
Integrity Protection for Revision Control

Christian Cachin1 and Martin Geisler2

1 IBM Research, Zurich Research Laboratory, Switzerland, cca@zurich.ibm.com
2 Department of Computer Science, University of Aarhus, Denmark, mg@cs.au.dk

Abstract. Users of online-collaboration tools and network storage ser-
vices place considerable trust in their providers. This paper presents a
novel approach for protecting data integrity in revision control systems
hosted by an untrusted provider. It guarantees atomic read and write
operations on the shared data when the service is correct and preserves
fork-linearizability when the service is faulty. A prototype has been im-
plemented on top of the Subversion revision control system; benchmarks
show that the approach is practical.

Keywords. Hash trees, memory checking, fork linearizability, storage
security, applied cryptography.

1 Introduction

Nowadays people from all continents and all time zones collaborate together in
global companies and other organizations, formal or not. Prominent examples
are open-source development projects, such as the GNU/Linux operating system.
For exchanging documents and storing the output of their work, they typically
rely on a remote provider that hosts a shared storage service. An important
class of such storage services are revision control systems (RCS) that facilitate
collaboration on a set of documents that belong together and exist in multiple
versions.

Although the collaborators trust the storage provider to preserve their doc-
uments, there are good reasons to verify that the provider indeed behaves cor-
rectly. For example, there are reported cases of break-ins to popular open-source
repositories, where security-critical operating system code may have been altered
undetectedly [7]. In cooperations that span multiple organizations, the storage
provider often is a third party with little interest in the resulting work. Gener-
ally, verification reduces trust in the storage provider. To protect against faulty
or corrupted storage providers, cryptographic protection methods are needed.

In this paper, we address cryptographic integrity protection for revision con-
trol systems. They represent the most important kind of multi-user storage
and collaboration tools today, together with Wikis. We assume that clients are
isolated and communicate directly with each other only under special circum-
stances; in fact, many clients may not even know each other. Our goal is to obtain
a strong guarantee that a potentially faulty service provider has not altered the
shared data.



The clients may use public-key signatures to authenticate their operations;
this ensures that no unauthorized party can forge data in the repository. But
in our model, replay attacks by a malicious storage server cannot be prevented,
i.e., the server may return an outdated value to a reader, omitting a more recent
update by another client. SUNDR [11] was the first storage system to address
this problem by providing every client with a fork-linearizable view of the shared
data. This notion ensures that all operations that a client does see are observed
in the agreed linearization order, and if the server causes the views of two clients
to differ in a single operation, they may never again see each others operations.
This makes even subtle changes to the stored data easily detectable.

In this work, we describe the design and implementation of a consistent
revision control system that preserves fork-linearizability. It relies on the fork-
linearizable storage protocol of Cachin et al. [5] that reduces the communication
overhead by an order of magnitude compared to the protocol of SUNDR. Our
implementation extends the popular revision control system Subversion in a
modular way.

The challenge in our work lies in the details of the integration of the fork-
linearizable storage protocol with a revision control system. First, the abstract
storage protocol uses only simple read and write operations on a file, whereas the
revision control system implements transactions that usually read and update
many files at once. Second, our goal is to be transparent to the server side of
the underlying revision control system; therefore, we still rely on it to serialize
concurrent updates. The implementation of our consistent revision control sys-
tem merely extends this serialization order with the cryptographic consistency
guarantees. Finally, the cryptographic operations must not be overly expensive;
our hash-tree implementation exploits caching of the tree nodes and maintains
them in the Subversion repository itself. This adds only little extra storage on
top of the unchecked repository and requires few more operations.

1.1 Related Work

Protecting the integrity of stored data is an important question with a long
history. But good solutions are needed today more than ever before [2], because
personal and institutional data is stored and archived electronically. We describe
here only a selection of the literature that uses the same model as our system, i.e.,
a remote untrusted bulk storage provider that offers read and write operations,
accessed by one or more isolated clients with a small trusted memory.

Blum et al. [3] formalize the problem of memory checking and present the
classical protection scheme based on hash trees [15]. With a memory consist-
ing of n items and with random-access read and write operations to the mem-
ory, hash trees incur an overhead of O(log n) cryptographic operations. Several
storage-system prototypes protect data integrity using hash trees; TDB [12] and
SiRiUS [8] are two prominent examples. A similar approach has been proposed
for protecting a CPU equipped with a trusted cache against unauthorized modi-
fications to the main memory [6]. For database systems accessed through a query



interface, Mykletun et al. [16] analyze the cost of integrity protection with cryp-
tographic signatures that can be aggregated to reduce the space overhead. The
recent work of Papamanthou et al. [17] shows how an array of data items can
be authenticated with constant overhead for reading and sub-linear overhead for
writing.

All systems mentioned so far consider either only one client or construct
an abstraction of the trusted memory between clients (e.g., with digital signa-
tures). The SUNDR system [11] is the only one protecting integrity for storage
space shared by multiple clients that do not communicate among themselves.
SUNDR guarantees linearizability when the storage service is correct and fork-
linearizability when the service is faulty.

