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Abstrat

We present an eÆient and fair protool for seure two-party omputation in the optimisti

model, where a partially trusted third party T is available, but not involved in normal pro-

tool exeutions. T is needed only if ommuniation is disrupted or if one of the two parties

misbehaves. The protool guarantees that although one party may terminate the protool

at any time, the omputation remains fair for the other party. Communiation is over an

asynhronous network. All our protools are based on eÆient proofs of knowledge and

involve no general zero-knowledge tools. As intermediate steps we desribe eÆient veri�-

able oblivious transfer and veri�able seure funtion evaluation protools, whose seurity is

proved under the deisional DiÆe-Hellman assumption.

1 Introdution

Seure omputation between distrusting parties is a fundamental problem in ryptology. Sup-

pose two parties A with input x and B with input y wish to jointly ompute a funtion f(x; y)

of their inputs without revealing anything else than the result. It is known that any fun-

tion an be omputed seurely and with only few rounds of interation under ryptographi

assumptions [Yao86, GMW87, Gol98℄.

However, if the omputation should also be fair and give a guarantee that A learns f(x; y) if

and only if B learns f(x; y), two-party protools inevitably ome at the ost of many rounds of

interation [Yao86℄. The reason is that a maliious party ould always quit the protool early,

e.g., as soon as it obtains the information it is interested in, and the other party may not get

any output at all. The only way to get around this are several rounds of interation, in whih

the result is revealed veri�ably and gradually bit-by-bit so that a heating party has an unfair

advantage of at most one bit [Yao86, BCDvdG88, Cle86, BGMR90℄.

This work presents an eÆient protool for fair seure omputation using a third party T to

ensure fairness, whih is not atively involved if A and B are honest and messages are delivered

without errors. This approah has been proposed for fair exhange (e.g., of digital signatures)

by Asokan, Shunter, Shoup, and Waidner [ASW97, ASW00℄ and is known as the optimisti

model. Its main bene�ts are a small, onstant number of rounds of interation between A

and B, independent of the seurity parameter, and the minimal involvement of T . Our seure

omputation protool maintains the privay of one party's inputs even if T should ollude with

the other party (unlike [ASW00℄). We ahieve this by ombining Yao's tehnique for seurely

evaluating a iruit with eÆient zero-knowledge proofs.
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We onsider atually a more general model of fair seure omputation, in whih there are

two funtions, f

A

(x; y) and f

B

(x; y), and A should learn f

A

(x; y) if and only if B learns f

B

(x; y),

evaluated on the same inputs.

A key feature of our protool is that it works in an asynhronous environment suh as the

Internet, where messages between A and B might be lost or reordered.

Our protool is eÆient in the sense that its omplexity is diretly proportional to the size

of the iruit omputing f and does not involve large initial osts. All our zero-knowledge proofs

and veri�able primitives are based on proofs of knowledge about disrete logarithms, without

resorting to expensive general zero-knowledge proof tehniques involving NP-redutions. Our

solution is of pratial relevane for ases where A and B want to ompute f with a small

iruit, for example, to evaluate the prediate x

A

� x

B

(the \millionaire's problem" [Yao82℄),

whih has appliations to on-line bidding and autions [Ca99, NPR99℄.

Baum and Waidner [BW98℄ and Miali [Mi98℄ have observed before that fair two-party

omputation is feasible in the optimisti model. They used general tools and did not fous on

eÆient protools for small iruits, however.

1.1 Overview

We build the fair seure omputation protool in several steps and use intermediate onepts

and protools that may be of independent interest.

Reall Yao's approah to seure funtion evaluation [Yao86℄: The iruit onstrutor A

srambles the bits on the wires of the iruit by replaing eah with a random token, enrypting

the truth tables of all gates aordingly suh that two tokens together derypt the orresponding

token on the outgoing wire, and providing the leartext interpretation for the tokens appearing

in the iruit output. It sends the enrypted iruit to B (the iruit evaluator), who obtains

the tokens orresponding to his input bits using one-out-of-two oblivious transfer; this ensures

that he learns nothing about other tokens. B is then able to evaluate the iruit and to ompute

the output on his own. Note that seure funtion evaluation is one-sided beause only B learns

the output.

Our fair seure omputation protool, presented in Setion 6, onsists of two intertwined

exeutions of veri�able seure funtion evaluation (VFE) on ommitted inputs between A and

B, plus reovery involving T . Veri�able seure funtion evaluation is a protool (whih we

de�ne in Setion 5) extending Yao's onstrution that omputes a given funtion on ommitted

inputs of A and B.

In order to obtain the initial tokens, A and B use a veri�able oblivious transfer (VOT)

protool that performs a one-out-of-two oblivious transfer on ommitted values (as de�ned in

Setion 4).

However, this solution is not suÆient for fair seure omputation in the optimisti model.

We need to esrow some information in the VFE onstrution suh that a third party T an

open the result of the omputation in ase the sender refuses to ontinue or some of its messages

are lost. (The esrow protool is de�ned and desribed in Setion 3.4.)

These protools are based on proofs of knowledge about disrete logarithms and veri�able

enryption. Our notation for proofs of knowledge is introdued in Setion 3.2 and allows

to desribe modular omposition of proofs. For veri�able enryption we use the methods of

Camenish and Damg�ard [CD98℄ as desribed in Setion 3.3. Our model for optimisti fair

seure two-party omputation is formalized in Setion 2.
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1.2 Related Work

Beaver, Miali, and Rogaway [BMR90℄ give a onstant-round ryptographi protool for multi-

party omputation. Its speialization to three parties is related to our three-party model in

that it guarantees fairness against one maliious party, but T needs to be always involved.

Fair protools for two-party omputation (and extensions to multiple parties) have previ-

ously been investigated by Chaum, Damg�ard, and van de Graaf [CDvdG88℄, by Beaver and

Goldwasser [BG89℄, and by Goldwasser and Levin [GL91℄. They ombine oblivious iruit eval-

uation with gradual release tehniques to obtain fairness, but without fous on partiularly

eÆient protools.

Feige, Kilian, and Naor [FKN94℄ study an extension of the multi-party seure omputation

models using a third party T , whih reeives a single message, does some omputation, and out-

puts the funtion value, but does not learn anything else about the inputs. Under ryptographi

assumptions, every polynomial-time omputable funtion an be omputed eÆiently (i.e., in

polynomial time) in their model. In our model, T is not involved in regular omputations and

only used in ase some party misbehaves.

In the multi-party setting, the idea of fast-trak omputation has also been introdued and

gives protools that run fast if all partiipants are honest, but may resort to slower and more

seure methods should a heater be deteted [GRR98℄. However, one di�erene between the

optimisti model as used here and fast-trak omputation is that T is a priori assumed to be

honest and A or B may fail, whereas in the multi-party setting an unknown subset of the parties

misbehaves.

2 Optimisti Fair Seure Two-Party Computation

2.1 Notation

The seurity parameter is denoted by k. The random hoie of an element x from a set X with

uniform distribution is denoted by x 2

R

X . The onatenation of strings is denoted by k.

The statistial di�erene between two probability distributions P

X

and P

Y

is denoted by

jP

X

� P

Y

j. A quantity �

k

is alled negligible (as a funtion of k) if for all  > 0 there exists a

onstant k

0

suh that �

k

<

1

k



for all k > k

0

. The formal seurity notion is de�ned in terms of

indistinguishability of probability ensembles indexed by k, but extension from a single random

variable to an ensemble is assumed impliitly. Two probability ensembles X = fX

k

g and Y =

fY

k

g are alled omputationally indistinguishable (written X



� Y ) if for every algorithm D that

runs in probabilisti polynomial time (in k), the quantity jProb[D(X

k

) = 1℄�Prob[D(Y

k

) = 1℄j

is negligible.

2.2 De�nition

The parties A, B, and T are probabilisti interative Turing Mahines (PITM) that ommuni-

ate via seure hannels in an asynhronous environment. Let f : X

A

� X

B

! Y

A

� Y

B

be a

deterministi funtion with two inputs and two outputs that A and B want to evaluate, possibly

using T 's help. Suppose f an be evaluated by a polynomial-sized iruit in k (the extension

to probabilisti funtions is straightforward and omitted). Let f

A

: X

A

�X

B

! Y

A

denote the

restrition of f to A's output and let f

B

: X

A

� X

B

! Y

B

denote the restrition of f to B's

output. A has private input x

A

and should output f

A

(x

A

; x

B

) and B has private input x

B

and

should output f

B

(x

A

; x

B

).
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These requirements are expressed formally in terms of the simulatability paradigm for gen-

eral seure multi-party omputation [Bea91, MR92, Gol98, Can00℄, although we onsider only

three parties. In this paradigm, the requirements on a protool are expressed in terms of an

ideal proess, where the parties have aess to a universally trusted devie that performs the

atual omputation. A protool is onsidered seure if all an adversary may do in the real world

an also happen in the ideal proess; formally, for every real-world adversary there must exist

some adversary in the ideal proess suh that the real protool exeution is indistinguishable

from exeution of the ideal proess.

