
Cryptographic Security for a High-Performance Distributed File System

Roman Pletka∗

AdNovum Informatik AG
CH-8005 Zürich, Switerland

roman@pletka.ch

Christian Cachin
IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

cca@zurich.ibm.com

Abstract

Storage systems are increasingly subject to attacks. Cryp-
tographic file systems mitigate the danger of exposing data
by using encryption and integrity protection methods and
guarantee end-to-end security for their clients. This pa-
per describes a generic design for cryptographic file sys-
tems and its realization in a distributed storage-area net-
work (SAN) file system. Key management is integrated
with the meta-data service of the SAN file system. The im-
plementation supports file encryption and integrity protec-
tion through hash trees. Both techniques have been imple-
mented in the client file system driver. Benchmarks demon-
strate that the overhead is noticeable for some artificially
constructed use cases, but that it is very small for typical
file system applications.

1. Introduction

Security is quickly becoming a mandatory feature of
data storage systems. Today, storage space is typically
provided by complex networked systems. These networks
have traditionally been confined to data centers in physi-
cally secured locations. But with the availability of high-
speed LANs and storage networking protocols such as
FCIP [30] and iSCSI [32], these networks are becoming
virtualized and open to access from user machines. Hence,
clients may access the storage devices directly, and the ex-
isting static security methods no longer make sense. New,
dynamic security mechanisms are required for protecting
stored data in virtualized and networked storage systems.

A secure storage system should protect the confidential-
ity and the integrity of the stored data. In distributed stor-
age systems, data exists in two different forms, leading also
to different exposures to unauthorized access:

Data in flight: Data that is in transit on a network, be-
tween clients, servers, and storage devices. Unau-

∗Work done at IBM Zurich Research Laboratory.

thorized access may occur from other nodes on the
network. These attacks and their countermeasures are
similar to the situation for other communication chan-
nels, for which cryptographic protection is widely
available.

Data at rest: Data that resides on a storage device. An
attacker may physically access the storage device or
send appropriate commands over the network. If the
network is not secure, these commands may also be
initiated by clients that are authorized to access other
parts of the networked storage system. Data at rest dif-
fers from data in flight because it is sometimes harder
to transparently apply cryptographic protection that
expands the data length, like appending a few bytes of
integrity checks to a stored data block. Furthermore,
data at rest must be accessible in arbitrary order, un-
like data on a communication channel that is only read
in the order it was written. In such cases, new crypto-
graphic methods are needed for protecting data at rest.

Data at rest is generally considered to be at higher risk
than data in flight, because an attacker has more time and
flexibility to access it. Moreover, new regulations such as
Sarbanes-Oxley, HIPAA, and Basel II also dictate the use
of encryption for data at rest.

Storage systems use a layered architecture, and crypto-
graphic protection can be applied on any layer. For exam-
ple, one popular approach used today is to encrypt data at
the level of the block-storage device, either in the storage
device itself, by an appliance on the storage network [14],
or by a virtual device driver in the operating system (e.g.,
encryption using the loopback device in Linux). The ad-
vantage is that file systems can use the encrypted devices
without modifications, but the drawback is that such file
systems cannot extend the cryptographic security to its
users. The reason is that any file-system client can access
the storage space in its unprotected form, and that access
control and key administration take place below the file sys-
tem.

In this paper, we address encryption at the file-system



level. We describe the design and implementation of cryp-
tographic protection methods in a high-performance dis-
tributed file system. After introducing a generic model for
secure file systems, we show how it can be implemented
using SAN.FS, a SAN file system from IBM [25]. Our de-
sign addresses confidentiality protection by data encryption
and integrity protection by means of hash trees. A key part
of this paper is the discussion of the implementation and an
evaluation of its performance. The model itself as well as
our design choices are generic and can be applied to other
distributed file systems.

Encryption in the file system maintains the end-to-end
principle in the sense that stored data is protected at the
level of the file-system users, and not at the infrastructure
level, as is the case with block-level encryption for data
at rest and storage-network encryption for data in flight.
Moreover, an optimally secure distributed storage architec-
ture should minimize the use of cryptographic operations
and avoid unnecessary decryption and re-encryption of data
as long as the data does not leave the file system. This can
be achieved by performing encryption and integrity protec-
tion of data directly on the clients in the file system, thereby
eliminating the need to separately encrypt the data in flight
between clients and storage devices. Given the processing
capacity of typical workstations today, encryption and in-
tegrity verification add only a small overhead to the cost of
file-system operations, as our benchmarks demonstrate.

Distributed file systems like SAN.FS and cluster file
systems are usually optimized for performance, capacity,
and reliability. For example, in SAN.FS and in the recent
pNFS effort [15], meta-data operations are separated from
the data path for increasing scalability. From a security per-
spective, such an approach might sometimes be suboptimal
or even make it impossible to provide end-to-end security.
This work shows that cryptographic security can be added
to high-performance distributed file systems at minimal ad-
ditional performance cost. Although our work was done in
the context of SAN.FS, our findings apply also to other dis-
tributed file systems.

The remainder of this paper is organized as follows.
Section 2 introduces a general model for secure file systems
and discusses related work. Then, Section 3 describes the
design of SAN.FS and how cryptographic extensions can
be added to it. Section 4 provides more details about our
implementation of cryptographic extensions to SAN.FS.
Section 5 shows our performance results and Section 6 con-
cludes the paper.

2. Model and Related Work

This section first presents an abstract model of a dis-
tributed file system, introduces cryptographic distributed
file systems, and reviews previous work in the area.

Inode Provider /
Object Service (2)

Client

Storage
Block

Security

Driver (5)

Provider (4) Service (3)
Meta−Data

Provider (1)

Figure 1. Components of a distributed file
system.

2.1. File System Components

File systems are complex programs designed for stor-
ing data on persistent storage devices such as disks. A file
system manages the space available on the storage devices,
provides the abstraction of files, which are data containers
that can grow or shrink and have a name and other meta-
data associated to them, and manages the files by organiz-
ing them into a hierarchical directory structure.