In distributed revision control, the two popular systems Git (http://git.
or.cz/) and Mercurial (http://www.selenic.com/mercurial/) both employ
hashes for identifying revisions. Without digital signatures, a corrupted server
can trivially present modified changesets to a client (a changeset is the unit
of an update between two revisions). The clients will no longer agree on the
hashes identifying the revisions, but the server can keep passing content back and
forth between the clients. Even if every client would sign all its updates, replay
attacks would still be possible despite the use of hashes. Distributed revision
control systems explicitly allow offline commits, and so the server can withhold
changesets and claim that it has not seen them yet.

In practice, many open-source projects also publish digests or even crypto-
graphic signatures on every release of their code. But since the cryptographic
operations for authentication and verification are not transparently integrated
with the storage mechanism, they require some manual intervention; hence, this
method is not suitable for everyday collaboration.

1.2 Overview of the Paper

The remainder of the paper is organized as follows. Section 2 presents our sys-
tem model and the design for our consistent revision control system. Section 3
describes our implementation. We evaluated our prototype system and present
the results in Section 4. Section 5 discusses some limitations of our system and
presents an outlook.

2 Design

This section presents the design of our consistent revision control system. In Sec-
tion 2.1, we first describe the assumptions used by our system and the properties
that it guarantees. We then introduce our abstract consistent storage service in
Section 2.2, which provides a fork-linearizable storage space for small values, and
review those properties of revision control systems that are relevant for our work
in Section 2.3. In Section 2.4, we explain the design of the consistent revision
control system.



2.1 Model

The system consists of an a priori unknown number of clients and a storage
server. The server provides an abstraction of consistent shared storage to the
clients, who access it using operations to read and write data, and with op-
erations to control different revisions of the data. We assume that all clients
are correct and follow the protocol. The server may be faulty or corrupted and
deviate from the protocol in arbitrary ways, but not break any cryptographic
primitives.

The clients never communicate with each other directly, they communicate
only via the server. This model is convenient and realistic because the clients are
not required to know each other, the network topology may prevent direct com-
munication between them, and they can operate independently of each other.
Revision control systems enable a convenient form of computer-supported co-
operative work, because the collaborators can contribute at different times and
from different locations.

We assume that each client is identified by a public key/private key pair,
signed by a trusted certification authority (CA). Every client trusts one or more
CAs, whose root keys it stores in a local directory in the form of self-signed X.509
certificates. Clients identify each other only by their public key; more precisely,
clients accept every public key as the identity of another client when the key
is accompanied by a certificate from a trusted CA. The system distributes the
keys among clients as needed; a client only needs the trusted CA keys before it
starts to interact with the storage service. Representing client identities by keys
simplifies key distribution considerably [13].

Every client maintains a small trusted memory, whose size is independent
of the size of the shared storage space. In order to prevent a corrupted server
from introducing unauthorized modifications to the shared data, clients sign all
their write operations and verify the integrity of the data they read using digital
signatures. But since the clients do not communicate with each other, we cannot
prevent that the server completes a write operation of one client, and still returns
stale data to another client.

The notion of fork-linearizability provides the next-best notion of consistency
in this model [5,14]. It ensures that all operations in the view of every client are
legal in the sense that data returned by a read operation has been written by
the indicated client, and that when the server causes the views of two clients to
differ, even in a single operation only, then these clients may not see any further
operation of each other afterwards.

Our goal is to implement a storage service that provides read and write op-
erations, which execute atomically and according to their specification whenever
the server is correct; when the server is faulty, the storage service still provides
fork-linearizability. We refer to the work of Cachin et al. [5] for a formal notion
that captures this requirement under the name of a fork-linearizable emulation
of a storage service on a potentially corrupted server. In the subsequent sec-
tions, we explain how fork-linearizable storage is implemented by our consistent
storage service and by our consistent revision control service.



Naturally, a corrupted server may simply refuse to cooperate, and then the
clients will have to reconstruct the shared data from their own records. But this
attack cannot be prevented. There is no easy solution to this problem, except to
choose a more trustworthy server.

On the other hand, a fork-linearizable emulation ensures that the server
cannot violate the consistency of the storage service and hide this attack from
clients that are suspicious. Even if the clients communicate out-of-band only
occasionally, for example, by sending email to each other directly, or through
a discussion forum on a project website, they are guaranteed to immediately
discover any inconsistencies that were introduced ever by a faulty server.

A more subtle attack occurs when the server conspires with a client and
violates the assumption that clients are correct. The current design does not
prevent such behavior, but our system provides some means that help the correct
clients to recover from such attacks. We discuss these at the end of the paper
(Section 5).

2.2 Consistent Storage Service

The consistent storage service (CSS) provides a simple interface for reading
and writing short byte arrays and ensures fork-linearizability with an untrusted
server. There is no hard limit on the size of the stored byte arrays, but the service
is designed for sizes up to 10 or 100 KiB because all values are transiently kept
in main memory.

CSS provides one storage location for every client, called a register. The client
is the only one who may write to its register, but all clients may read from it,
and there is an operation that reads all registers in a single step. Formally, CSS
combines an array of single-writer/multi-reader registers [10] with an atomic
snapshot object [1].