First, one has to de�ne the real-world model and the ideal proess. We assume stati

orruption throughout this work.

The real-world model. We onsider an asynhronous three-party protool as a olletion

(A;B; T ) of PITM. All parties are initialized with the publi inputs of the protool that inludes

the funtion f , T 's publi key y

T

, and possibly further parameters of the enryption shemes.

The private inputs are x

A

for A, x

B

for B, and z

T

for T .

There is no global lok and the parties are linked by seure authentiated hannels in the

following sense. All ommuniation is driven by the adversary in form of a sheduler S. There

exists a global set M of undelivered messages tagged with (S;R) that denote sender S and

reeiver R. M is initially empty. At eah step, S hooses a party P , selets some message

M 2 M with reeiver P , and ativates P with M on its ommuniation input tape. If M is

empty, P may also be ativated with empty input. P performs some omputation and eventually

writes a message (R; �) to its ommuniation output tape. The message � is then added toM,

tagged with (P;R). S repeats this step arbitrarily often and is not allowed to terminate as long

asM ontains messages with reeiver or sender equal to T . (In other words, S must eventually

deliver all messages between T and any other party P 2 fA;Bg, but may suppress messages

between A and B.) Honest parties eventually generate an output as presribed by the protool

and terminate by raising a orresponding ag; they will not proess any more messages.

An adversary in the real world is an algorithm C that ontrols S and at most two of

the parties A, B, and T . Parties ontrolled by the adversary are alled orrupt; we assume

their output is empty. The adversary itself outputs an arbitrary funtion of its view, whih

onsists of the information observed by the sheduler and all messages written to and read from

ommuniation tapes of orrupted parties. W.l.o.g. we assume the adversary is deterministi.

For a �xed adversary C and inputs x

A

and x

B

, the joint output of A, B, T , and C, denoted by

O

ABTC

(x

A

; x

B

), is a random variable indued by the internal oins of the honest parties.

The ideal proess. The ideal proess onsists of algorithms

�

A,

�

B, and

�

T , and uses on a uni-

versally trusted party U to speify all desired properties of the real protool. U is parametrized

by f .

�

A has input x

A

,

�

B has input x

B

, and

�

T has no input. The operation is as follows.

�

A

sends a message in X

A

[ f?g to U , and

�

B sends a message in X

B

[ f?g to U , and

�

T sends

two distint messages to U in arbitrary order, one ontaining a value b

A

2 Y

A

[ f�;?g and the

other one ontaining a value b

B

2 Y

B

[ f�;?g. Messages are delivered instantly.

U is a devie that omputes two messages, m

A

and m

B

, for

�

A and

�

B, respetively. Eah

message is generated as soon as all neessary inputs have arrived. The message for

�

A depends

on x

A

; x

B

, and b

A

, and is given by

m

A

=

8

>

<

>

:

f

A

(x

A

; x

B

) if b

A

= � and x

A

6= ? and x

B

6= ?

? if b

A

= �, but x

A

= ? or x

B

= ?

b

A

if b

A

6= �.
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m

B

is omputed analogously from x

A

; x

B

, and b

B

.

Honest parties in the ideal proess operate as follows.

�

A and

�

B just send their input to U

and

�

T sends b

A

= � and b

B

= �.

�

A and

�

B then wait for an answer from U , output the reeived

value, and terminate.

�

T halts as soon as it has sent two messages to U and outputs nothing.

The ideal-proess adversary is an algorithm

�

C that ontrols the behavior of the orrupted

parties in the ideal proess. It sees the inputs of a orrupted party and may substitute them

by an arbitrary value before sending the spei�ed message to U . The adversary sees also U 's

answer to a orrupted party. Corrupted parties output nothing, but the adversary outputs an

arbitrary funtion of all information gathered in the protool.

For a �xed (deterministi) adversary

�

C and inputs x

A

and x

B

, the output of the ideal

proess is the onatenation of all outputs, denoted by O

�

A

�

B

�

T

�

C

(x

A

; x

B

).

In ontrast to most of the literature using the simulation paradigm for seure omputation,

eah party (inludingU) sends a message as soon as it is ready in this asynhronous spei�ation.

This means that an adversary may also delay the message of a orrupted party until it has

obtained the output of another orrupted party.

Simulatability. We are now ready to state the de�nition of fair seure omputation. Seem-

ingly separate requirements on a protool suh as orretness, privay, and fairness are expressed

via the simulatability by an ideal proess. Reall that an adversary in the real world is an algo-

rithm C that ontrols S and at most two of the three parties and that C's output is arbitrary.

De�nition 1. Let f : X

A

�X

B

! Y

A

�Y

B

be a funtion that an be evaluated by a polynomial-

sized iruit. We say that a protool (A;B; T ) performs fair seure omputation if for every

real-world adversary C, there exists an adversary

�

C in the ideal proess suh that for all x

A

2 X

A

and for all x

B

2 X

B

, the joint distribution of all outputs of the ideal proess is omputationally

indistinguishable from the outputs in the real world, i.e.,

O

ABTC

(x

A

; x

B

)



� O

�

A

�

B

�

T

�

C

(x

A

; x

B

):

A fair seure omputation protool is alled optimisti if whenever all parties follow the protool

and messages between them are delivered instantly, then T does not reeive or send any message.

Remarks on the above de�nition.

1. By the design of the ideal proess, fairness is only guaranteed if T is not olluding with

A or B. This is unavoidable beause a heating partiipant of a two-party protool may

always refuse to send the last message. Protools to defend against suh misbehavior

require a number of rounds of interation that is inverse proportional to the heating

probability [Yao86, BCDvdG88℄.

2. Conversely, if T is orrupt, then the omputation may be unfair and an honest party, say

A, may not reeive its output. Moreover, B and T may still deide to blok A after seeing

f

B

and even ause A to output a value that has nothing to do with f

A

. This ours in

the ideal proess if

�

T olluding with

�

B delays sending b

A

until it has observed

�

B's output

and then deides to send b

A

6= �. But notie that

�

T and

�

B together do not learn more

about Alie's input than what follows from f

B

.

3. A stronger requirement would be that T is only permitted to send � or ?, but not a

substitute for A or B's output. The urrent model reets a orresponding property of

our protool beause T 's ations in the resolve protools are not veri�able. However, by
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making all proofs non-interative and resorting to the random orale model, our protool

satis�es also this stronger requirement.

4. Our model applies only to an isolated three-party ase (as is ustomary in the literature on

seure omputation). A multi-user model that allows for onurrent exeution of multiple

protool instanes an be onstruted by ombining our model with tehniques proposed

by Asokan et al. [ASW00℄. Basially, a unique transation identi�er has to be added to

all messages and tehniques for onurrent omposition of zero-knowledge proofs have to

be used [Dam00℄.

3 Proofs of Knowledge and Veri�able Enryption

This setion introdues our notation for proofs of knowledge about disrete logarithms, the

notion for veri�able enryption, and our esrow sheme. It starts with a desription of the

underlying enryption shemes.

3.1 Preliminaries

A semantially seure publi-key ryptosystem (E

k

;D

k

) with seurity parameter k onsists of

a (publi) probabilisti enryption algorithm E

k

(�) and a (seret) deryption algorithm D

k

(�).

The enryption algorithm E

k

: M ! C takes a message m 2 M and outputs a iphertext ;

the orresponding deryption algorithm D

k

: C !M omputes m from .

Semanti seurity asserts that an eavesdropper annot get partial information about the

plaintext from a iphertext [GM84℄. More preisely, (E

k

;D

k

) is a semantially seure publi-

key system if for two arbitrary messages m

0

and m

1

, the random variables representing the two

enryptions E

k

(m

0

) and E

k

(m

1

) are omputationally indistinguishable.

The protools in this paper are mostly based on ElGamal enryption [ElG85℄. Let G be a

group of large prime order q (polynomial in k) and let g 2 G be a randomly hosen generator.

An ElGamal publi key is (g; y) for y = g

x

with a randomly hosen x 2 Z

q

and the orresponding

seret key is x. ElGamal enryption of a message m 2 G proeeds as follows:

Algorithm ElGamal(g; y)(m)

1. hoose a random r 2 Z

q

;

2. ompute and output (; 

0

) = (g

r

;my

r

).

The deryption algorithm omputes m = 

0

=

x

and outputs m.

Consider the two distributions over G

4

with D

0

= (g; g

x

; g

y

; g

z

) for x; y; z 2

R

Z

q

and

D

1

= (g; g

x

; g

y

; g

xy

) for x; y 2

R

Z

q

. The Deisional DiÆe-Hellman (DDH) assumption is that

there exists no probabilisti polynomial-time (PPT) algorithm that distinguishes with non-

negligible probability between D and R. By a random self-redution property [Sta96, NR97℄,

the DDH assumption is equivalent to assuming that there is no PPT algorithm that deides

with high probability for all tuples (g; g

x

; g

y

; g

z

) if z = xy mod q. It is well known that ElGamal

enryption is semantially seure under the DDH assumption.