Internally, most file systems distinguish at least the fol-
lowing five components as shown in Figure 1: (1) ablock-
storage providerthat serves as a bulk data store and op-
erates only on fixed-size blocks; (2) aninode provider
(or object-storage service), which provides a flat space of
storage containers of variable size; (3) ameta-data ser-
vice, handling abstractions such as directories and file at-
tributes and coordinating concurrent data access; (4) ase-
curity providerresponsible for security and access-control
features; and (5) aclient driver that uses all other compo-
nents to realize the file system abstraction to the operating
system on the client machine.

The first three components correspond to the layered de-
sign of typical file systems, i.e., data written to disk in a
file system traverses the file-system layer, the object layer,
and the block layer in that order. The security provider is
usually needed by all three layers. In most modern operat-
ing systems, the block-storage provider is implemented as
a block device in the operating system, and therefore not
part of the file system.

In traditional file systems, all components reside on the
same host in one module. With the advent of high-speed
networks, it has become feasible to integrate file system
components across several machines into distributed file
systems, which allow concurrent access to the data. A
network can be inserted between any or all of the com-

2



ponents, in principle, and the networks themselves can be
shared. For example, in storage-area networks only the
storage provider is accessed over a network; in distributed
file systems such as NFS and AFS, the client uses a net-
work to access a file server, which contains storage, inode,
and meta-data providers. The security provider can be an
independent entity in AFS and in NFSv4.

The NASD architecture [10] and its successor Object
Store [3] propose network access to the object-storage ser-
vice. Compared with accessing a block-storage provider
over the network, this design simplifies the security archi-
tecture. The security model for object storage [2] assumes
that the device is trusted to enforce access control on a per-
object basis. The security provider is realized as an inde-
pendent entity, accessed over a network. Object storage is
an emerging technology, and, to our knowledge, distributed
file systems in which clients directly access object-storage
devices are not yet widely available.

In SAN.FS, on which we focus in the remainder of this
paper, clients access the storage devices directly over a
SAN (i.e., using Fibre Channel or iSCSI). All meta-data
operations are delegated to a dedicated server, which is ac-
cessed using TCP/IP over a local-area network (LAN).

2.2. Cryptographic File Systems

Cryptographic file systems encrypt and/or protect the
integrity of the stored data using encryption and data au-
thentication. Cryptography is used because the underlying
storage provider is not trusted to prevent unauthorized ac-
cess to the data. For example, the storage provider may use
removable media or must be accessed over a network, and
therefore proper access control cannot be enforced; another
common example of side-channels to the data are broken
disks that are being replaced.

In a system using encryption, access to the keys gives
access to the data. Therefore, it is important that these-
curity provider manages the encryption keys for the file
system. Introducing a separate key management service,
which has to be synchronized with the security provider
providing access control information, only complicates
matters. Analogously, the security provider should be re-
sponsible for managing integrity reference values, such as
hashes of all files.

Cryptographic file systems exist in two forms: either as
an enhancement within an existing physical file system that
uses an underlying block-storage provider, or as a virtual
file system that must be mounted over another (virtual or
physical) file system. The first approach results inmono-
lithic cryptographic file systems that can be optimized for
performance. The second approach results instackableor
layeredfile systems [35], whose advantage lies in the iso-
lation of the encryption functionality from the details of

a physical file system. In this way, the encryption layer
can be reused for many physical file systems. But because
the operating system must maintain a copy of the data on
each layer, stackable file systems are generally slower than
monolithic ones.

2.3. Previous Work on Cryptographic File Sys-
tems

A considerable number of prototype and production
cryptographic file systems have been developed in the past
15 years. We refer to the excellent surveys by Wrightet
al. [34] and by Kher and Kim [18] for more details, and
mention only the most important systems here.

Most early cryptographic file systems are layered and
use the NFS protocol for accessing a lower-layer file
system: CFS [4] uses an NFS loopback server in user
space and provides per-directory keys that are derived from
passphrases; TCFS [6] uses a modified NFS client in the
kernel and utilizes a hierarchical key management scheme,
in which per-user master keys to protect per-file keys are
maintained. SFS [22, 23, 24] is a distributed cryptographic
file system also using the NFS interfaces, which is available
for several Unix variants. These systems do not contain an
explicit security provider responsible for key management,
and delegate much of that work to the user.

SUNDR [21] is a distributed file system that works with
a completely untrusted storage server. It guarantees that
clients can detect any violation of integrity and consistency,
as long as they see file updates of each other, but it can-
not prevent modifications to the stored data by the server.
SUNDR provides file integrity protection using hash trees,
and makes frequent use of digital signatures.

Another system that protects file integrity is I3FS [28],
a layered file system designed to detect malicious file mod-
ifications in connection with intrusions. It needs a second
authorization mechanism apart from the normal file sys-
tem authorization and acts as a Tripwire-like [19] intrusion-
detection system built into the kernel.

SFS-RO [7] and Chefs [8] are two systems protecting
file integrity using hash trees designed for read-only data
distribution, where update are only possible by using off-
line operations. Like I3FS, they do not implement the stan-
dard file system interface and require special commands for
write operations.

A cryptographic file system has also been implemented
using secure network-attached disks (SNAD) [27]. SNAD
storage devices are a hybrid design, providing traditional
block storage as well as features commonly found in
object-storage devices and file servers. In contrast to tra-
ditional storage providers, SNAD devices require strong
client authentication for any operation and also perform
data verification on the content. Data is encrypted by the

3



clients before sending it to the SNAD and authenticated
using per-block digital signatures or per-block secret-key
authentication (MAC).

Microsoft Windows 2000 and later editions contain an
extension of NTFS called EFS [31], which provides file en-
cryption with shared and group access. It relies on the secu-
rity provider in the Windows operating system for user au-
thentication and key management. As it is built into NTFS,
it represents a monolithic solution.

Some more recent cryptographic file systems follow the
layered approach: NCryptfs [33] and eCryptFS [13] are
two native Linux file systems, which are implemented in
the kernel and use stacking at the VFS layer based on
the FiST framework [36]. EncFS [12] for Linux is im-
plemented in user-space relying on Linux’s file system in
user space module (FUSE). FUSE intercepts system calls
at the VFS layer and redirects them to the daemon in user
space. NCryptfs, eCryptFS, and EncFS currently provide
only manual key management on a per-file system basis,
but the eCryptFS design includes support for a sophis-
ticated key management scheme with per-file encryption
keys and shared access using public-key cryptography.

