service
that might evict faulty parties from the group, even if they only appear to be slow. When an attacker
manages to exploit network delays accordingly, this may lead to the problematic situation where the
correct parties are in a minority, and the protocol violates safety.

The more recent protocols, on which we focus here, never violate safety because of network insta-
bility. We distinguish between two kinds of atomic broadcast protocols, which we call agreement-based
and sequencer-based according to the survey of atomic broadcast protocols of Défago et al. [10]. We
next review the principles of these protocols, starting with the historically older protocols based on
agreement. A third option, considered afterwards, is to combine leader- and agreement-based protocols
into hybrid atomic broadcast protocols.

3.1 Agreement-based Atomic Broadcast

The canonical implemention of atomic broadcast uses an agreement primitive to determine the next
request that should be a-delivered. Such a protocol proceeds in asynchronous rounds and uses one
instance of (multi-valued) Byzantine agreement in every round to agree on a set of requests, which are
then a-delivered in a fixed order at the end of the round. The same approach has been followed by
protocols in the crash-failure model (see [13] and algorithms using the mechanism of message ordering
by agreement on a message set [10]).

Incoming requests are buffered and proposed for delivery in the next available round. The validity
notion of Byzantine agreement, however, must be amended for this to work: the standard validity condi-
tion only guarantees that a particular decision is reached when all parties make the same proposal. This
will rarely be the case in practice, where every party receives different requests to a-broadcast.

A suitable notion of validity for multi-valued Byzantine agreement has been introduced by Cachin
et al. [4]; it defines a test for determining if a proposed value is acceptable and externalizes it. Moreover,
to reach agreement with a domain of arbitrary size, Algorithm 9 must be extended in non-trivial ways.
Note that it would be infeasible in practice to agree bit-by-bit on values from large domains such as the
set of all requests. A suitable protocol for multi-valued agreement has been formulated [4], and it uses
a binary Byzantine agreement protocol as a subroutine. This protocol incurs a communication overhead
of O(n2) messages over the primitive for binary agreement.
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With multi-valued (randomized) Byzantine agreement, a protocol for asynchronous atomic broad-
cast can be implemented easily as sketched before. In every round of agreement, the validity test must
ensure that a batch of requests is only acceptable when it has been assembled from the request buffers
of at least t + 1 parties. This ensures that the requests in the buffer of at least one correct party are
delivered in that round. The resulting atomic broadcast protocol satisfies the relaxation of Definition 4
to termination with probability 1 in the validity condition. Several protocols of this kind have been
prototyped in practical systems [6, 24, 29].

Note that the randomized nature of these atomic broadcast protocols does not hurt in practice: they
never violate safety and the worst-case probability that they take a large number of rounds to terminate is,
in fact, exponentially small and comparable to the probability that the adversary guesses a cryptographic
key.

3.2 Sequencer-based Atomic Broadcast

Agreement-based protocols send all requests through a Byzantine agreement subroutine to determine
their order; but agreement is a rather expensive protocol. A more efficient approach is taken by the BFT
protocol of Castro and Liskov [8], which relies on a single party, called the sequencer, to determine the
request order. Because the sequencer may be faulty, its actions must be checked by the other parties in a
distributed protocol. BFT is actually a Byzantine-fault-tolerant version of the Paxos protocol [18, 19, 2].
Since it does not use randomization, it may not terminate in asynchronous networks due to the FLP
impossibility result [12]; therefore it uses a partially synchronous model.

The BFT protocol proceeds in epochs, where an epoch consists of a normal-operation phase and
recovery phase. During every epoch, a designated party acts as the sequencer for the normal-operation
phase, determines the delivery order of requests, and commits every request through reliable broadcast
with Bracha’s protocol (Algorithm 3). Because the sequencer runs the reliable broadcasts in a sequence,
this guarantees that all correct parties receive and a-deliver the requests in the same order. This approach
ensures safety even when the sequencer is faulty, but may violate liveness when the sequencer stops r-
broadcasting requests.

When the sequencer appears faulty in the eyes of enough other parties, the protocol switches to the
recovery phase. This step is based on timeouts that must occur on at least t+1 parties. Once sufficiently
many parties have switched to the recovery phase, the protocol aborts the still ongoing reliable broad-
casts, and the recovery phase eventually starts at all correct parties. The goal of the recovery phase is
to agree on a new sequencer for the next epoch and on the a-delivery of the requests that the previous
sequencer may have left in an inconclusive state.

Progress during the recovery phase and in the subsequent epoch requires the timely cooperation of
the new sequencer. In asynchronous networks, it is possible that no requests are delivered before the
epoch ends again, and the protocol loses liveness. However, it is assumed that this occurs extremely
rarely in practice. This protocol uses the fixed-sequencer mechanism for message ordering within every
epoch [10] and rotates the sequencer for every new epoch.

Despite its inherent complexity, the recovery phase of BFT is still more efficient than one round in
the agreement-based atomic broadcast protocols. The BFT protocol has message complexity O(n2),
ensures safety always and liveness only during periods where the network is stable enough; it is con-
sidered practical by many system implementors. Several atomic broadcast protocols inspired by BFT
have appeared recently [22, 9, 15], which are even more efficient than BFT under certain conditions.
Chapter 5 explores the use of Byzantine quorum systems in BFT and related protocols.