Using a hybrid argument, one an show that also the two distributions

M

0

= (g; g

x

1

; : : : ; g

x

n

; g

y

1

; : : : ; g

y

m

; g

z

1

; : : : ; g

z

nm

)
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with x

i

; y

j

; z

ij

2

R

Z

q

and

M

1

= (g; g

x

1

; : : : ; g

x

n

; g

y

1

; : : : ; g

y

m

; g

x

1

y

1

; : : : ; g

x

n

y

m

)

with x

i

; y

j

2

R

Z

q

for i = 1; : : : ; n and j = 1; : : : ;m are omputationally indistinguishable

under the DDH Assumption. The argument is essentially the same as the one by Naor and

Reingold [NR97℄.

3.2 Proofs of Knowledge about Disrete Logarithms

We introdue a notation for desribing proofs of knowledge about disrete logarithms. Suh

three-move proofs of knowledge an be omposed eÆiently in parallel and in a modular way,

as shown by Cramer, Damg�ard, and Shoemakers [CDS94℄. The notation was �rst used by

Camenish and Stadler [CS97℄ and subsumes several disrete logarithm-based proof tehniques

(see the referenes therein). Our extension allows to desribe modular omposition.

Let G be a group of large prime order q and let g; g

1

2 G be generators suh that log

g

g

1

is

not known (e.g. provided by a trusted dealer).

The simplest example of suh a proof is the proof of knowledge of a disrete logarithm of

y 2 G [Sh91℄. For referene, we reall some of properties of this protool between a prover P

and veri�er V . Publi inputs are (g; y) and P 's private input is x suh that y = g

x

. First, P

omputes a ommitment t = g

r

with r 2

R

Z

q

and sends it to V . Then V sends to P a random

hallenge  2 f0; 1g

k

0

, to whih P responds with s = r � x mod q, where k

0

is a seurity

parameter. V aepts if and only if t = g

s

y



. We denote this protool by

PK log(g; y)

f� : y = g

�

g:

The witness(es) are onventionally written in Greek letters and only known to the prover while

all other parameters are known to the veri�er as well.

Unlike the simplifying desription above, we assume that all proofs here are atually three-

move onurrent zero-knowledge protools, i.e., arried out using trapdoor ommitments for

the �rst message t. Suh trapdoor ommitments may be onstruted, for example, using an

additional generator h 2 G, whih is hosen at random by a trusted dealer or is determined

in a one-and-for-all setup phase; the zero-knowledge simulator an extrat the trapdoor log

g

h

from this. It will allow the simulator to open a given ommitment t in an arbitrary way upon

reeiving a hallenge  beause it an ompute suitable s from the trapdoor, without having

to rewind the veri�er (for more details see, e.g., [Dam00℄); this allows also arbitrarily large

hallenges (i.e., k

0

= O(k)).

This basi protool an be extended in many ways. For example,

PK rep(g; g

1

; y)

f�; � : y = g

�

g

1

�

g

denotes a proof of knowledge of a representation of y with respet to g and g

1

.

Proofs written in this notation may be omposed in a modular way. It is known that this

is sound for monotone boolean expressions from the results of Cramer et al. [CDS94℄. For

instane, the prover an onvine the veri�er that he knows the representation of at least one

of x and y w.r.t. bases g and g

1

with

PK or(g; g

1

; x; y)

frep(g; g

1

; x) _ rep(g; g

1

; y)g:
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It is also possible to prove that two disrete logarithms (or parts of representations) are

equal [CP93℄. We give an example of this tehnique. It shows that a ommitment z ontains

the produt modulo q of the two values ommitted to in x and y:

PK mul(g; g

1

; x; y; z)

f�; �; ; Æ; " : x = g

�

g

1



^ y = g

�

g

1

Æ

^ z = y

�

g

1

"

g:

This works also for z = g

a

g

1

r

with r = 0 and arbitrary a 2 Z

q

, whih is needed in Setion 5.

When suh proofs are ombined, some optimizations are often possible, just like in assembly

ode that is produed by a ompiler from a high-level language. An example that ours in

Setion 5 is that multiple parallel ommitments to the same value are introdued, where only

one of them is needed.

3.3 Veri�able Enryption

Veri�able enryption is an important building blok here and has been used for publily veri�-

able seret sharing [Sta96℄, key esrow, and optimisti fair exhange [ASW00℄. It is a two-party

protool between a prover and enryptor P and a veri�er and reeiver V . Their ommon inputs

are a publi enryption key E, a publi value v, and a binary relation R on bit strings. As a

result of the protool, V either rejets or obtains the enryption  of some value s under E suh

that (s; v) 2 R. For instane, R ould be the relation (s; g

s

) � Z

q

� G. The protool should

ensure that V aepts an enryption of an invalid s only with negligible probability and that

V learns nothing beyond the fat that the enryption ontains some s with (s; v) 2 R. The

enryption key E typially belongs to a third party, whih is not involved in the protool at all.

Generalizing the protool of Asokan et al. [ASW00℄, Camenish and Damg�ard [CD98℄

provide a veri�able enryption sheme for all relations R that have an honest-veri�er zero-

knowledge three-move proof of knowledge where the seond message is a random hallenge

and the witness an be omputed from two transripts with the same �rst message but dif-

ferent hallenges. This inludes most known proofs of knowledge, and in partiular, all proofs

about disrete logarithms from the previous setion. The veri�able enryption sheme is itself a

three-move proof of knowledge of the enrypted witness s and is zero-knowledge if a semantially

seure enryption sheme is used [CD98℄.

We use a similar notation as above and denote by, e.g.,

VE (ElGamal; (g; y); tag )f� : v = g

�

g

the veri�able enryption protool for the ElGamal sheme, whereby log

g

v along with tag is

enrypted under publi key y. The tag , an arbitrary bit string, is needed for the omposition

of suh protools, as we will see later. The iphertext  is represented by (a funtion of) the veri-

�er's transript of this protool, whih we abbreviate by writing  VE (ElGamal; (g; y); tag )f� :

v = g

�

g, and is stored by V .

Together with the orresponding seret key (x = log

g

y in this example), transript  on-

tains enough information to derypt the witness eÆiently. We assume that the orresponding

deryption algorithm VD(ElGamal; (g; x); ; string ) is subjet to the ondition that a tag math-

ing string is enrypted in ; VD outputs the witness in this ase and ? in all other ases.

We refer to Camenish and Damg�ard [CD98℄ for further details of the veri�able enryption

sheme.
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3.4 Esrow Shemes

A (veri�able) esrow sheme [ASW00℄ is a protool involving three parties: a sender S, a

reeiver R, and a third party T , whose publi key y

T

of an enryption sheme is known to S

and R. We require that T 's enryption sheme is semantially seure against adaptive hosen-

iphertext attaks [DDN91℄. S has a bit string a as private input. T 's private input is z

T

, the

seret key orresponding to y

T

. Furthermore, there is a publi input string tag for S and R

that ontrols the ondition under whih T may resolve the esrow of a.

The operation of an esrow sheme onsists of two phases. In the �rst phase, only S and R

interat. If R aepts Phase I, then he is guaranteed to reeive a in Phase II as long as either

S or T is honest. That is, R either reeives a single message from S that will allow him to

ompute a (and hene T needs not partiipate in the protool at all) or, if this does not happen,

R sends T a single request ontaining tag , to whih T will reply with a.

Several esrow shemes with di�erent tags may be run onurrently among the same par-

tiipants.

The seurity requirements of the esrow sheme are that a maliious R annot gain any

information on a before Phase II. More preisely, for all bit strings a

0

, a

00

, and tag , suppose

S runs Phase I of the esrow sheme with R

�

on tag and a 2 fa

0

; a

00

g hosen at random.

Subsequently R

�

interats arbitrarily with T subjet only to the ondition that it never submits

a request ontaining tag to T ; the esrow sheme is seure if suh an R

�

annot distinguish

a = a

0

from a = a

00

with more than negligible probability.

A seure esrow sheme an be implemented easily using veri�able enryption and a ryp-

tosystem for T that is semantially seure against hosen-iphertext attaks. We use the

Cramer-Shoup ryptosystem [CS98℄, denoted by CS, with publi key y

T

and private key z

T

.

In Phase I, S hooses u 2

R

Z

�

q

, omputes A = g

a

g

1

u

, and sends A to R. S and R also arry

out PK rep(g; g

1

; A) and

out  VE (CS; y

T

; tag)f�; � : A = g

�

g

1

�

g:

In Phase II, S sends a and u to R and R veri�es that A = g

a

g

1

u

. If this hek fails or if R did not

reeive a message from S, then R sends to T the message (out ; tag). T runs VD(CS; z

T

; out ; tag)

and sends the output to R. In either ase, R learns a.

It is easy to see that this is a seure esrow sheme using the seurity of CS and the properties

of PK and VE.