The service provides the following interface to clients, expressed as method
invocations:

getkeys() returns a list of all client identities that are known to the server so far,
represented by their public keys. The server learns the identity of a client as
soon as the client invokes its first method. A client may use the output of
the operation in subsequent queries.

write(data) stores data in the register of the client at the server, overwriting data
previously stored there. In CSS, a client may only write to its own register.

read(key) reads the register identified by the public key key and returns the
stored data. If no such data exists, the operation returns none.

readall() reads all registers in one step and returns a list of pairs (key , data),
representing all registers stored by the server; every pair contains the corre-
sponding client key and the stored data. This method is equivalent to invok-
ing getkeys(), followed by invoking read(key) for all key values returned, all
in one atomic step. Its purpose is to give a consistent view of all registers.

We use the lock-step protocol of Cachin et al. [5] to implement CSS. The
protocol is noteworthy for using the server only as intermediary storage; in par-
ticular, the server does not perform any cryptographic operations. The protocol



Preliminaries. CSS stores a register value datakey for each client identified by key .
Only the client identified by key may write to datakey, but every client may read
from any register. Every client locally maintains a timestamp that it increments
during every operation. We call an array of timestamps a version; a version is
an associative array V that maps keys to timestamps, denoted by V [key] = t.
We write V [key] = ⊥ if V [key] is not defined. Versions acts as a vector clock for
ordering operations. Two versions V and W are ordered so that V is smaller than
or equal to W whenever V [key] ≤W [key] for all values key such that V [key] 6= ⊥.

Client state. The client maintains a version T representing its last completed
operation. Note that a client identified by key finds its own timestamp in T [key].

For simplicity of the description, we assume the client also keeps a copy of its
own data value datakey and writes it back during every read operation. (In the
implementation, it only stores a collision-resistant hash of the data value and
sends that in a read operation; in a write operation, it sends the data value.)

Server state. The server stores the register values in an associative array X, where
entry X[key] contains (datakey, σkey), representing the register value and a digital
signature issued under key on the string value ‖ datakey ‖ t, where t is a timestamp
equal to T [key] when the client completed the operation that wrote datakey.

The server also keeps information from the last completed operation: the version
V associated to it, the key last identifying the client performing the operation, and
a digital signature ω under key last on commit ‖ V .

Operation. When a client identified by key invokes a write, read, or readall opera-
tion, it sends the request together with key in a submit message to the server. The
server sends a reply message, containing the version V , the key last , and the accom-
panying signature ω from the last operation. In a read operation for register identi-
fied by rkey , the server also sends the register value X[rkey] = (datarkey, σrkey). In
a readall operation, the server adds all register values X. The server then waits for
a commit message from this client and does not process any messages from other
clients.

The client verifies that the reply message contains valid data: the version V must
be at least as large as its own version T , the entry V [key] must be equal to its
own timestamp T [key], and the signature ω on commit ‖ V must be valid under
key last . In a read or readall operation, the client also verifies that σrkey is a valid
signature under rkey on the string value‖datarkey ‖V [rkey], either for only one rkey
in a single-register read or for all values rkey such that X[rkey] 6= ⊥ in a readall
operation. When the client detects any inconsistency in the reply, it considers the
server to be faulty, generates an alarm, and aborts.

After the client has successfully verified the reply, it adopts the received version V
as its own version T , increments its timestamp T [key], and signs the new version T ,
resulting in a signature ϕ. It issues another signature σ on value ‖ datakey ‖ T [key],
binding its data value to the timestamp. Then it sends a commit message to the
server, containing T , ϕ, datakey, and σ.

When receiving the commit message, the server stores T , key , and ϕ as its ver-
sion V , client key last , and signature ω that represent the last operation. The
server also updates X[key] with the received value datakey and σ.

Fig. 1. The implementation of CSS using the lock-step protocol (adapted from [5,14]).



has been modified from using a fixed number of clients to handle an a priori
unbounded number of clients that are identified only by a public key. Instead
of using vectors, versions are represented by an associative array that maps ev-
ery known client key to the corresponding timestamp. The clients maintain some
state in their local memory and save it on persistent storage between operations.
The protocol is shown in Figure 1.

The lock-step protocol has the drawback of not being wait-free [10] because
when the server waits for the commit message from a client, no other client
can proceed with an operation. Mazières and Shasha [14] and Cachin et al. [5]
both present seemingly more efficient protocols that allow some client operations
to proceed in parallel. However, it has been shown that in all fork-linearizable
storage emulation protocols, a reader must wait for a concurrent writer [5]3.

We therefore chose to implement CSS with the lock-step protocol for the
following reasons: First, the addition of the readall operation introduces the above
conflict between readall and every write operation. We know that our consistent
revision control application (described in Section 2.4) will use only write and
readall operations, and we expect that they occur about equally often. Hence,
the potential for exploiting concurrency is reduced to concurrent read operations.
Second, the protocol allowing for concurrent operations is considerably more
involved than the lock-step protocol. The small potential gain did not merit the
added implementation complexity.

2.3 Revision Control

A revision control system (RCS) provides operations for storing and retrieving
multiple versions of the same set of documents. It facilitates collaboration among
multiple users, who may work independently with the information. The RCS
assigns revision numbers to the documents and maintains a history of all versions.
The documents usually consist of a hierarchical set of files and directories in a
file system. Revision control systems are an important collaboration tool, as can
be seen from the large number of existing systems (Wikipedia’s “List of revision
control software” lists 64 systems as of Sept. 2008).