Farsite [1] and Oceanstore [20] are two storage sys-
tems designed for wide-area and scalable file sharing; they
protect confidentiality and integrity through various tech-
niques, including encryption and hash trees, and use decen-
tralized administration. They differ in their trust model and
in their performance characteristics from the kernel-level
file systems considered here.

Except for Windows EFS and apart from using a stack-
able file system on top of a networked file system such
as NFS or AFS, there are currently no distributed crypto-
graphic file systems that offer high performance and allow
file sharing and concurrent access to encrypted files.

All file systems mentioned support confidentiality
through encryption, SUNDR and SFS-RO provide only
data integrity through hash functions and digital signatures,
and Farsite, Oceanstore, and Chefs support both.

3. Design

This section presents the SAN File System (SAN.FS)
and our design for turning SAN.FS into a cryptographic
file system supporting confidentiality and integrity.

3.1. SAN.FS

SAN File System (SAN.FS) from IBM, also known as
Storage Tank, implements a distributed file system on a
SAN, providing shared access to virtualized storage de-
vices for a large heterogeneous set of clients, combined
with policy-based file allocation [25]. It is scalable be-
cause the clients access the storage devices directly over

MDS

MDS Networking Infrastructure

Client

Client

Client

Storage Device

Storage Device

Figure 2. The architecture of SAN.FS.

the SAN. This is achieved by separating meta-data opera-
tions from the data path and by breaking up the traditional
client-server architecture into three components, as shown
in Figure 2.

The three components of SAN.FS are the following:

1. A client driver, which comes in several variations, as
a VFS provider for Unix-style operating systems such
as Linux and AIX, or as an installable file system
for Microsoft Windows. The client driver also imple-
ments an object service (according to Section 2.1) as
an intermediate layer.

2. The meta-data server (MDS), which runs on a dedi-
cated cluster of nodes, implements all meta-data ser-
vice abstractions such as directories and file meta-
data, and performs lock administration for file shar-
ing.

3. The storage devices, which are standard SAN-
attached storage servers that implement a block-
storage service. Note that SAN.FS does not contain
a security provider, but delegates this function to the
clients.

In SAN.FS, all bulk data traffic flows directly between
a client and the storage devices over the SAN. The client
communicates with the MDS over a LAN using TCP/IP
for allocating storage space, locating data on the SAN,
performing meta-data operations, and coordinating concur-
rent file access. The protocol between the client and the
MDS is known as theSAN.FS protocol[16]. The MDS
is responsible for data layout on the storage devices. It
also implements a distributed locking protocol in which
leases are given to clients for performing operations on
the data [5, 16]. As the clients heavily rely on local data
caching to boost performance, the MDS essentially imple-
ments a cache controller for the distributed data caches at
all clients in SAN.FS.

4



SAN.FS maintains access control information such as
file access permissions for Unix and the security descriptor
for Windows in the meta-data, but leaves its interpretation
up to the client operating system [16]. In order to imple-
ment proper access control for all users of a SAN.FS in-
stallation, one must therefore ensure that only trusted client
machines connect to the MDS and to the SAN. It is possible
to share files between Windows and Unix.

3.2. Cryptographic SAN.FS

The goal of our cryptographic SAN.FS design is to pro-
vide end-to-end confidentiality and integrity protection for
the data stored by the users on the SAN.FS clients such
that all cryptographic operations occur only once in the
data path. We assume that the MDS is trusted to maintain
cryptographic keys for encryption and reference values for
integrity protection, and does not expose them to unautho-
rized clients. We also assume that the clients properly en-
force file access control. Storage devices and other entities
with access to the SAN are untrusted entities that poten-
tially attempt to violate the security policy. Hence, using
the terminology of Section 2.1, the meta-data provider also
implements the security provider.

Corresponding with the design goals of SAN.FS, the
client also performs the cryptographic operations and sends
the protected data over the SAN to the storage devices. En-
cryption keys and integrity reference values are stored by
the MDS as extensions of the file meta-data. The links be-
tween clients and the MDS are protected using IPsec or
Kerberos. The encryption and integrity protection methods
are described later in this section.

A guideline for our design was to leave the storage de-
vices unmodified. This considerably simplifies deployment
with the existing, standardized storage devices without in-
curring additional performance degradation. But a mali-
cious device with access to the SAN can destroy stored
data by overwriting it, because the storage devices are not
capable of checking access permissions. Cryptographic in-
tegrity protection in the file system can detect such modifi-
cations, but not prevent them.

We remark that an alternative type of storage device,
providing strong access control to the data, is available with
object storage [2, 3]. It prevents any unauthorized mod-
ification to the data by other nodes on the SAN. Our de-
sign is orthogonal to the security design of object storage,
and could easily be integrated in a SAN file system using
object-storage devices.

Confidentiality Protection. The confidentiality protec-
tion mechanism encrypts the data to be stored on the clients
with a symmetric cryptosystem, using a per-file encryption
key. Each disk-level data block is encrypted with the AES

block cipher in CBC mode, with an initialization vector de-
rived from the file object identifier and from the offset of
the block in the file and the per-file key. These choices en-
sure that all initialization vectors are distinct.

Instead of CBC mode, it would also be possible to use a
tweakable encryption mode, such as those being considered
for standardization in the IEEE P1619 effort. These modes
offer better protection against active attacks on the stored
data, because even a small change to an encrypted block
will cause the recovered plaintext to look random and com-
pletely independent of the original plaintext. With CBC
mode, an attacker can have some influence on the recovered
plaintext, when no additional integrity protection methodis
used. Despite this deficiency, we chose CBC mode because
it offers better performance (essentially twice the speed of
tweakable encryption when implemented in software) and
because our integrity protection scheme provides complete
defense against modifications to the stored data.