4 Veri�able Oblivious Transfer

This setion desribes a variant of oblivious transfer that is needed for our fair seure ompu-

tation protool. Oblivious transfer, proposed by Rabin [Rab81℄ and by Even, Goldreih, and

Lempel [EGL85℄, is a fundamental primitive for multi-party omputation. In its basi inar-

nation as a one-out-of-two oblivious transfer, a sender S has two input bits b

0

and b

1

, and a

reeiver R has a bit . As a result of the protool R should obtain b



, but should not learn

anything about b

�1

whereas S should not get any information about .

A veri�able oblivious transfer (VOT) is an oblivious transfer on ommitted values, where

the sender S has made two ommitments A

0

and A

1

, ontaining two values a

0

and a

1

, and R

has made a ommitment C, ontaining a bit . The requirements are that R outputs a



without

learning anything about a

�1

and that S does not learn anything about . (A ommitted oblivi-

ous transfer as desribed by Cr�epeau, van de Graaf, and Tapp [CvdGT95℄ is a similar protool
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that performs an oblivious transfer of ommitments suh that R ends up being ommitted to a



;

Cramer and Damg�ard [CD97℄ give an eÆient implementation for this.)

Suppose the ommitments A

0

; A

1

, and C are of the form B = g

b

g

1

r

for a randomly hosen

r 2 Z

q

and ommitted value b 2 Z

q

. In this setion, we assume that orresponding ommitments

are omputed orretly from the inputs a

0

, a

1

, and . In other words, a ommitment orale

reeives a

0

and a

1

from S, hooses random t

0

; t

1

2 Z

q

, plaes A

0

= g

a

0

g

1

t

0

and A

1

= g

a

1

g

1

t

1

in

the publi input, and returns t

0

and t

1

to S privately; similarly, it reeives  from R, omputes

C = g



g

1

r

using a random r 2 Z

q

, plaes C in the publi input and gives r privately to R.

This ommitment orale is an arti�ial onstrution for using VOT as part of a larger protool.

Alternatively, one might assume that S and R generated and exhanged the ommitments

beforehand, together with a proof that they are onstruted orretly; this is indeed how VOT

is used in Setion 6 below.

The following protool is based on veri�able enryption and the oblivious transfer onstru-

tions by Even et al. [EGL85℄ and Bellare and Miali [BM90℄. Our notational onvention for

suh protools is as follows. All inputs are written as argument lists in parentheses, grouped

by the reeiving party; the �rst list ontains publi inputs, the seond list private inputs of the

�rst party (S), the third list private inputs of the seond party (R), and so on.

Protool VOT(g; g

1

; A

0

; A

1

; C)(a

0

; a

1

; t

0

; t

1

)(; r)

1. S as enryptor and R as reeiver engage in two veri�able enryption protools

out

0

 VE (ElGamal; (g

1

; C ); ;)f�; � : A

0

= g

�

g

1

�

g

out

1

 VE (ElGamal; (g

1

;

C

g

); ;)f�; � : A

1

= g

�

g

1

�

g:

2. If R aepts both of the above protools, he omputes

a



= VD(ElGamal; (g

1

; r); out



; ;):

The above protool uses R's ommitment C diretly as enryption publi key and saves one

round ompared to the diret adoption of the Bellare-Miali sheme. The way the ommitment

C is onstruted from  ensures that R knows log

g

1

(C=g



) = r needed to derypt out



, but not

the disrete logarithm needed to deipher the other enryption.

Lemma 1. Under the DDH assumption, Protool VOT is a seure veri�able oblivious transfer.

Proof. Corretness follows from the onstrution. It remains to show privay for S and R. We

have to prove (1) that S gets no information about R's bit  and (2) that if R an ompute

anything about a

�1

from the information from the protool, then the veri�able enryption

sheme is inseure.

Part (1) is lear beause S sees only an unonditionally hiding ommitment of .

Part (2) more involved. The properties of the veri�able enryption protool guarantee

privay for S if the underlying enryption sheme (here ElGamal) is semantially seure [CD98℄.

Consider the following game: R obtains g and g

1

, alls the ommitment orale with a bit ,

reeives C and r, and outputs two pairs (a

0

; a

0

0

) 2 G

2

and (a

1

; a

0

1

) 2 G

2

. Then a message m

0

is set to a

0

or to a

0

0

with probability one half eah and, independently, m

1

is set to a

1

or to a

0

1

with probability one half eah. Enryptions ElGamal(g

1

; C)(m

0

) and ElGamal(g

1

; C=g)(m

1

) are

omputed and given to R. Finally, R outputs two elements d

0

; d

1

2 G. We say that R wins the
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game if d

0

= m

0

and d

1

= m

1

. An R following the protool an win the game with probability

one half by random guessing.

Next we show that if there is an R

�

that wins the game with non-negligible advantage over

random guessing, then there exists a distinguisherD (who also ontrols the ommitment orale)

for whih ElGamal enryption is not semantially seure. This violates the DDH assumption.

Given an ElGamal publi-key ~g; ~y, D sets g = ~y and g

1

= ~g and invokes R

�

on g; g

1

. It

simulates the ommitment orale and remembers the values , C, and r suh that C = ~y



~g

r

.

Then R

�

provides (a

0

; a

0

0

) 2 G

2

and (a

1

; a

0

1

) 2 G

2

. We show that if  = 0, then D distinguishes

enryptions of 1=a

1

and 1=a

0

1

, and if  = 1, then D distinguishes enryptions of a

0

and a

0

0

with

non-negligible probability.

D ontinues as follows:

1. If  = 0, then D is given (A;B), an ElGamal enryption of either 1=a

1

or 1=a

0

1

with publi

key (~g; ~y). D enrypts one of a

0

or a

0

0

with publi key (g

1

; C) for the �rst enryption and

uses iphertext (A;A

r

=B), supposedly with publi key (g

1

; C=g), for the seond enryption

that it gives to R

�

.

2. If  = 1, then D is given (A;B), an ElGamal enryption of a

0

or a

0

0

with publi key (~g; ~y).

D uses iphertext (A;A

r

B), supposedly with publi key (g

1

; C), for the �rst enryption

and enrypts one of a

1

or a

0

1

with publi key (g

1

; C=g) for the seond enryption that it

gives to R

�

.

When R

�

answers with d

0

and d

1

, D outputs 1=d

0

if  = 0 and d

1

if  = 1. It is straightforward

to show that R

�

sees the same distribution as in Protool VOT; therefore, D distinguishes

ElGamal enryptions with non-negligible probability by the assumption on R

�

.

5 Veri�able Seure Funtion Evaluation

Veri�able seure funtion evaluation (VFE) is an interative protool between a iruit on-

strutor A and an evaluator B. Both parties have as ommon publi input values C

A

and C

B

,

representing ommitments to their inputs. A has two private inputs strings: her input string

x

A

and a string r

A

allowing her to open C

A

; likewise, B has two private input strings, x

B

and

r

B

. Their goal is to evaluate f

B

on the ommitted inputs suh that B learns f

B

(x

A

; x

B

).

We assume here, as already in Setion 4, that all ommitments are omputed orretly

from the inputs, whih in turn may have been hosen in an arbitrary way. More preisely,

assume A gives x

A

to a ommitment orale, whih omputes C

A

aording to the spei�ed

ommitment sheme using the random bits r

A

and returns C

A

and r

A

(similarly for B). These

are the orresponding ommitments used below. (Alternatively, one might assume that A and

B generated and exhanged orret ommitments beforehand.)

Given onrete implementations of a parties A and B, a protool exeution between A and

B with inputs C

A

; C

B

; x

A

; x

B

; r

A

, and r

B

de�nes naturally the views V

A

and V

B

of A and B,

respetively, whih are families of random variables determined by the publi input, A's private

input, B's private input, and the internal random oins. Moreover, if B is deterministi then

V

B

is a random variable depending only on A's oin ips.

De�nition 2. A veri�able seure funtion evaluation protool for a funtion f

B

: X

A

�X

B

!

Y

B

between A and B satis�es the following requirements:

Corretness: If A and B are honest and follow the protool, then 8x

A

2 X

A

;8x

B

2 X

B

and

orresponding ommitments, B outputs f

B

(x

A

; x

B

) exept with negligible probability.
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Soundness: 8A

�

and 8x

�

A

2 X

A

and orresponding ommitments C

�

A

, if the protool starts

with publi inputs C

�

A

; C

B

, then, exept with negligible probability, B outputs f

B

(x

�

A

; x

B

)

or ?.

Privay: We onsider two ases, orresponding to heating B and heating A.