For the purpose of designing our consistent RCS, we describe here the main
features of a generic centralized RCS. A centralized RCS uses a dedicated server
for controlling revisions and storing the history, in contrast to a distributed RCS,
where this task is shared by all users. Our RCS is modeled after two popular RCS
for source code, CVS (http://www.nongnu.org/cvs/) and Subversion (http://
subversion.tigris.org/); they both allow users to update the same document
concurrently.

We expect the client interface of an RCS to provide the following main op-
erations:

Checkout: A checkout operation transfers all documents from the server repos-
itory to the client. It creates a copy of the files and directories on the client,

3 Weaker semantics than fork-linearizability can give rise to wait-free storage emula-
tion protocols [4].



called the working copy. All editing takes place there. The RCS also supports
attributes attached to documents and version control for them.

Commit: After adding, modifying, or deleting some files in the working copy,
the client wants to transfer the changes back to the central server, thereby
making the changes visible to other clients. The client does this with a commit
(or checkin) operation. Its effect is to create a new revision with a distinct
identifier, called the revision number. We assume that revision numbers in a
sequence of commits issued by multiple clients increase monotonically over
time.

Update: An update operation transfers the most recent revision of all files from
the server to the client and updates the working copy accordingly. The system
also supports updating to a revision with a particular revision number.
When a client has modified some files locally and wants to commit the
changes, it may have to perform an update, before the RCS allows a commit
operation. This happens when some modifications of the client overlap and
conflict with modifications committed by others. In this case, the commit
operation will fail, the client is told to first update its working copy and
to merge the concurrent changes, before the client may attempt another
commit.

Typical RCS also support operations to populate the server repository with
a set of documents initially, to rename repository contents, to create branches
and merge them again, and to tag revisions with keywords. These operations
may be present, but are not our main focus because they can be expressed as
variations of the above three main operations.

We assume that all operations are transactional so that their changes either
take effect in one atomic step on the server, or leave no trace in the repository
in case of a failure.

2.4 Consistent Revision Control

Our consistent revision control system (CRCS) implements a revision control
system that protects the integrity of the repository against a corrupted server.
CRCS provides the same operations as an ordinary RCS and emulates a fork-
linearizable storage service on the repository. We achieve fork-linearizability in
terms of the checkout and update operations of CRCS, which implement a read
operation on the repository, and in terms of the commit operation, which imple-
ments a write operation on the repository.

Fork-linearizability for a revision control system guarantees the following.
Suppose a client A updates its working copy with CRCS to some revision num-
ber r. If A sees even a single file that was committed by another client B in
revision r, then fork-linearizability implies that all files in client A’s working
copy have been cryptographically verified and are equal to those committed by
B in revision r. Conversely, if there exists a more recent revision s > r com-
mitted by a third client C, and the server hides revision s from A, then A can
never again update to any revision committed by C or by anyone who updated



to s. Because of this all-or-nothing implication of fork-linearizability, one can
very easily detect even subtle modifications of a single file by a corrupted server.

We implement CRCS by combining our CSS with an unmodified RCS. CRCS
computes a hash tree [15] over the set of documents in the repository and basi-
cally stores the root hash of the tree using CSS. This construction extends the
integrity guaranteed by CSS from the root hash to the entire data. Suppose ev-
ery client commits changes to CRCS by first committing its working copy using
RCS, thereby obtaining a revision number r, computing the new root hash h,
and then writing the tuple (r, h) to its register. This stores all information in
CSS that another client needs for updating its working copy to the most recent
revision and for verifying its integrity. But because CRCS also supports cryp-
tographically verified update operations for previous revisions in the repository,
the design is more complex.

Every client maintains a revision log L with information about every revi-
sion that it committed. The revision log is a list of tuples (r, h, c), denoting the
revision number r, the root hash h, and a revision commitment c, sorted chrono-
logically (i.e., according to r). Let H denote a collision-free cryptographic hash
function. The revision commitment binds together all previous commit opera-
tions of the client in a hash chain; when committing revision r with hash h, the
client computes c as H(r ‖h‖c′), using the revision commitment c′ from the last
tuple in L (or c′ = ⊥ if L is empty). The same chaining scheme has been used
in many other timestamping and data authentication algorithms [9].

For the description of the CRCS algorithm below, assume that every client
stores its complete revision log in L. For increased efficiency, an implementation
may actually maintain only the last tuple of L in CSS and keep the rest of L in
untrusted shared storage; the collision resistance of H guarantees the uniqueness
of every revision log given its last revision commitment.

The client proceeds now as follows to implement the main operations of
CRCS. If one of the checks in the algorithm fails, the client generates an alarm
and aborts.

Checkout: To check out the highest revision, the client invokes the readall()
operation of CSS and determines the largest revision number r from the
returned revision logs and the corresponding root hash h. After invoking
checkout of RCS for revision r, the checkout algorithm recomputes the hash
tree on the working copy and verifies that its root hash is equal to h.

Commit: The client first calls the update operation of CRCS (see below) to
bring its working copy to the most recent revision according to CSS. Then
it commits the working copy with RCS to obtain a new revision number r.
If this fails, the operation aborts and the client is told to update and to try
again. If all goes well, the client computes the root hash h of the hash tree
on its working copy, extends the client’s revision log L with r and h, and
invokes write(L) from CSS.