The file encryption key is unique to every file and stored
as part of a file’s meta-data. As such a key is short (typi-
cally 16–32 bytes), the changes to the MDS for adding it
are small. The key can be chosen by either the MDS or the
client.

Integrity Protection. The integrity protection mecha-
nism detects unauthorized modification of data at rest or
data in flight by keeping a cryptographic hash or “digest”
of every file. The hash value is short, typically 20–64 bytes
with the SHA family of hash functions, and is stored to-
gether with the file meta-data by the MDS. All clients writ-
ing to the file also update the hash value at the MDS, and
clients reading file data verify that any data read from stor-
age matches the hash value obtained from the MDS. An
error is reported if the data does not match the hash value.

The hash function is not applied to the complete file at
once, because the hash value would have to be recomputed
from scratch whenever only a part of the file changes, and
data could only be verified after reading the entire file. This
would incur a prohibitive overhead for large files. It is im-
portant to use a data structure that allows verification and
manipulation of hash values with an effort that is roughly
proportional to the amount of data affected.

The well-known solution to this problem is to create a
hash tree, also known asMerkle tree[26], and to store it
together with the file. A hash tree is computed from the file
data by applying the hash function to every data block in
the file independently and storing the resulting hash values
in the leaves of the tree. The value of every interior node
in the hash tree is computed by applying the hash function
to the values of its children. The value at the root of the
tree, which is called theroot hash value, then represents a
unique cryptographic digest of the data in the file.

A single file-data block can be verified by computing the

5



hash value of the block in the leaf node and by recomputing
all tree nodes on the path from the leaf to the root. To
recompute an interior node, all sibling nodes must be read
from storage. The analogous procedure works for updates.
Using hash trees, the cost of a read or a write operation of
integrity-protected files is logarithmic in the length of the
file (in the worst case), instead of proportional to the entire
file length.

The question where to store the hash-tree data must be
addressed. Conceptually, the hash tree is part of the meta-
data, as it contains informationabout the file data. But
apart from the root hash, no part of the hash tree must be
protected [26]. Moreover, the hash tree must be updated
along with every data operation and its size is proportional
to the size of the file, so it resembles file data. This suggests
that it should be stored together with the file data. SAN.FS,
for example, uses a file-block size of 4 kB. With SHA-256
as hash function, a hash tree of degree 16 takes about 1%
of the size of the corresponding file for large files.

Moreover, the SAN.FS protocol between the clients and
the MDS is optimized for small messages that typically are
of constant size. The protocol would require major mod-
ifications to handle the data traffic and the storage space
needed by hash trees.

Therefore, we store hash-tree data on the untrusted stor-
age space and only save the root hash value on the MDS to-
gether with the meta-data. We allocate a separate file object
per file for storing hash-tree data. The existing functions
for acquiring and accessing storage space can therefore be
exploited for storing the hash tree. The file is visible at the
object layer, but filtered out from the normal file system
view of the clients. The SAN.FS distributed locking proto-
col is modified such that the hash tree object is tied to the
corresponding data file and always covered by the locks for
the data file. Without adding such a link, deadlocks might
occur.

4. Implementation

We have implemented a prototype of the cryptographic
SAN file system design in Linux. This section describes the
extensions of the SAN.FS protocol, the modifications to the
MDS, and the implementation of encryption and integrity
protection in the client file system driver. The storage de-
vices have not been modified.

4.1. SAN.FS Protocol

The clients communicate with the MDS using the SAN.-
FS protocol version 2.1 [16]. The SAN.FS protocol imple-
ments reliable message delivery and defines requests and
transactions. Either participant can send request messages

to the other participant with commands that can be exe-
cuted quickly. Transactions consisting of four messages
are only initiated by the client and only for executing oper-
ations that result in state changes on the server.

The SAN.FS protocol defines multiple types of locks
that can be acquired by clients on file and directory ob-
jects. Thedata lockson files are relevant for the crypto-
graphic operations. A data lock protects meta-data and file
data cached locally by a client from concurrent access by
other clients.

A data lock on a file object is typically held in either
shared reador exclusivemode. It applies to the entire file
and allows the client to read or to modify file data, respec-
tively. When the server grants a data lock on a file object
to a client, it sends along the object attributes, such as file
size and access permissions.

A set ofcryptographic attributeshas been added to the
object attributes. The cryptographic attributes contain the
type of cryptographic protection applied (encryption, in-
tegrity, or both), the encryption method, the encryption key,
the hash method, the root hash value, and the identifier of
the hash-tree file object. As the object attributes are al-
ways passed to the client with a granted data lock, the client
driver knows all necessary information to perform the cryp-
tographic operations.

The most important extensions in the protocol occur for
creating a file and for accessing the object attributes.

Creating a file object: When the client sends a request to
create a file object, it can also specify the desired cryp-
tographic attributes. These flags take effect for the
newly created file unless the server is configured to
override them. The root hash value is left empty at
this time.

Accessing file object attributes: When a client requests
the acquisition of a data lock to access a file, it also
receives the cryptographic attributes as part of the re-
sponse from the MDS. A client holding an exclusive
data lock on a file object is also allowed to modify
the cryptographic attributes, for example to turn on
encryption. Usually the client modifies only the root
hash value in accordance with the data that it writes.
When the client returns an exclusive data lock to the
MDS, the root hash value has to be consistent with the
hash tree and the data in the file.

Apart from extending the SAN.FS protocol to handle the
cryptographic data, the protocol traffic between the MDS
and the client must be cryptographically protected on the
network. This can either be achieved by establishing a se-
cure IPsec tunnel between the client and the MDS or by
using Kerberos to encrypt and authenticate the messages
between the client and the MDS. Both forms have been im-
plemented. IPsec can be used transparently for SAN.FS

6



Storage Devices

HT CA

H E

H E H E

Networking Infrastructure

Application

VFS

CSMSTFS

Page Cache Krb / IPSec

Kernel Space

User Space

Client

TCP/IP

iSCSI

Blk I/O

Krb / IPSec

MDS

TCP/IP TCP/IP

Figure 3. Design of cryptographic SAN.FS.
The encircled “E” and “H” denote encryption
and hash-tree operations, respectively.

because IPsec can be configured at the operating system
level; it requires the server to maintain client authentica-
tion keys, however. Using Kerberos takes a small number
of changes to the client driver and the MDS, and relies on
the Kerberos KDC for key management.