1. Privay for A: 8B

�

there exists a probabilisti polynomial-time algorithm (PPT)

SIM

B

�

suh that 8x

A

2 X

A

and 8x

�

B

2 X

B

with orresponding ommitments C

A

; C

�

B

,

V

B

�

(C

A

; C

�

B

; x

A

; r

A

; x

�

B

; r

�

B

)



� SIM

B

�

(C

A

; C

�

B

; f

B

(x

A

; x

�

B

); x

�

B

):

2. Privay for B: 8A

�

there exists a PPT algorithm SIM

A

�

suh that 8x

B

2 X

B

and

8x

�

A

2 X

A

with orresponding ommitments C

�

A

; C

B

,

V

A

�

(C

�

A

; C

B

; x

�

A

; r

�

A

; x

B

; r

B

)



� SIM

A

�

(C

�

A

; C

B

; x

�

A

):

The soundness ondition binds A to her ommitted inputs. The orresponding binding for

B is part of the privay ondition for A, whih ensures that B is ommitted to the value x

B

at

whih he evaluates f

B

before the protool starts. This is needed to use the one-sided onept

of VFE as a building blok for optimisti fair seure omputation below.

5.1 Overview of the Enrypted Ciruit Constrution

We give a brief desription of our protool and the \enrypted iruit onstrution"; it follows

the approah to seure funtion evaluation developed by Yao [Yao86℄, but uses publi-key

enryption instead of pseudo-random funtions for the sake of veri�ability. Suppose A's private

input is a binary string x

A

= (x

A;1

; : : : ; x

A;n

A

) and B's private input is a binary string x

B

=

(x

B;1

; : : : ; x

B;n

B

); assume further w.l.o.g. that f

B

is represented a binary iruit onsisting of

nand gates.

Protool VFE(g; g

1

; C

A

; C

B

; f

B

)(x

A

; r

A

)(x

B

; r

B

)

V1. A produes an enrypted version of the iruit omputing f

B

. The iruit onsists of

gates and wires linking the gates. Exept for input and output wires, eah wire onnets

the output of one gate with the input of one or more other gate(s). For eah wire, A

hooses two random tokens s

0

and s

1

, representing bits 0 and 1 on this wire, and produes

unonditionally hiding ommitments u

0

and u

1

to these tokens.

For eah gate, A enrypts the truth table as follows: First, the bits are replaed by (new)

ommitments to the tokens representing the bits. Next, for eah row, a \row publi key"

for enryption is omputed and added to the table suh that the orresponding seret key

an be derived from ombining the two input tokens of the row. Finally, all four rows are

permuted randomly.

These tables and the ommitments are sent to B as an ordered list suh that B knows

whih ommitment represents token 0 or 1 et. Moreover, A proves to B in zero-knowledge

that the ommitments and the enrypted gates are onsistent, ensuring (1) that the tokens

of the input and output wires are the same as those ommitted to in the truth table, (2)

that the seret key for eah row of a gate is derived orretly from the input tokens of the

row, and (3) that eah enrypted gate implements nand.
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V2. For eah row of eah gate of the iruit, A and B engage in veri�able enryption of the

output token under the row publi key.

V3. For eah of her input bits, A sends to B the orresponding token and proves to him that

this is onsistent with her input x

A

ommitted in C

A

. Furthermore, B obtains the tokens

representing his input bits through n

B

veri�able oblivious transfers from A to B and A

opens all the ommitments of the output wires.

V4. One B has obtained all this information, he is able to evaluate the iruit gate by gate on

his own.

Suppose w.l.o.g. the iruit onsists of n nand gates G

1

; : : : ;G

n

and n + n

A

+ n

B

wires

W

1

; : : : ; W

n+n

A

+n

B

and has n

A

+ n

B

inputs and n

O

outputs. Wires W

1

; : : : ;W

n

are output

wires of the gates G

1

; : : : ;G

n

. Wires W

n+1

; : : : ;W

n+n

A

are input wires of A and W

n+n

A

+1

; : : : ;

W

n+n

A

+n

B

are input wires of B. Wires W

n�n

O

+1

; : : : ;W

n

are the output wires of the iruit;

exept for those, any wire is an input to at least one gate.

The ommitment to A's input x

A

is C

A

= (C

A;1

; : : : ; C

A;n

A

), where for i = 1; : : : ; n

A

, a bit

ommitment

C

A;i

= g

x

A;i

g

1

r

A;i

has been onstruted using a random r

A;i

2 Z

q

and r

A

= (r

A;1

; : : : ; r

A;n

A

) is a private input

of A.

Similarly, the ommitment to B's input x

B

is C

B

= (C

B;1

; : : : ; C

B;n

B

), where for i =

1; : : : ; n

B

, a bit ommitment

C

B;i

= g

x

B;i

g

1

r

B;i

has been onstruted using a random r

B;i

2 Z

q

and r

B

= (r

B;1

; : : : ; r

B;n

B

) is a private input

of B.

The following subsetions desribe Steps V1{V4 in more detail. Throughout the desription

we assume that B outputs ? and halts as soon as he rejets any PK or VE protool.

5.2 Construting the Committed Ciruit (Step V1)

Let j; l : f1; : : : ; ng ! f1; : : : ; n+ n

A

+ n

B

g be suh that j(i) and l(i) denote the index of the

left and right input wire of gate G

i

. A arries out the following step to obtain an enrypted

iruit:

1. For eah wire W

i

hoose s

i;0

; s

i;1

2

R

Z

q

as tokens representing 0 and 1. Next, hoose

r

i;0

; r

i;1

2

R

Z

q

and ompute the ommitments

u

i;0

= g

s

i;0

g

1

r

i;0

u

i;1

= g

s

i;1

g

1

r

i;1

:

2. For eah gate G

i

onstrut the ommitted truth table T

i

as follows:

(a) Choose twelve entries of a 4�3 matrix R

i

randomly from Z

q

. The ommitment table

�

T

i

ontains information-theoreti ommitments to all input and output tokens, plus
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the enryption publi key, derived from the input tokens, in the last olumn:

�

T

i

=

0

B

B

�

g

s

j(i);0

g

1

R

i

(1;1)

g

s

l(i);0

g

1

R

i

(1;2)

g

s

i;1

g

1

R

i

(1;3)

g

s

j(i);0

s

l(i);0

g

s

j(i);0

g

1

R

i

(2;1)

g

s

l(i);1

g

1

R

i

(2;2)

g

s

i;1

g

1

R

i

(2;3)

g

s

j(i);0

s

l(i);1

g

s

j(i);1

g

1

R

i

(3;1)

g

s

l(i);0

g

1

R

i

(3;2)

g

s

i;1

g

1

R

i

(3;3)

g

s

j(i);1

s

l(i);0

g

s

j(i);1

g

1

R

i

(4;1)

g

s

l(i);1

g

1

R

i

(4;2)

g

s

i;0

g

1

R

i

(4;3)

g

s

j(i);1

s

l(i);1

1

C

C

A

(b) Choose a random permutation �

i

: f1; 2; 3; 4g ! f1; 2; 3; 4g and obtain T

i

by per-

muting the rows of

�

T

i

aordingly:

T

i

(m) =

�

T

i

(�(m))

for m = 1; : : : ; 4.

The list of ommitments

C

f

B

= (u

1;0

; u

1;1

; : : : ; u

n+n

A

+n

B

;0

; u

n+n

A

+n

B

;1

; T

1

; : : : ; T

n

)

is sent to B. Next, A proves to B for eah wire W

i

that the tokens ommitted to in u

i;0

; u

i;1

are di�erent mod q:

PK tokens(g; g

1

; u

i;0

; u

i;1

)

�

�; � : g = (u

i;0

=u

i;1

)

�

g

1

�

	

:

Furthermore, for eah gate G

i

A proves to B (1) that the publi key attahed to eah row is

onstruted orretly and (2) that T

i

indeed implements all four rows of the nand truth-table.

Let

W

i

= (u

i;0

; u

i;1

; u

j(i);0

; u

j(i);1

; u

l(i);0

; u

l(i);1

)

denote the list of ommitments of the wires inident to G

i

. The �rst part is done with

PK gate-keys(g; g

1

; T

i

;W

i

)

n

mul

�

g; g

1

; T

i

(1; 1); T

i

(1; 2); T

i

(1; 4)

�

^ mul

�

g; g

1

; T

i

(2; 1); T

i

(2; 2); T

i

(2; 4)

�

^mul

�

g; g

1

; T

i

(3; 1); T

i

(3; 2); T

i

(3; 4)

�

^ mul

�

g; g

1

; T

i

(4; 1); T

i

(4; 2); T

i

(4; 4)

�

o

;

it shows that the key (ommitted to) in T (m; 4) is the produt of the two tokens in T (m; 1)

and T (m; 2). The seond part is done with

PK gate-nand(g; g

1

; T

i

;W

i

)

n

nand

0;0

(g; g

1

; T

i

;W

i

) ^ nand

0;1

(g; g

1

; T

i

;W

i

)

^ nand

1;0

(g; g

1

; T

i

;W

i

) ^ nand

1;1

(g; g

1

; T

i

;W

i

)

o

;
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where the following protool is used:

PK nand

a;b

(g; g

1

; T

i

;W

i

)

n

�

1

; �

1

; 

1

; �

1

; �

1

; �

1

; �

1

; �

1

; #

1

; : : : ; �

4

; �

4

; 