Update: The update operation is very similar to checkout. The client performs
readall() to obtain all revision logs, determines the largest revision number r
with corresponding root hash h, calls update from RCS to bring its working



copy to revision r, recomputes the changed paths in the hash tree, and verifies
that the root hash matches h.
For updating to a particular revision r, the algorithm determines the client
that committed r from all revision logs, locates the corresponding tuple
(r, h, ·) in some revision log L, and verifies L by following the hash chain
from the tuple with r to the end of L. Then it proceeds as above, updating
to revision r from RCS and verifying the working copy with respect to h.
When recomputing the hash tree for files that have changed in the repository,
it is important that the client does that on a clean working copy, before
the modifications from its working copy are applied. As the RCS merges
the updates with the client’s own changes, the update operation creates a
working copy that differs from revision r in the repository.

Because the operations of CRCS verify that the working copy is consistent
with the revision numbers and their root hashes maintained by CSS, the fork-
linearizability of CSS implies the same property also for CRCS.

Note that the above algorithm introduces no new race conditions compared
to RCS. As a consequence of synchronizing the client with CSS and RCS, it
would be possible to create such problems. But the atomicity of the operations
on CSS ensures that the more complex operations of CRCS are also atomic.
In particular, whenever a client invokes checkout or update and retrieves some
revision number from CSS, it always finds this revision in the repository of
RCS. This holds because the commit operation of RCS precedes the writing of
the corresponding revision number to CSS. Of course, there may already exist a
more recent revision in the repository of RCS in the mean time, but this may also
happen in the generic RCS, when another commit operation occurs immediately
after an update.

3 Implementation

We have implemented our design in Python on Unix in two parts: first, the con-
sistent storage service and, second, the consistent revision control system. The
Python programming language encourages the kind of rapid prototyping we
wanted and allowed a very natural transcription of the protocols. We chose Sub-
version (SVN) as the lower-level revision control system because it is widely used
and because it fits our model of an RCS from Section 2.3. Hence, we refer to our
implementation as Consistent Subversion (CSVN). Cryptographic operations are
provided by OpenSSL via the M2Crypto Python interface to OpenSSL [18].

3.1 Consistent Storage Service

The implementation of CSS according to Section 2.2 stores arbitrary byte ar-
rays. It is available as a library to clients. We wrote a simple interactive client
application to read and write values entered by the user. The rich syntax of
Python resulted in the server part of the algorithm in Figure 1 consisting of



about 250 lines of code and the client part consisting of about 200 lines of code,
including the operations for key management. Having a succinct implementation
is important for maintainability, and especially important for security-relevant
software.

CSS uses Python’s object serialization over TCP connections for transport.
The server implementation is single-threaded according to the lock-step protocol;
it uses a time-out in order to tolerate a client that crashes between sending
a submit message and sending the corresponding commit message. We plan
to integrate SSL/TLS support for increasing the security of the client-server
connections in the future; currently, network attacks appear to the clients as
server faults.

3.2 Consistent Revision Control with Subversion

We implemented CSVN in the form of a library that interfaces to SVN and pro-
vides the three main revision control operations. The operations invoke our con-
sistent storage service and the Python SVN Extension (http://pysvn.tigris.
org/). The SVN server remains unchanged. We also created small wrapper
scripts for a user to invoke the client operations. The CSVN library consists
of about 170 lines of code, and the scripts of about 75 lines of code each. Hence,
the code is very compact.

For the description below, let a path denote the unit of information managed
by SVN; a path may be a directory containing other paths, a file, or a symbolic
link.

Hash Trees. The protocol requires to compute a hash tree over the documents
in a revision. Let us define a hash function H on paths maintained by SVN. The
hash value of a path p that represents a file or a symbolic link is defined as

H(p) = H
(
H(p) ‖H(C(p))

)
,

where C(p) is the content of p. The hash value of a path p representing a directory
is

H(p) = H
(
H(p1) ‖ H(p2) ‖ . . . ‖ H(pn) ‖H(p)

)
,

where p1, . . . , pn is a sorted list of all paths in p. We denote the root hash of a
repository by H(“.”).

It would be prohibitively expensive to recompute the hash values of all paths
in a large repository upon every change of a single file. Therefore, the client
stores the hash value of every path as an SVN property of the path. During an
update operation, CSVN recomputes the hash values of all changed files and of
all directories along the path from the changed files to the root. For a repository
with n files, this reduces the cost of updating m modified files from linear in n
to O(m + d), where d is the maximum affected depth in the directory tree.

The hash values are stored on the SVN server because properties are revision-
controlled in SVN. Note that storing them on untrusted storage is unproblematic.
The hash values are not actually needed by a client who checks out the complete



repository because the client recomputes the entire hash tree anyway during
verification. But they are needed for partial checkouts, as explained below.

Integration with SVN. During checkout and update operations, CSVN installs
a callback before invoking the SVN library, which collects all relevant events
reported by SVN; such relevant events are the addition, update, and deletion of
a path. Then CSVN invokes CSS to obtain a revision number r and retrieves
revision r from SVN, as described in Section 2.4. To recompute the root hash
of the working copy, CSVN traverses the working copy, but visits only paths for
which a relevant event was collected during the SVN operation.