4.2. Meta-Data Server

Only minimal changes to the MDS were required. The
cryptographic attributes are stored together with existing
attributes of every file object. In contrast to most opera-
tions, where the MDS merely responds to client requests,
the MDS implementation takes an active role in setting the
cryptographic attributes: It can be configured to enforce
that the encryption and integrity protection flags be turned
on or off, and to mandate the choice of particular encryp-
tion and hash methods. This allows the administrator to
specify a uniform policy for the cryptographic protection
applied to the file system.

The MDS can also generate an encryption key upon cre-
ation of a new file. It contains a cryptographically strong
pseudorandom generator for this purpose.

4.3. Client Driver

Most of the cryptographic extensions are located in the
client driver, because it performs the cryptographic opera-
tions on the bulk data. The SAN.FS client driver we used
is implemented as a Linux kernel module for the 2.6.6 ker-
nel1. The structure of the driver is shown in Figure 3. It
consists of two main parts:

StorageTank file system driver (STFS):The STFS
module contains the platform-dependent layer of the
driver and implements the interface to the VFS layer
of the Linux kernel. It handles reading and writing
of file data from and to the page cache and the block
devices.

Client state manager (CSM): The CSM is the part of the
driver that interacts with the MDS using the SAN.FS
protocol. It maintains the object attributes, includ-
ing the cryptographic attributes. The CSM code is
platform-independent and portable across all SAN.FS
client driver implementations. It uses a generic inter-
face for platform-dependent services of the operating
system (not shown in the figure). Note that the CSM
is not involved in reading or writing file object data.

As for any other block-device-based file system, the
cached file data is maintained by the Linux page cache.
All cryptographic operations operate on blocks of 4 kB
at a time, which is the smallest unit of data allocation in
SAN.FS. Conveniently, the page size in Linux is 4 kB or a
multiple of it, so that the cryptographic operations do not
have to span multiple paging operations.

Our cryptographic operations take place at the bottom
of the client driver on the data path, immediately above the
block-device layer. Read and write requests from the file
system result in paging requests that are processed asyn-
chronously by a pager module implemented in the client
driver. The pager module consists of multiple threads for
sending requests to read data from storage and for writing
dirty pages back to disk. (The SAN.FS implementation in
Linux does not use the Linux kernel’spdflush daemon.)

More concretely, when a pageout thread writes out a
page of an encrypted and integrity-protected file, the thread
first encrypts the page and hashes the resulting ciphertext to
obtain the leaf value for the hash tree. It stores the cipher-
text in a buffer page that must be allocated for the request.
Then it dispatches a write request from the buffer page to
the block device, according to the data layout.

For pagein requests, integrity verification and decryp-
tion take place analogously in a pagein kernel thread (in

1A current release of the SAN.FS client reference implementa-
tion for Linux on i386 is available fromhttp://www-03.ibm.
com/servers/storage/software/virtualization/sfs/
implementation.html as of September 2006.

7



kernel-thread context), after the block device has com-
pleted the I/O request and the page has been brought in
completely (in interrupt context).

The other modifications concern the CSM and its data
structures, through which the link to the MDS storing the
hash information is established. The extension mainly
deals with processing the cryptographic attributes (CA).

The driver uses the cryptographic functions in the Linux
kernel crypto API for encrypting and for hashing data. This
approach enables the use of a wide range of cryptographic
algorithms and dedicated hardware accelerators supporting
this interface.

Implementing encryption and decryption is straightfor-
ward, but the hash-tree operations require some sophisti-
cated algorithms. The hash-tree (HT) data is buffered in
the page cache, and for every node in the tree, two flags are
maintained that denote whether the node has passed veri-
fication and whether a node is dirty because a write oper-
ation to a page invalidated it. Using these flags, a pagein
operation only needs to verify some nodes along the path
to the root until it encounters a node that has already been
verified. A pageout operation on a dirty page writes a new
hash value into a leaf of the tree. The internal nodes of the
hash tree are only recomputed after all dirty pages that it
spans have been written out. When a file is processed se-
quentially (for reading or writing), buffering the hash tree
in this way results in a constant processing overhead per
page operation [9].

One complication that arises is that to verify the in-
tegrity of a page during a pagein operation, all correspond-
ing hash-tree data must be ready before the page arrives
and its hash value can be compared with the value in the
leaf node. Because verification occurs in a kernel thread
when the I/O operation is completed, it is not possible to
start additional I/O operations for reading hash-tree dataor
allocating more memory in this context. Therefore, our im-
plementation serializes the operations and ensures that all
necessary hash-tree data is available before the pagein re-
quest is dispatched to the block device.

The design is also illustrated in Figure 3, where an encir-
cled “E” stands for encryption and an encircled “H” stands
for integrity protection operations. The arrows depict the
flow of the protected data.

4.4. Hash Tree Layout

This section completes the description of the crypto-
graphic SAN.FS client driver by illustrating the layout of
the hash-tree data.

To compute the hash tree, a file is divided into 4 kB
blocks, corresponding to the Linux page size. We recall the
construction of ak-ary Merkle tree using a hash function
H(): Every leaf node stores the output ofH applied to a

Figure 4. A ternary hash tree with four lev-
els, numbered from 0 to 3 according to their
height. The small squares represent the
nodes of the tree and contain the node in-
dex in pre-order enumeration. The nodes
at level 0 are the leaf nodes and are com-
puted by hashing a single data block (grey
squares). Levels 1–3 contain internal nodes,
and level 3 contains the root hash.

data page of lengthb bytes, and every internal node stores
the hash value computed on the concatenation of the hash
values in its children.

Suppose the tree has deptht. A levelof the tree consists
of the set of nodes with the same distance from the root.
Levels are numbered according to theirheightin a drawing
of the inverted tree as shown in Figure 4. The height of the
root node ist. Every other node has heighth−1 if its parent
has heighth. Hence, leaves have height0. Thej-th node
(from the left) with heighth in the tree can be identified by
the tuple(h, j).