4

; �

4

; �

4

; �

4

; �

4

; �

4

; #

4

:

�

u

j(i);a

= g

�

1

g

1

�

1

^ u

l(i);b

= g



1

g

1

�

1

^ u

i;(aZb)

= g

�

1

g

1

�

1

^ T

i

(1; 1) = g

�

1

g

1

�

1

^ T

i

(1; 2) = g



1

g

1

#

1

^ T

i

(1; 3) = g

�

1

g

1

�

1

�

_

�

u

j(i);a

= g

�

2

g

1

�

2

^ u

l(i);b

= g



2

g

1

�

2

^ u

i;(aZb)

= g

�

2

g

1

�

2

^ T

i

(2; 1) = g

�

2

g

1

�

2

^ T

i

(2; 2) = g



2

g

1

#

2

^ T

i

(2; 3) = g

�

2

g

1

�

2

�

_

�

u

j(i);a

= g

�

3

g

1

�

3

^ u

l(i);b

= g



3

g

1

�

3

^ u

i;(aZb)

= g

�

3

g

1

�

3

^ T

i

(3; 1) = g

�

3

g

1

�

3

^ T

i

(3; 2) = g



3

g

1

#

3

^ T

i

(3; 3) = g

�

3

g

1

�

3

�

_

�

u

j(i);a

= g

�

4

g

1

�

4

^ u

l(i);b

= g



4

g

1

�

4

^ u

i;(aZb)

= g

�

4

g

1

�

4

^ T

i

(4; 1) = g

�

4

g

1

�

4

^ T

i

(4; 2) = g



4

g

1

#

4

^ T

i

(4; 3) = g

�

4

g

1

�

4

�

o

:

PK nand

a;b

shows that some row of the permuted enrypted truth table T

i

with token om-

mitments W

i

orresponds to the row in the leartext truth table with input bits a and b and

output bit a Z b.

5.3 Veri�ably Enrypting the Gate Output Tokens (Step V2)

For eah gate G

i

, parties A and B arry out the following four veri�able enryptions protools:

v

i;1

 VE (ElGamal; (g; T

i

(1; 4)); ;)f�; � : T

i

(1; 3) = g

�

g

1

�

g

v

i;2

 VE (ElGamal; (g; T

i

(2; 4)); ;)f�; � : T

i

(2; 3) = g

�

g

1

�

g

v

i;3

 VE (ElGamal; (g; T

i

(3; 4)); ;)f�; � : T

i

(3; 3) = g

�

g

1

�

g

v

i;4

 VE (ElGamal; (g; T

i

(4; 4)); ;)f�; � : T

i

(4; 3) = g

�

g

1

�

g

5.4 Transferring the Input and Output Tokens (Step V3)

For eah input wire W

n+i

of A, she sends the token representing x

A;i

to B; that is, A sends

w

n+i

=

(

s

n+i;0

if x

A;i

= 0

s

n+i;1

if x

A;i

= 1

for i = 1; : : : ; n

A

and arries out

PK input(g; g

1

; C

A;i

; w

n+i

; u

n+i;0

; u

n+i;1

)

n

'

1

; �

1

; '

2

; �

2

:

�

C

A;i

= g

1

�

1

^ u

n+i;0

=g

w

n+i

= g

1

'

1

�

_

�

C

A;i

=g = g

1

�

2

^ u

n+i;1

=g

w

n+f

i

= g

1

'

2

�

o

:

This ensures B that w

n+i

is the token representing A's input x

A;i

as ommitted to in C

A;i

.

Next, A opens the ommitments to the tokens of the iruit output wires; that is, A sends

B the values s

i;0

; s

i;1

; r

i;0

; r

i;1

for i = n� n

O

+ 1; : : : ; n.

Finally, A and B run n

B

veri�able oblivious transfer protools: for eah input wireW

n+n

A

+i

of B, A o�ers tokens s

n+n

A

+i;0

and s

n+n

A

+i;1

ommitted to in u

n+n

A

+i;0

and u

n+n

A

+i;1

, and B
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hooses to reeive the one representing the bit he ommitted to in C

B;i

. That is, they engage

in

VOT(g; g

1

; u

n+n

A

+i;0

; u

n+n

A

+i;1

; C

B;i

)(s

n+n

A

+i;0

; s

n+n

A

+i;1

; r

n+n

A

+i;0

; r

n+n

A

+i;1

)(x

B;i

; r

B;i

)

in parallel for i = 1; : : : ; n

B

. Denote the values that B reeives by w

n+n

A

+1

; : : : , w

n+n

A

+n

B

.

5.5 Evaluating the Ciruit (Step V4)

If B has aepted all the proofs and veri�able enryption protools, he is onvined that the

enrypted iruit onstrution is orret and he has obtained all neessary information for om-

puting the value of f

B

by himself. He proeeds by evaluating the iruit gate by gate, omputing

a token w

i

for eah gate G

i

. Note that B already knows the input tokens w

n+1

; : : : ; w

n+n

A

+n

B

.

Suppose G

i

has not been evaluated yet and B knows the tokens w

j(i)

and w

l(i)

. Then B

1. omputes ~s

i

= w

j(i)

w

l(i)

mod q;

2. �nds index m 2 f1; : : : ; 4g suh that g

~s

i

= T

i

(m; 4); and

3. omputes w

i

= VD(ElGamal; (g; ~s

i

); v

i;m

; ;).

One all gates are evaluated, B also knows the tokens of the output gates G

n�n

O

+1

; : : : ;G

n

. B

deodes them by letting o

i

2 f0; 1g suh that w

i

= s

i;o

i

and his output is O = (o

n�n

O

+1

; : : : ; o

n

).

5.6 Analysis

The round omplexity of the protool is minimal: beause the proofs of knowledge and veri�able

enryptions have only three moves and an be omposed in parallel, all steps in the veri�able

seure funtion evaluation protool an be arranged in three moves only. Furthermore, some

steps ould be simpli�ed by omitting multiple ommitments to the same value.

The seurity analysis is based on the following lemma.

Lemma 2. Under the DDH assumption, B

�

an derypt at most one row of the truth table for

eah gate and annot ompute any further information from the other three rows.

Proof (Sketh). The proof is by indution on the struture of the iruit. Consider an input gate.

The properties of VOT ensure that if the sender inputs two random tokens, the reeiver gets

one but annot ompute further information about the other token under the DDH assumption.

Consider an arbitrary gate G

i

and assume the laim holds for G

j

and G

l

that feed into G

i

.

Then B

�

knows at most one of the four possible token produts and this allows to derypt one

row. The semanti seurity of the remaining three enryptions is guaranteed under the DDH

assumption; in other words, B

�

annot distinguish whih tokens are enrypted in the other

three rows.

Apart form the publi keys g

s

j;a

s

l;b

, the gate tables ontain only information-theoreti om-

mitments and they do not reveal any information about the permutations or the leartext bits

assoiated with a partiular row. The tokens s

j;a

; s

l;b

ourring in the publi keys of G

i

(and

possibly in other gates in the same \layer" of the iruit) orrespond to x

i

; y

j

in the distribu-

tions M

0

;M

1

from Setion 3.1. Hene, they are indistinguishable from random elements under

the DDH assumption.

Theorem 3. Under the DDH assumption, Protool VFE from Setions 5.1{5.5 is a veri�able

seure funtion evaluation protool.
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Proof (Sketh). We have to show orretness, soundness, and privay for A and for B. Corret-

ness is lear from the onstrution of the protool. Soundness follows from the soundness of the

proofs of knowledge, of the veri�able enryptions, and of the VOT protools, whih together

enfore that B obtains f

B

only evaluated at A

�

's input ommitted to by C

�

A

.

Privay for A: this is the most interesting part beause it involves showing that B

�

does

not learn more than what follows from f

B

(x

A

; x

�

B

). To this end, we desribe a simulator SIM

B

�

that has blak-box aess to B

�

; the simulator's output is omputationally indistinguishable

from B

�

's view in a real protool exeution. The idea behind the simulator is that B

�

knows

only one \omputation path" through the iruit and learns nothing about the values involved

exept for the output gates. The simulator thus interats with B

�

for an arbitrary input x

A

of A; it only has to make sure that B

�

's output will be f

B

(x

A

; x

�

B

).

More preisely, SIM

B

�

is the following PPT algorithm. It takes as input the funtion value

f

B

(x

A

; x

�

B

). From the ommitment orale it obtains B

�

's input x

�

B

, hooses an arbitrary value

~x

A

for the input of A and exeutes the Steps 1{4 (Setions 5.2{5.5) exatly as A with the

following exeptions:

1. In Step V1 (Setion 5.2) for i = n�n

O

+1; : : : ; n, the simulator uses the same token s

i;o

i

in all ommitments T

i

(1; 3), T

i

(2; 3), T

i

(3; 3), and T

i

(4; 3), where o

i

is the output bit of f

B

that SIM

B

�

has been given. Consequently, the simulator has to forge the proofs gate-nand

for these gates, whih it an do by exploiting the simulatability of these protools.