3.3 Hybrid Atomic Broadcast

Combining the efficiency of the sequencer-based approach during normal operation with the strong
guarantees of the (randomized) agreement-based approach for recovery, protocols have been proposed
that take the best features from both approaches.
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The protocol of Kursawe and Shoup [16] is divided into epochs and uses reliable broadcast during
the normal-operation phase, like the BFT protocol. For recovery, however, it employs randomized
Byzantine agreement and ensures that some requests are a-delivered in any case. It therefore guarantees
safety and liveness and has the same efficiency as BFT during stable periods.

Ramasamy and Cachin [28] replace the reliable broadcast primitive in the Kursawe-Shoup protocol
by consistent broadcast. The resulting protocol is attractive for its low message complexity, only O(n)
expected messages per request, amortized over protocol executions with long periods of stability, com-
pared to O(n2) for all other atomic broadcast protocols in the Byzantine fault model. The improvement
comes at the cost of adding complexity to the recovery phase and, more importantly, by using expensive
public-key operations during the normal-operation phase.

4 Service Replication

A fault-tolerant service implemented using replication should present the same interface to its clients
as when implemented using a single server. Sending requests to the replicated deterministic service via
atomic broadcast enables the replicas to process the same sequence of requests and to maintain the same
state [33]. If failures are limited to benign crashes, the client may obtain the correct service response
from any replica.

When the replicas are subject to Byzantine faults, additional concerns arise: First, services involving
cryptographic operations and secret keys must remain secure despite the leakage of keys from corrupted
replicas; second, clients must not rely on the response message from any single replica because the
replica may be faulty and give a wrong answer; and third, faulty replicas may violate the causality
between requests sent to the replicated service. We review methods to address each of these concerns
next.

4.1 Replicating Cryptographic Services

The service may involve cryptographic operations with keys that should be protected, for example, when
the service receives requests that are encrypted with a service-specific key, or when it signs responses
using digital signatures. In this case, a break-in to single replica will leak all secrets to the adversary.
To defend against this attack, the cryptographic operations of the service should be implemented using
threshold cryptography. This leaves the service interface for clients unchanged and hides the distributed
implementation of the service, because they need to know only one public key for the service, instead
of n public keys for the group of replicas [31].

An important example of such a service is a certification authority (CA), which binds public keys to
names and asserts this with its digital signature. Since CAs often serve as the root of trust for large sys-
tems, implementing them in an intrusion-tolerant way is a good method to protect them. This principle
has been demonstrated in prototype systems [31, 39, 7].

4.2 Handling Responses Securely

As the response from any single replica may be forged, clients must generally receive at least t + 1
responses and infer the service response from them. If all t + 1 responses are equal, then at least one
of them was sent by a correct party, which ensures that the response is correct. Collecting responses
and deciding for a correct one involves a modification of the client-side service interface. Usually this
modification is simple and can be hidden in a library. But if no such modification is possible, there is an
alternative for services that rely on cryptographically protected responses: use threshold cryptography
to authenticate the response, for example, with a digital signature. Then it is sufficient that the client
verifies the authenticity of the response once because it carries the approval of at least t+ 1 parties that
executed the request [31]. In this context, it is interesting to mention the result of Yin et al. [38] that
only 2t+ 1 parties need to execute requests and maintain the state of the service, instead of all n parties.
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4.3 Preserving Causality of Requests

When a client atomically broadcasts a request to the replicated service, the faulty replicas may be able
to create a derived request that is a-delivered and executed before the client’s request. This violates the
safety of the service, more precisely, the causal order among requests. For example, consider a service
that registers names in a directory on a first-come, first-served basis. When a faulty party peeks inside
the atomic broadcast protocol and observes that an interesting name is being registered, it may try to
quickly register the name for one of its conspirators.

One can ensure a causal order among the requests to the service with the following protocol [31],
which combines a threshold cryptosystem (Section 2.2) with an atomic broadcast protocol (Section 3).
To a-broadcast a request, the client first encrypts it with a (t + 1)-out-of-n threshold public-key cryp-
tosystem under the public key of the service. Then, it a-broadcasts the resulting ciphertext. Upon
a-delivery of a ciphertext, a replica first computes a decryption share for the ciphertext, using its share
of the corresponding decryption key, and sends the decryption share to all replicas. Then it waits for
t+ 1 decryption shares to arrive, recovers the original request, and a-delivers it.

This protocol can be seen as an atomic broadcast protocol that respects causal order in the Byzantine-
fault model [4].

5 Conclusion

In the recent years, we have seen a revival of the research on protocols for Byzantine agreement and
atomic broadcast subject to Byzantine faults. This is because such protocols appear to be much more
practical nowadays and because there is demand for realizing intrusion-tolerant services on the Internet.
This chapter has presented the building blocks for such protocols, some 25 years old, and some very
recent, and shown how they fit together for securing distributed on-line services.
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