As the maximum file size in SAN.FS is fixed (264

bytes), the maximum depth of the hash tree can be com-
puted in advance, given the degreek. A high degreek
results in a flat tree structure and has therefore similar un-
favorable properties as using a single hash value for the
whole file. If k is small, the tree is deeper and therefore
requires more space as well as more integrity operations
during verification, especially with random-access work-
loads. After some experimentation with those parameters,
we chosek = 16 and obtain a tree of depth 13 in our imple-
mentation. The complete tree with maximum depth is con-
structed implicitly, but every level contains only as many
allocated nodes as are needed to represent the allocated
blocks of the file. This choice simplifies the design of the
hash-tree algorithms, in particular with respect to padding
and file holes.

In particular, no leaf nodes are allocated for data blocks

8



 50

 100

 150

 200

 250

 300

105210.50.20.10.050.020.01

C
um

ul
at

iv
e 

R
ea

d 
an

d 
W

rit
e 

R
at

e 
[M

bi
t/s

]

Maximum File Size [MB]

No Encryption
AES-128
AES-256

Figure 5. Encryption performance using Postmark, with vary ing maximum file sizes.

beyond the length of the file or for data blocks in holes. As
reading such blocks would return the all-zero string accord-
ing to the file-system semantics, we treat them as all-zero
blocks for computing the hash tree. To prevent the alloca-
tion of hash-tree nodes covering empty file areas, the same
heuristic encoding scheme is used for hash-tree nodes by
the implementation: When a hash node is read from the
hash-tree file object and returns the all-zero string, it is in-
terpreted as the hash value resulting at that particular height
of the tree when file data of only zeroes is hashed. This en-
sures that all leave nodes in the subtree rooted at this node
contain only the hash of a block of zeroes and need not be
allocated either. The node values for all-zero file data can
be precomputed for all levels in the driver.

To serialize the hash tree, several choices are avail-
able: for example, level-by-level enumeration with two-
dimensional identifiers of the form(h, j) or enumeration
according to a recursive tree-traversal algorithm. Because
of our choice to always implicitly maintain the hash tree for
the maximum file size, enumerating the nodes according to
a pre-order tree traversal is advantageous.

Figure 4 shows the typical case of contiguous file data
starting at offset 0 using a ternary hash three with four lev-
els. As can be verified easily, all hash-tree nodes that have
to be allocated are also in a contiguous region in pre-order
enumeration, starting with the root node at index 1. Using
the heuristic encoding above, no unnecessary tree nodes
have to be allocated for such files; all nodes that are to the
left of the path from the highest leaf node to the root node
correspond to the hash value of the all-zero file data, which
are not allocated.

The nodes of the hash tree are serialized by traversing
the tree in pre-order and writing every node to the file in
that sequence. Some simple algorithms can be used to cal-

culate the index of a node in pre-order enumeration from
their two-dimensional identifier.

5. Performance Analysis

In this section, we report on performance measurements
performed with the prototype using encryption and in-
tegrity protection. Here we give only results for Post-
mark [17], a benchmark creating realistic workloads, and
for a synthetic benchmark, which reads and writes large
amounts of data sequentially. A more detailed account of
the evaluation can be found in the full paper [29].

Our testbed consists of two storage servers (one for the
meta data and one for the data to be stored), an MDS, and
a client. All machines are IBM x335/6 and x345/6 systems
with 2 hyper-threaded Intel Xeon CPUs each and clock
speeds from 2.8–3.2 GHz. The client has 3 GB RAM.
The meta-data storage server contains a single drive. The
data storage server contains 14 drives, organized in two
RAID 5EE arrays with seven drives each, in an IBM stor-
age expansion EXP-400 using the IBM ServeRAID 6m
RAID controller. All disks are IBM Ultra320 SCSI disks
with 73.4 GB capacity and running at 10k RPM. The stor-
age devices are connected with iSCSI to the MDS and the
test client over a single switched Gigabit-Ethernet.

Confidentiality Protection. Postmark is a benchmark
for file-system applications and generates a file-system
load similar to an Internet mail, web, or news server. It cre-
ates a large number of small sequential transactions. The
read and write operations generated by the transactions are
parallelized by the kernel. Figure 5 shows the cumulative
read and write rate reported by Postmark v1.51, as a func-

9



Unprotected Encrypted (AES-128) Encrypted (AES-256) Integrity-protected
[Mbit/s] [Mbit/s] [Mbit/s] [Mbit/s]

Read 458 310 279 303
Write 388 283 247 384

Table 1. Performance comparison for reading and writing lar ge amounts of data sequentially.

tion of the maximal file size parameter. The minimum file
size is being fixed to 1 kB and the maximum file size varies
from 10 kB to 10 MB. In this test, Postmark is configured to
create 2000 files with sizes equally distributed between the
minimum and maximum configured file size and executes
5000 transactions on them. All other parameters are set to
their default values in Postmark. Each curve represents the
average of 11 differently seeded test runs. The 95% confi-
dence interval is also shown, and is mostly centered closely
around the mean.

It is clear that the smaller the files are, the larger is the
fraction of meta-data operations. Up to a maximum file size
of 200 kB, the performance is limited by the large number
of meta-data operations. Above this size, we reach the lim-
itations of the storage devices. In general we can see that
the overhead for confidentiality protection is small in this
benchmark and lies in the range of 5%–20%.

A second test consists of reading and writing large
amount of sequential data using the Unixdd command.
Eight files of size 1 GB each are written and read concur-
rently in blocks of 4 kB. The eight files are organized into
two groups of four, and each group is stored on one of the
RAID arrays, to avoid the disks being the performance bot-
tleneck. The goal is to keep the file system overhead min-
imal in order to measure the actual end-to-end read/write
performance. There are four kernel threads for pageout and
pagein operations, which allows us to exploit all four avail-
able CPUs visible in Linux for encryption.