2. Analogously, in Step V2 (Setion 5.3) for i = n � n

O

+ 1; : : : ; n, the simulator enrypts

the same s

i;o

i

in all four veri�able enryptions.

3. In Step V3 (Setion 5.4), the simulator behaves like A exept for PK input; here it has to

forge the proof of the orrespondene between A's input ommitment C

A

and ~x

A

hosen

by the simulator, again by exploiting the simulatability of the proof.

It remains to argue that B

�

's view when interating with the real A and the view provided

by SIM

B

�

are omputationally indistinguishable. Beause the whole onstrution uses unon-

ditionally hiding ommitments and all proofs are zero-knowledge, the only plae where there

ould be a di�erene is the enryption of the output tokens of the output gates. However, by

Lemma 1 this is not the ase and we have established privay for A.

Privay for B: it suÆes to onsider VOT, whih is the only step where B ever sends

information to A that ould ompromise B's inputs. Protool VOT of Setion 4 provides even

information-theoreti privay for B in the role of R and the proofs an be simulated by the

standard tehniques.

Remark. The invoations of Protool VOT at the end of Step V3 deserve speial attention

beause of the way Protool VFE is used in the next setion. Step 1 of eah VOT involves two

veri�able enryptions with the iruit onstrutor A as prover and the iruit evaluator B as

veri�er. These proofs may also be veri�ed by an independent third party T , whih B trusts

to at as veri�er. More preisely, beause the veri�able enryption publi keys are also known

beforehand (they are derived from the ommitments), the VOT protool may, equivalently,

onsist of an interation between A and T , followed by interation between T to B, where T

sends to B the transript of its interation with A. Suh a T may not know how to derypt the

transferred values.
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6 Optimisti Fair Seure Computation Protool

We are now ready to desribe our protool for optimisti fair seure two-party omputation. In

short, the protool onsists of two intertwined exeutions of the veri�able seure funtion evalu-

ation protool from the previous setion, where the output tokens are not diretly revealed, but

mutually esrowed with T �rst and opened later. Reall that optimisti fair seure omputation

involves three parties A, B, and T , in the asynhronous ommuniation model of De�nition 1.

In the following we use Protool VOT from Setion 4 and the seure esrow sheme based

on Cramer-Shoup enryption from Setion 3.4.

Common inputs are a funtion f : X

A

�X

B

! Y

A

�Y

B

, T 's publi key y

T

, and generators

g; g

1

2 G. The private input of A is x

A

2 X

A

, the private input of B is x

B

2 X

B

, and the

private input of T is the seret key z

T

orresponding to y

T

.

Protool FAIRCOMP(g; g

1

; f; y

T

)(x

A

)(x

B

)(z

T

)

F1. A hooses r

A;1

; : : : ; r

A;n

A

2

R

Z

q

, omputes the ommitments

C

A

= (C

A;1

; : : : ; C

A;n

A

) = (g

x

A;1

g

1

r

A;1

; : : : ; g

x

A;n

A

g

1

r

A;n

A

);

sends C

A

to B, and runs with B

PK f�

1

; �

1

; : : : ; �

n

A

; �

n

A

: C

A;1

= g

�

1

g

1

�

1

^ � � � ^ C

A;n

A

= g

�

n

A

g

1

�

n

A

)g:

If B rejets any proof, it outputs ? and halts.

F2. B hooses r

B;1

; : : : ; r

B;n

B

2

R

Z

q

, omputes the ommitments

C

B

= (C

B;1

; : : : ; C

B;n

B

) = (g

x

B;1

g

1

r

B;1

; : : : ; g

x

B;n

B

g

1

r

B;n

B

);

sends C

B

to A, and runs with A

PK f�

1

; �

1

; : : : ; �

n

B

; �

n

B

: C

B;1

= g

�

1

g

1

�

1

^ � � � ^ C

B;n

B

= g

�

n

B

g

1

�

n

B

)g:

If A rejets any proof, it outputs ? and halts.

F3. A and B invoke a modi�ation of Protool VFE(g; g

1

; C

A

; C

B

; f

B

)(x

A

; r

A

)(x

B

; r

B

), where

they replae opening the ommitments of the output tokens by esrowing them with T .

That is, in Step V3, A and B run Phase I of the esrow sheme for eah of the values

s

i;0

; s

i;1

; r

i;0

; r

i;1

tagged with C

A

kC

B

kf

B

ki for i = n�n

O

+1; : : : ; n in the iruit omputing

f

B

. They interrupt Protool VFE after Step V3. (Note that T has not been involved so

far.)

If this fails, B simply outputs ? and halts.

F4. B and A invoke a modi�ation of Protool VFE(g; g

1

; C

B

; C

A

; f

A

)(x

B

; r

B

)(x

A

; r

A

), where

they replae opening the ommitments of the output tokens by esrowing them with T .

That is, in Step V3, B and A run Phase I of the esrow sheme for eah of the values

s

i;0

; s

i;1

; r

i;0

; r

i;1

tagged with C

A

kC

B

kf

A

ki for i = n�n

O

+1; : : : ; n in the iruit omputing

f

A

. They interrupt Protool VFE after Step V3.

If this fails, A invokes Protool abort with T . If T answers abort, then A outputs ? and

halts. If T answers resolvektransript then A ompletes the VFE protool omputing f

A

as read from transript (ontinuing with Step V3), outputs O

A

, and halts.
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F5. A and B ontinue with Phase II of the esrow protools started in Step F3. Aording to

this, A sends B the orresponding messages, B heks their ontents, and if a hek fails or

if some message does not arrive, B invokes Protool B-resolve with T . If T answers abort,

then B outputs ? and halts.

If T answers resolvektransript then B ompletes the VFE protool omputing f

B

as read

from transript (ontinuing with Step V3), outputs O

B

, and halts.

Otherwise B resumes Protool VFE started in Step F3 with Step V4 and obtains O

B

.

F6. B and A ontinue with Phase II of the esrow protools started in Step F4. Aording to

this, B sends A the orresponding messages. Then B outputs O

B

and halts.

A heks the messages reeived from B, and if a hek fails or if some message does not

arrive, A invokes Protool A-resolve with T . If T answers abort, A outputs ? and halts.

If T answers resolvektransript then A ompletes the VFE protool omputing f

A

as read

from transript from Step V3, outputs O

A

, and halts.

Otherwise A resumes Protool VFE started in Step F4 with Step V4, outputs O

A

, and

halts.

We now desribe the sub-protools for aborting and resolving. They also take plae in the

model of De�nition 1, where all parties maintain internal state (private inputs are sometimes

mentioned nevertheless). In partiular, T maintains a list of tuples internally and proesses

all abort and resolve requests atomially. Reall that the transript of a party of a protool

onsists of all messages reeived or sent by this party.

Protool abort is a protool between A and T ; it is invoked by A with inputs C

A

and C

B

.

Protool abort(g; g

1

; f; y

T

)(C

A

; C

B

)()

1. A sends the message (abort; C

A

kC

B

kf) to T .

2. If T 's internal state ontains an entry of the form (C

A

kC

B

kf; string), then T returns to A

the message string .

3. Otherwise, T adds the tuple (C

A

kC

B

kf; abort) to its internal state and returns to A the

message abort.

Protool B-resolve is a protool between B and T ; it is invoked by B with input a string

transript , ontaining B's omplete transript of Steps F1{F4 in Protool FAIRCOMP, whih

inludes also C

A

and C

B

.

Protool B-resolve(g; g

1

; f; y

T

)(transript )(z

T

)

1. B sends the message (B-resolve; transript ) to T .

2. If T 's internal state ontains an entry of the form (C

A

kC

B

kf; string), then T returns to B

the message string and halts.

3. Otherwise, B and T run Steps V1{V3 of Protool VFE(g; g

1

; C

B

; C

A

; f

A

)(x

B

; r

B

)(;) un-

modi�ed with B in the role of iruit onstrutor (VFE-)A and T in the role of iruit

evaluator (VFE-)B. They stop after Step 1 in Protool VOT, before T would have to

derypt the tokens. (Thus, T 's inputs to the protool may be empty.)

If T rejets any of the proofs by B, then T adds the tuple (C

A

kC

B

kf , abort) to its

internal state and returns to B the message abort.
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4. Otherwise, T reads the transript sent by B and arries out its part of Phase II for the

esrows of the tokens on the output wires for f

B

from Step F3. T opens the esrows subjet

to all tags mathing C

A

kC

B

kf

B

ki. In other words, T runs the deryption algorithm

VD(CS; z

T

; : : : ) and returns the outputs to B if all tags math, or ? if one or more

deryptions yield ?.

T omputes the transript t of Protool B-resolve and adds (C

A

kC

B

kf , resolvekt) to its

internal state.

Protool A-resolve is a protool between A and T ; it is invoked by A with input a string

transript , ontaining her omplete transript of Steps F1{F3 in Protool FAIRCOMP, whih

inludes also C

A

and C

B

.