For a commit operation, CSVN first determines the modified paths which are
going to be written to the repository. It does that with an SVN “info” operation
that outputs a collection of changed paths. Then it traverses the working copy,
visiting and recomputing hash values only for changed paths, and getting hash
values for unchanged paths from their SVN properties. This yields the root
hash h = H(“.”). CSVN further invokes the “commit” operation of SVN to
write the updates to the repository and to obtain the new revision number r.
Finally, it retrieves the revision commitment c from the last tuple in L, appends
(r, h,H(r ‖ h ‖ c)) to L, and writes L using CSS.

This completes the description of the main CSVN operations. Further SVN
operations can be implemented easily using the CSVN library and the three
main CSVN operations.

The description so far assumes that clients always check out and update the
complete file set in the repository at once. But this is not required in SVN, where
a client may check out only a subdirectory from a repository, or commit only
a subset of its working copy. The revision number and the root hash stored in
CSS are always global properties of the repository, though. Operations on the
partial repository are supported by our design and rely on the hash values stored
in the SVN properties. For example, to check out a subtree from a repository,
CSVN also needs to read all files along the path from the subtree’s root to the
repository root before it can verify the root hash.

An important and nice feature of this implementation is that it does not add
any additional SVN server operations; because they usually involve the network
and contain a cryptographic authentication operation during login, they tend to
be rather slow.

4 Evaluation

We report on benchmarks to measure the performance of CSVN client operations
in comparison to an unmodified SVN client. Since every operation of CSVN also
invokes the corresponding operation of SVN, we are primarily interested in the
overhead of CSVN over SVN.

We report on two kinds of performance evaluations: an application bench-
mark using real-life file sets of different sizes and a synthetic benchmark with
artificially made-up file sets. Each benchmark consists of a series of tests exe-
cuted by two clients, called A and B, where each test uses different data. For



each test, we run the unmodified SVN client and the CSVN client 20 times in
succession and measure the average time taken by each step in the test. Every
run starts with an empty repository and a freshly initialized CSS. Each test
uses a pair of related file sets; we are interested in the time it takes to update a
working copy and the repository from one file set to the other one.

Each run in a test consists of the following steps:

1. Client A initializes a new empty repository on the server. This step is the
same for both systems, so we do not measure it.

2. Create — client A checks out revision 0, creating a working copy from the
empty repository.

3. Import — client A copies the first file set into its working copy, adds it to the
repository, and commits the changes; we measure the time for the commit
operation only.

4. Checkout (CO) all — client B checks out the content of the repository into
its own working copy; the working copies of A and B are now identical.

5. Client B modifies its working copy to reflect the second file set. This involves
adding the files contained only in the second file set, deleting the files only
present in the first set, and copying the changed files from the second set
into the working copy. This step is identical for both systems and is not
measured.

6. Commit (CI) diff — client B commits the changes in its working copy.
7. Update (UP) diff — client A, whose working copy still contains the first file

set, updates it to the most recent revision in the repository, which contains
the second file set; the working copies of A and B are again identical.

This sequence of steps is designed to capture the overhead of committing
and updating a large file set at once (in the import and checkout all steps) and
of committing and updating smaller number of files in a larger file set (in the
commit diff and update diff steps).

The benchmarks use two separate hosts, one for the server and one for both
clients; they are connected by a gigabit LAN. The machine for the clients is an
IBM x345 system with 2 GiB of RAM and two hyper-threaded Intel Xeon CPUs
(3.06 GHz clock speed). The machine for the server is an IBM x335 system with
2 GiB of RAM and two hyper-threaded Intel Xeon CPUs (2.80 GHz clock speed).
Both machines have a single IBM Ultra320 SCSI disk with 73.4 GB capacity and
run Debian GNU/Linux 4.0 with kernel 2.6.18 and Subversion 1.5.2. The SVN
server is accessed using SSH and all data is stored on the local filesystems. We
use the SHA-1 hash function and 1024-bit RSA for signatures.

4.1 Application Benchmark

The file sets in our application benchmark are different versions of the Linux
kernel source tree, as reported in Table 1. All files can be downloaded from
the Linux kernel archive (http://kernel.org/). We choose them since they
represent a realistic directory structure and because the repository sizes range



over several orders of magnitude, from 632 KiB to 62 MiB. We selected the four
versions that make up the first file set in a test based on their relative size. For
each test, we pick the subsequently released version of the Linux kernel and use
it as the second file set. The results are shown in Table 2.

Table 1. The four tests of the application benchmark and the used Linux kernel
version pairs. The third and fourth columns list the number of files in the first file set
and the number of changed (added, modified, or deleted) files between the two file sets,
respectively.

Test (version pair) Size Files Changed

0.11 → 0.12 0.63 MiB 100 91
1.0 → 1.0.1 5.9 MiB 561 12
2.0.1 → 2.0.2 27 MiB 2021 28
2.2.0 → 2.2.1 62 MiB 4599 10

Table 2. Results of the application benchmark. The numbers denote average elapsed
time and standard deviation in seconds for SVN and CSVN in 20 runs, and the ratio
of the two average times.