The read and write rates for AES-128 and AES-256 en-
cryption are displayed in the second and third columns of
Table 1. They are calculated from the average execution
time of the eightdd commands, which was measured us-
ing the Unixtime command. It is evident that for such
large amounts of data, the available CPU power and CPU-
to-memory bandwidth become a bottleneck for performing
cryptographic operations. During reads the storage band-
width is reduced by 32% for AES-128 and 39% for AES-
256, compared to not using encryption; during writes, the
reduction is about 27% for AES-128 and 36% for AES-
256, respectively. The measurement, however, represents
an artificial worst case for a file system. Additional tests
revealed that the performance using iSCSI nullio-mode,
where no data is stored on disk, achieves about 800 Mbit/s
for reading and about 720 Mbit/s for writing of unencrypted
data, thus saturating the Gigabit Ethernet (including the

TCP/IP and iSCSI overhead).

Integrity Protection. We describe measurements with
the same two benchmarks as for encryption. We ran Post-
mark and applied integrity protection using SHA-256. The
third column of Table 2 shows the reported throughput in
terms of a cumulative read and write rate for a maximum
file size of 20 MB and a total number of 1000 data files.
The “unprotected” case corresponds to the results reported
in Figure 5. The table also shows the performance of en-
cryption and integrity protection combined.

For the other test involving large sequential reads and
writes, the third column of Table 1 contains the summa-
rized timings with SHA-256 for integrity protection. The
test uses the same setup as above. Writing shows no sig-
nificant overhead because the hash tree is calculated and
written to disk only after all file data has been written and
therefore not included in the reported time. The hash tree
size is about 1% of the size of the file. In contrast, the
read operations are slower, because the hash tree data is
pre-fetched and this incurs a larger latency for many low-
level page-read operations. Reading may also generate a
pseudo-random read access pattern to the hash-tree file.

The results show that encryption has a smaller impact on
performance than integrity protection. This is actually not
surprising because integrity protection involves much more
complexity. Recall that our implementation first reads all
hash-tree nodes necessary to verify a data page before it is-
sues the read operation for the data page. This ensures that
the completion of the page-read operation does not block
because of missing data. Executing these two steps se-
quentially simplifies implementation but doubles the net-
work latency of reads. Furthermore, managing the cached
hash tree in memory takes some time as well.

6. Conclusion

We have presented a security architecture for crypto-
graphic distributed file systems and its implementation in
IBM SAN.FS. By protecting data on the clients before stor-
ing it on a SAN, no additional cryptography operations are
necessary to secure the data in-flight on the SAN. More-
over, no additional computations by storage devices and no
changes to the storage devices are required. The architec-

10



Unprotected Integrity-protected Difference
[MBit/s] [%] [MBit/s] [%] [%]

Unencrypted 219 156 -28.7
Encrypted with AES-128 202 -8.0 147 -5.8 -27.1
Encrypted with AES-256 198 -9.6 141 -9.7 -28.8

Table 2. Performance of integrity protection and combined e ncryption and integrity protection using
Postmark (cumulative read and write rate). The “Unprotecte d” columns show the throughput without
integrity protection, without encryption, with AES-128 en cryption, and with AES-256 encryption. The
second column denotes the relative performance loss due to u sing encryption. Analogously, the
columns under the heading “Integrity-protected” show the r ates with integrity protection applied.
The fifth column “Difference” shows the relative loss due to a pplying integrity protection for each of
the encryption choices.

ture can also be integrated with future storage devices that
support access control, like object storage [3].

The implementation in SAN.FS as a monolithic cryp-
tographic file system shows that sustained high perfor-
mance can be achieved. By carefully integrating the cryp-
tographic operations in the appropriate places of the file
system driver, the overhead is actually almost not notice-
able in a typical file-server environment. This is consistent
with earlier benchmarks of cryptographic file systems in
different environments [27, 34].

Our approach has three distinct advantages over previ-
ous systems. First, by centralizing the key management on
an on-line trusted server (the MDS in our case), we gain
efficiency because key management can be done with sym-
metric cryptography. In contrast, key management schemes
performed entirely by the users, as in SFS [23] or in Win-
dows EFS [31], requires the use of public-key cryptogra-
phy.

Secondly, we believe that cryptographic integrity pro-
tection is an important requirement, even though many
users of secure file systems first concentrate on encryption.
Since integrity protection is also considerably more com-
plex than encryption alone, most cryptographic file systems
available today do not support it. Some systems, like SiR-
iUS [11], always hash entire files, and will not perform well
with large files.

And, last but not least, many past designs of crypto-
graphic file systems have chosen to simplify the implemen-
tation by using the layered approach. This limits their per-
formance because they must maintain several data buffers.
Some process data in user space, which involves copying
the data in and out of the kernel multiple times. Although
building the cryptographic operations into the kernel re-
quires more work, our results show that it performs well.

Still, there is room for improvement in our design and
implementation. Our hash tree implementation should in-
clude more sophisticated locking mechanisms in order to

be able to read hash-tree data and file data in parallel in-
stead of sequentially. Since an update to a file triggers at
least two write operations at the block layer (one in the
file data and one on hash tree data), a client crash during
such an operation may violate the atomicity of the update
in a more severe way than in ordinary file systems. For in-
stance, it may be that the file data is written correctly but the
integrity information is not, and an integrity violation will
result upon reading. Providing a graceful recovery proce-
dure for this situation poses an interesting and challenging
open problem. Furthermore, our choice of a 16-ary hash
tree was somewhat arbitrary. In ongoing work, we are ex-
ploring different hash tree topologies and alternative ways
to store the hash tree. Preliminary results show that these
two factors impact the file system performance.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer, “FARSITE: Fed-
erated, available, and reliable storage for an incom-
pletely trusted environment,” inProc. 5th Symp. Op-
erating Systems Design and Implementation (OSDI),
2002.

[2] A. Azagury, R. Canetti, M. Factor, S. Halevi, E. He-
nis, D. Naor, N. Rinetzky, O. Rodeh, and J. Satran,
“A two layered approach for securing an object store
network,” inProc. 1st International IEEE Security in
Storage Workshop (SISW 2002), 2002.

[3] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor,
N. Rinetzky, O. Rodeh, J. Satran, A. Tavory, and
L. Yerushalmi, “Towards an object store,” inProc.
IEEE/NASA Conference on Mass Storage Systems
and Technologies (MSST 2003), pp. 165–177, 2003.