Protool A-resolve(g; g

1

; f; y

T

)(transript )(z

T

)

1. A sends the message (A-resolve; transript ) to T .

2. If T 's internal state ontains an entry of the form (C

A

kC

B

kf; string), then T returns to A

the message string and halts.

3. Otherwise, A and T run Steps V1{V3 of Protool VFE(g; g

1

; C

A

; C

B

; f

B

)(x

A

; r

A

)(;) un-

modi�ed with A in the role of iruit onstrutor (VFE-)A and T in the role of iruit

evaluator (VFE-)B. They stop after Step 1 in Protool VOT, before T would have to

derypt the tokens. (Thus, T 's inputs to the protool may be empty.)

If T rejets any of the proofs by A, then T adds the tuple (C

A

kC

B

kf , abort) to its

internal state and returns to A the message abort.

4. Otherwise, T reads the transript sent by A and arries out its part of Phase II for the

esrows of the tokens on the output wires for f

A

from Step F4. T opens the esrows subjet

to all tags mathing C

A

kC

B

kf

A

ki. In other words, T runs the deryption algorithm

VD(CS; z

T

; : : : ) and returns the outputs to A if all tags math, or ? if one or more

deryptions yield ?.

T omputes the transript t of Protool A-resolve and adds (C

A

kC

B

kf , resolvekt) to its

internal state.

Remarks about the protool.

1. Protool FAIRCOMP as desribed above onsists of seven rounds (14 moves). By pipelining

the exeution of Steps F1{F4 one an redue this to �ve rounds (ten moves). Using non-

interative proofs in the random orale model, this ould even be redued further to three

rounds (six moves).

2. A major di�erene between the resolve protools here and those used for optimisti fair

exhange of signatures [ASW00℄ is that T annot diretly replae the other party here.

Whereas in a fair exhange of digital signatures, T an verify that the party requesting

to resolve supplies a orret signature, T has to re-run almost the omplete VFE protool

here. After T has done this, the other party is able to omplete VFE and its part of the

omputation from this transript.

3. T does not have to know any serets of the other party for re-running VFE. For instane,

in Step 3 of Protool B-resolve, when B and T run Protool VFE for f

A

(and T plays

the role of A), T does not have to know anything about A's seret input x

A

besides the
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ommitments C

A

; this follows beause the VFE protool is stopped after Step V3 and

beause of a speial feature of the underlying Protool VOT, in whih the ommitments

are used for enryption.

Theorem 4. Under the DDH assumption, Protool FAIRCOMP above is an optimisti fair

seure omputation protool.

Proof (Sketh). We have to onsider zero, one, or two orrupted parties and show indistin-

guishability aording to De�nition 1. Note that these three ases an be interpreted to establish

orretness, fairness (assuming unorrupted T ), and privay (for A or B) of a protool.

No Corruptions (Corretness). It follows from the onstrution and from the remarks

above that for any S, the protool between A and B terminates and they output the orret

results exept with negligible probability. Moreover, if S delivers all messages instantly, then

T is never ontated and the onditions for an optimisti protool are met.

One Corrupted Party (Fairness). Consider a given real-world adversary C that ontrols

B and S (although they are absorbed in C, we sometimes use B

�

and S

�

for the orrupted

parties).

We desribe a simulator that transforms C into an adversary

�

C for the ideal proess and

emulates C's behavior in the ideal proess with aess to U . The simulator has orale aess

to C, inluding the apability to rewind C. The simulator uses C to deliver messages through

S

�

, inluding messages to B

�

supposedly originating from A and T . We adopt a simpli�ed

terminology below, however, and just say that \A sends a message to B

�

" et. The simulator

also ommuniates (externally) with U in the ideal proess, playing the role of

�

B; note that the

ideal-proess implementations of

�

A and

�

T are �xed as in De�nition 1 and beyond the ontrol

of the simulator.

The simulator is started on inputs f; y

T

; g; g

1

, and x

B

. Aording to our assumptions, it

also knows the disrete log of g

1

with respet to g and z

T

, the private key orresponding to y

T

.

The simulator initializes B

�

with g; g

1

; f; y

T

, and x

B

and starts S

�

. Then it interats with

C by running opies of A and T internally, whih ommuniate via S

�

. They behave aording

to the protool spei�ation, exept for the following hanges:

{ if C halts before A ompletes Step F2, send ? to U from

�

B;

{ in Step F2, when B

�

has ompleted the proof, rewind C to the beginning of F2, let A

provide di�erent hallenges for B

�

, and extrat x

�

B

from B

�

's answer;

{ when T adds the tuple (C

A

kC

B

kf; abort) to its state, send ? to U in the ideal proess;

{ in Step F3, run the simulator provided by the VFE protool (Theorem 3) on behalf of A

on x

�

B

and an arbitrary value ~x

A

, but enrypt arbitrary values for the esrowed output

token ommitments; simulate the orresponding proofs for VE ;

{ in Step F5, when A has to reveal the tokens on the output wires, determine if message x

�

B

(from Step F2) was already sent to U in the ideal proess; if yes, retrieve U 's answer and

if not, send x

�

B

to U and reeive f

B

(x

A

; x

�

B

); then ompute suitable ommitment openings

that a honest B would deode to f

B

(x

A

; x

�

B

) by exploiting the knowledge of the relation

between g and g

1

;

21



{ in Protool B-resolve, Step 4, when T has to derypt the esrowed tokens on the output

wires for f

B

, determine if message x

�

B

(from Step F2) was already sent to U in the ideal

proess; if yes, retrieve U 's answer and if not, send x

�

B

to U and reeive f

B

(x

A

; x

�

B

); then

ompute suitable ommitment openings that a honest B would deode to f

B

(x

A

; x

�

B

) by

exploiting the knowledge of the relation between g and g

1

.

The simulator runs this modi�ed protool until C generates an output and halts; then it opies

C's output to its own output for the ideal proess and halts as well.

We have to argue that the simulator produes only one message to U from

�

B and that

it indues a distribution of the ideal-proess outputs that is indistinguishable from that of the

real-world protool outputs. Beause T proesses requests atomially, it follows from inspetion

of the protool that it generates at most one message for U per invoation of T and ? is sent

at most one. Two messages 6= ? might be generated when running T in B-resolve and when

running A in Step F5; however, beause of the simulator's hek for previous messages to U , it

will not send x

�

B

twie. Moreover, if A has reeived abort from T , it will halt before reahing

Step F5.

It follows now from the onstrution of the simulator, the seurity of the VFE protool, the

seurity of the esrow sheme, and the fat that all ommitments hide their inputs, that the

joint output of in the ideal proess is indistinguishable from the output in the real world.

The simulator for A uses essentially the same method and is left as an exerise for the

reader.

Two Corrupted Parties (Privay). Consider a given real-world adversary C that ontrols

B, T , and S (the same notational onventions apply as above).

We desribe a simulator that transforms C into an adversary

�

C for the ideal proess and

emulates C's behavior in the ideal proess with aess to U . The simulator interats with C

(allowing rewinding) and delivers messages through S

�

. The simulator plays the roles of

�

B and

�

T to U in the ideal proess.

The simulator is started on inputs f; y

T

; g; g

1

, and x

B

. Aording to our assumptions, it

also knows the disrete log of g

1

with respet to g and z

T

, the private key orresponding to y

T

.

The simulator initializes B

�

with g; g

1

; f; y

T

, and x

B

, initializes T

�

with g; g

1

; f; y

T

, and z

T

,

and starts S

�

. Then it interats with C by emulating A aording to the protool spei�ation,

exept for the following hanges:

{ if C halts before A ompletes Step F2, send ? to U from

�

B and b

A

= b

B

= � from

�

T ;

{ in Step F2, when B

�

has ompleted the proof, rewind C to the beginning of F2, let A

provide di�erent hallenges for B

�

, and extrat x

�

B

from B

�

's answer;

{ in Step F3, send x

�

B

to U from

�

B and b

B

= � from

�

T ; reeive f

B

(x

A

; x

�

B

) from U and run

the unmodi�ed simulator provided by the VFE protool (Theorem 3) on behalf of A on

x

�

B

and an arbitrary value ~x

A

(using orret values in the esrows here);

{ in Steps F3{F6, when A reeives a message that auses it to output a value v

A

2 Y

A

[f?g,

send b

A

= v

A

to U .

The simulator runs this modi�ed protool until C generates an output and halts; then it opies

C's output to its own output for the ideal proess and halts as well.

It is easy to see that the simulator produes one message to U from

�

B and two messages

from

�

T and that it indues a distribution of the ideal-proess outputs that is indistinguishable
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from that of the real-world protool outputs. Moreover, the simulator auses

�

A to generate the

same output as A in the real world.

It follows now from the onstrution of the simulator, the seurity of the VFE protool, and

the fat that all ommitments hide their inputs, that the joint output of in the ideal proess is

indistinguishable from the output in the real world.

The simulator for A and T uses essentially the same method and is left as an exerise for

the reader.
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