Step SVN CSVN Ratio

Create 1.18 ±0.09 1.53 ±0.33 1.30
Import 0.93 ±0.02 1.94 ±0.00 2.08
CO all 0.99 ±0.00 1.10 ±0.00 1.11
CI diff 1.50 ±0.02 2.30 ±0.29 1.53
UP diff 0.94 ±0.00 1.05 ±0.01 1.11

Test 0.11→ 0.12

Step SVN CSVN Ratio

Create 1.05 ±0.05 1.45 ±0.38 1.38
Import 3.70 ±0.11 6.76 ±0.00 1.83
CO all 1.98 ±0.00 3.17 ±0.48 1.60
CI diff 1.24 ±0.42 2.03 ±0.01 1.63
UP diff 0.94 ±0.01 1.11 ±0.00 1.17

Test 1.0→ 1.0.1

Step SVN CSVN Ratio

Create 1.46 ±0.17 1.34 ±0.25 0.92
Import 14.08 ±0.71 28.84 ±1.02 2.05
CO all 7.49 ±2.38 12.31 ±2.44 1.64
CI diff 3.89 ±1.59 5.15 ±0.47 1.32
UP diff 0.94 ±0.00 2.28 ±0.02 2.42

Test 2.0.1→ 2.0.2

Step SVN CSVN Ratio

Create 0.68 ±0.06 1.18 ±0.29 1.72
Import 36.35 ±1.05 79.26 ±1.29 2.18
CO all 13.38 ±2.04 29.28 ±2.28 2.19
CI diff 10.20 ±3.68 9.64 ±2.53 0.95
UP diff 1.27 ±1.53 1.69 ±0.49 1.33

Test 2.2.0→ 2.2.1

4.2 Synthetic Benchmark

In this benchmark, we wish to measure how the running time changes when we
grow the directory structure in a repository from one directory to a large tree,



Table 3. Results of the synthetic benchmark. The numbers denote average elapsed
time and standard deviation in seconds for SVN and CSVN in 20 runs, and the ratio
of the two average times.

Step SVN CSVN Ratio

Create 1.48 ±0.12 1.35 ±0.40 0.91
Import 2.71 ±0.06 4.19 ±0.50 1.55
CO all 1.99 ±0.00 2.90 ±0.01 1.46
CI diff 1.87 ±0.22 3.02 ±0.01 1.61
UP diff 0.95 ±0.00 1.73 ±0.01 1.83

Depth 0

Step SVN CSVN Ratio

Create 1.25 ±0.06 1.25 ±0.39 1.00
Import 2.01 ±0.33 3.89 ±0.01 1.93
CO all 1.99 ±0.00 2.40 ±0.01 1.21
CI diff 0.93 ±0.05 1.51 ±0.01 1.63
UP diff 0.95 ±0.00 1.01 ±0.01 1.07

Depth 2

Step SVN CSVN Ratio

Create 1.27 ±0.01 1.46 ±0.39 1.15
Import 1.95 ±0.27 3.88 ±0.01 1.99
CO all 1.99 ±0.01 2.30 ±0.02 1.16
CI diff 0.92 ±0.06 1.61 ±0.03 1.75
UP diff 0.95 ±0.00 0.94 ±0.01 1.00

Depth 4

Step SVN CSVN Ratio

Create 0.86 ±0.23 1.33 ±0.14 1.55
Import 4.33 ±0.42 10.59 ±0.89 2.44
CO all 8.75 ±1.52 9.95 ±1.14 1.14
CI diff 0.88 ±0.04 1.31 ±0.24 1.50
UP diff 2.28 ±1.15 1.90 ±0.51 0.84

Depth 8

but keep the number of files constant. To do this, we create four artificial file
sets, each consisting of 256 files, each file of size 10 KiB, for a total data size
of 2.5 MiB per file set. The files are filled with random pieces of C code taken
from the Linux 2.2.1 kernel; this is to generate files looking like a real source
tree. The files are stored in a directory structure of varying depth. We define a
directory structure of depth d as a full binary tree of depth d and store 256/2d

files in each of the 2d leaf directories.
Our file sets are four directory structures with depths 0 (all files in one

directory), 2, 4, and 8 (every file in a separate directory). In each test, the
second file set is identical to the first one, up to a random modification to one
of the files in a leaf directory. The results are shown in Table 3.

4.3 Results

The results of both benchmarks show that CSVN adds an overhead of a factor
that is generally less than 2 and usually also less than 1.5. In absolute terms,
the import and the checkout all steps are the slowest operations because they
involve all files. The import step generally incurs also the biggest overhead,
usually around 2. But the overhead of the checkout all step is not noticeably
different from the overhead of the remaining steps. Generally, CSVN adds only
a moderate overhead to most operations compared to the normal SVN client.

Observe the bigger variation in the execution times of the tests with larger
file sets. One reason for this effect may be that large data sets create more un-
expected interactions with other programs due to swapping and disk operations



than small data sets that fit in the kernel’s buffer cache. Such variations also
explain the few overhead ratios smaller than 1.

Among the results of the application benchmark in Table 2, the second largest
overhead (after the import step) usually occurs for the commit diff step. The
overhead on the large file sets is not bigger than that on the smaller file sets.
This clearly shows the benefit of using a hash tree when only a small part of a
large file set is updated.