11



[4] M. Blaze, “A cryptographic file system for Unix,” in
Proc. 1st ACM Conference on Computer and Commu-
nications Security, Nov. 1993.

[5] R. C. Burns, R. M. Rees, L. J. Stockmeyer, and
D. D. E. Long, “Scalable session locking for a dis-
tributed file system,”Cluster Computing, vol. 4,
pp. 295–306, Oct. 2001.

[6] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Per-
siono, “The design and implementation of a trans-
parent cryptographic filesystem for UNIX,” inProc.
USENIX Annual Technical Conference: FREENIX
Track, pp. 199–212, June 2001.

[7] K. Fu, F. Kaashoek, and D. Mazières, “Fast and se-
cure distributed read-only file system,”ACM Trans-
actions on Computer Systems, vol. 20, pp. 1–24, Feb.
2002.

[8] K. E. Fu, Integrity and Access Control in Untrusted
Content Distribution Networks. PhD thesis, Depart-
ment of Electrical Engineering and Computer Sci-
ence, MIT, Sept. 2005.

[9] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk,
and S. Devadas, “Caches and hash trees for efficient
memory integrity verification,” inProc. 9th Intl. Sym-
posium on High-Performance Computer Architecture
(HPCA ’03), 2003.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
and D. Rochberg, “A case for network-attached se-
cure disks,” Tech. Rep. CMU-CS-96-142, School
of Computer Science, Carnegie Mellon University,
1996.

[11] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh,
“SiRiUS: Securing remote untrusted storage,” in
Proc. 10th Network and Distributed System Security
Symposium (NDSS), pp. 131–145, Feb. 2003.

[12] V. Gough, “EncFS: Encrypted file system.”http:
//arg0.net/wiki/encfs, July 2003.

[13] M. A. Halcrow et al., “eCryptfs: An enterprise-
class cryptographic filesystem for Linux.”http://
ecryptfs.sourceforge.net/, 2005.

[14] L. G. Harbaugh, “Encryption appliances reviewed,”
Storage Magazine, Jan. 2006.

[15] D. Hildebrand and P. Honeyman, “Exporting stor-
age systems in a scalable manner with pNFS,” in
Proc. 22nd IEEE/13th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST), Apr.
2005.

[16] “IBM TotalStorage SAN File System Draft Proto-
col Specification 2.1.” Available fromhttp://
www-07.ibm.com/storage/in/software/
virtualisation/sfs/protocol.html,
Sept. 2004.

[17] J. Katcher, “Postmark: A new file system bench-
mark,” Technical Report TR3022, Network Appli-
ance, 1997.

[18] V. Kher and Y. Kim, “Securing distributed storage:
Challenges, techniques, and systems,” inProc. Work-
shop on Storage Security and Survivability (Stor-
ageSS), 2005.

[19] G. H. Kim and E. H. Spafford, “The design and
implementation of Tripwire: A file system integrity
checker,” inProc. 2nd ACM Conference on Computer
and Communications Security, pp. 18–29, 1994.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels,et al., “OceanStore: An archi-
tecture for global-scale persistent storage,” inProc.
Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS 2000), Nov. 2000.

[21] J. Li, M. Krohn, D. Mazires, and D. Shasha, “Se-
cure untrusted data repository (SUNDR),” inProc.
6th Symp. Operating Systems Design and Implemen-
tation (OSDI), pp. 121–136, 2004.

[22] D. Mazières, “A toolkit for user-level file systems,”
in Proc. USENIX Annual Technical Conference, June
2001.

[23] D. Mazières et al., “Self-certifying file system.”
http://www.fs.net/, 2003.

[24] D. Mazières, M. Kaminsky, F. Kaashoek, and
E. Witchel, “Separating key management from file
system security,” inProc. 17th ACM Symposium on
Operating System Principles (SOSP ’99), 1999.

[25] J. Menon, D. A. Pease, R. Rees, L. Duyanovich,
and B. Hillsberg, “IBM Storage Tank — a heteroge-
neous scalable SAN file system,”IBM Systems Jour-
nal, vol. 42, no. 2, pp. 250–267, 2003.

[26] R. C. Merkle, “A digital signature based on a conven-
tional encryption function,” inAdvances in Cryptol-
ogy: CRYPTO ’87(C. Pomerance, ed.), vol. 293 of
Lecture Notes in Computer Science, Springer, 1988.

[27] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C.
Reed, “Strong security for network-attached storage,”
in Proc. USENIX Conference on File and Storage
Technologies (FAST 2002), 2002.

12



[28] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok,
“I3FS: An In-Kernel Integrity Checker and Intrusion
Detection File System,” inProc. 18th USENIX Large
Installation System Administration Conference (LISA
2004), pp. 69–79, Nov. 2004.

[29] R. Pletka and C. Cachin, “Cryptographic security for
a high-performance distributed file system,” Research
Report RZ 3661, IBM Research, Sept. 2006.

[30] M. Rajagopal, E. G. Rodriguez, and R. Weber, “Fibre
channel over TCP/IP (FCIP).” RFC 3821, July 2004.

[31] M. Russinovich, “Inside encrypting file system,”Win-
dows & .NET magazine, June–July 1999.

[32] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,
and E. Zeidner, “Internet small computer systems in-
terface (iSCSI).” RFC 3720, Apr. 2004.

[33] C. P. Wright, M. Martino, and E. Zadok, “NCryptfs:
A secure and convenient cryptographic file sys-
tem,” inProc. Annual USENIX Technical Conference,
pp. 197–210, June 2003.

[34] C. P. Wright, J. Dave, and E. Zadok, “Cryptographic
file systems performance: What you don’t know can
hurt you,” in Proc. 2nd IEEE Security in Storage
Workshop, pp. 47–61, Oct. 2003.

[35] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P.
Wright, “On incremental file system development,”
ACM Transactions on Storage, vol. 2, pp. 161–196,
May 2006.

[36] E. Zadok and J. Nieh, “FiST: A language for stack-
able file systems,” inProc. USENIX Annual Technical
Conference, June 2000.

13