In the results of the synthetic benchmark in Table 3, observe the overhead
of the commit diff and the update diff steps. In both steps, only a single file is
changed. The CSVN client must then read the hash values of all sibling files to
compute the new hash values for the directory. With the increasing depth of the
directory structure, the number of sibling files drops from 255 to 0, and this is
reflected in the decreasing overhead.

In summary, although a 50%–100% larger execution time for SVN operations
is clearly noticeable by the clients, we believe it is a reasonable price to pay for
the added guarantee of cryptographically verified data integrity. These results
should serve as a lower bound for the efficiency of our design, because they
were carried out with our straight-forward layered prototype implementation
in Python. If the CSVN operations would be integrated with the SVN client
library, the directory tree in the working would have to be traversed only once
instead of twice; moreover, hashing could be integrated with the traversal and
performed concurrently with receiving or sending data to the server. With such
an integrated design, the cryptographic overhead is likely to vanish, as shown in
other benchmarks of cryptographic storage and file systems [19].

5 Conclusions

Protecting data integrity against unauthorized modifications is an important as-
pect of networked storage systems. This paper presented a novel approach to
securing the integrity of data stored in revision control systems, and demon-
strated its feasibility with our Consistent Subversion (CSVN) prototype. Our
evaluation shows that the overhead is reasonable.

The biggest threat to our system are client failures. Protecting the system
from malicious clients is also the area where future work is needed.

Our implementation already tolerates client crashes; one or more malicious
clients alone cannot harm the integrity if the service provider is correct —
measures to prevent such behavior can easily be added [11], but have not been
described in this work. A corrupted client conspiring with a corrupted service
provider, however, may undermine fork-linearizability.

A first barrier against such an attack is the CA that must authorize all clients
before they access the service. It is therefore a good idea to make the CA is a
separate entity from the storage service. If the threat of such a client-server con-
spiracy attack becomes too serious, one might adopt the complex cross-checking
of versions signed by different clients introduced in SUNDR [14]. Unfortunately,
the SUNDR protocol involves a much higher communication overhead in every



operation. One should also develop an additional tool that helps the clients to
recover from a server failure; it should automatically reconcile the state of the
repository from the information held by the clients in their working copies and
their local memories.

Acknowledgments

We are grateful to Idit Keidar, Alexander Shraer, and Marko Vukolić for many
discussions and valuable comments.

This work was supported in part by the European Commission through the
IST Programme under Contract IST-2002-507932 ECRYPT.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.

[2] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, T. Giuli,
and P. Bungale. A fresh look at the reliability of long-term digital storage. In
Proc. 1st European Conference on Computer Systems (EuroSys), pages 221–234,
2006.

[3] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the cor-
rectness of memories. Algorithmica, 12:225–244, 1994.

[4] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage. In Proc.
International Conference on Dependable Systems and Networks (DSN-DCCS),
2009.

[5] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted
shared memory. In Proc. 26th ACM Symposium on Principles of Distributed
Computing (PODC), pages 129–138, Aug. 2007.

[6] D. Clarke, G. E. Suh, B. Gassend, A. Sudan, M. van Dijk, and S. Devadas. Towards
constant bandwidth overhead integrity checking of untrusted data. In Proc. 26th
IEEE Symposium on Security & Privacy, 2005.

[7] CNET News. Red Hat, Fedora servers compromised. http://news.cnet.com/

8301-1009_3-10023565-83.html, Aug. 2008.

[8] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing remote
untrusted storage. In Proc. Network and Distributed Systems Security Symposium
(NDSS), 2003.

[9] S. Haber and W. S. Stornetta. How to time-stamp a digital document. Journal
of Cryptology, 3:99–111, 1991.

[10] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[11] J. Li, M. Krohn, D. Mazires, and D. Shasha. Secure untrusted data repository
(SUNDR). In Proc. 6th Symp. Operating Systems Design and Implementation
(OSDI), pages 121–136, 2004.

[12] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database
system on untrusted storage. In Proc. 4th Symp. Operating Systems Design and
Implementation (OSDI), 2000.



[13] D. Mazières, M. Kaminsky, F. Kaashoek, and E. Witchel. Separating key man-
agement from file system security. In Proc. 17th ACM Symposium on Operating
System Principles (SOSP), 1999.

[14] D. Mazières and D. Shasha. Building secure file systems out of Byzantine storage.
In Proc. 21st ACM Symposium on Principles of Distributed Computing (PODC),
2002.

[15] R. C. Merkle. Protocols for public-key cryptosystems. In Proc. IEEE Symposium
on Security & Privacy, pages 122–133, 1980.

[16] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced databases. ACM Transactions on Storage, 2(2):107–138, May 2006.

[17] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables.
In Proc. 15th ACM Conference on Computer and Communications Security, 2008.

[18] N. P. Siong and H. Toivonen. M2Crypto Python interface to OpenSSL. http:

//chandlerproject.org/Projects/MeTooCrypto, 2008. Version 0.18.2.
[19] C. P. Wright, J. Dave, and E. Zadok. Cryptographic file systems performance:

What you don’t know can hurt you. In Proc. 2nd International IEEE Security in
Storage Workshop (SISW), 2003.


