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Abstract

We present an efficient and fair protocol for secure two-party computation in the optimistic
model, where a partially trusted third party T is available, but not involved in normal pro-
tocol executions. T is needed only if communication is disrupted or if one of the two parties
misbehaves. The protocol guarantees that although one party may terminate the protocol
at any time, the computation remains fair for the other party. Communication is over an
asynchronous network. All our protocols are based on efficient proofs of knowledge and
involve no general zero-knowledge tools. As intermediate steps we describe efficient verifi-
able oblivious transfer and verifiable secure function evaluation protocols, whose security is
proved under the decisional Diffie-Hellman assumption.

1 Introduction

Secure computation between distrusting parties is a fundamental problem in cryptology. Sup-
pose two parties A with input z and B with input y wish to jointly compute a function f(x,y)
of their inputs without revealing anything else than the result. It is known that any func-
tion can be computed securely and with only few rounds of interaction under cryptographic
assumptions [Yao86, GMW87, Gol98].

However, if the computation should also be fair and give a guarantee that A learns f(z,y) if
and only if B learns f(z,y), two-party protocols inevitably come at the cost of many rounds of
interaction [Yao86]. The reason is that a malicious party could always quit the protocol early,
e.g., as soon as it obtains the information it is interested in, and the other party may not get
any output at all. The only way to get around this are several rounds of interaction, in which
the result is revealed verifiably and gradually bit-by-bit so that a cheating party has an unfair
advantage of at most one bit [Yao86, BCDvdG88, Cle86, BGMRY0].

This work presents an efficient protocol for fair secure computation using a third party T to
ensure fairness, which is not actively involved if A and B are honest and messages are delivered
without errors. This approach has been proposed for fair exchange (e.g., of digital signatures)
by Asokan, Schunter, Shoup, and Waidner [ASW97, ASW00] and is known as the optimistic
model. Tts main benefits are a small, constant number of rounds of interaction between A
and B, independent of the security parameter, and the minimal involvement of T'. Our secure
computation protocol maintains the privacy of one party’s inputs even if T' should collude with
the other party (unlike [ASWO00]). We achieve this by combining Yao’s technique for securely
evaluating a circuit with efficient zero-knowledge proofs.



We consider actually a more general model of fair secure computation, in which there are
two functions, f4(z,y) and fp(z,y), and A should learn f4(z,y) if and only if B learns fp(z,y),
evaluated on the same inputs.

A key feature of our protocol is that it works in an asynchronous environment such as the
Internet, where messages between A and B might be lost or reordered.

Our protocol is efficient in the sense that its complexity is directly proportional to the size
of the circuit computing f and does not involve large initial costs. All our zero-knowledge proofs
and verifiable primitives are based on proofs of knowledge about discrete logarithms, without
resorting to expensive general zero-knowledge proof techniques involving NP-reductions. Our
solution is of practical relevance for cases where A and B want to compute f with a small
circuit, for example, to evaluate the predicate z4 > zp (the “millionaire’s problem” [Yao82]),
which has applications to on-line bidding and auctions [Cac99, NPR99].

Baum and Waidner [BW98] and Micali [Mic98] have observed before that fair two-party
computation is feasible in the optimistic model. They used general tools and did not focus on
efficient protocols for small circuits, however.

1.1 Overview

We build the fair secure computation protocol in several steps and use intermediate concepts
and protocols that may be of independent interest.

Recall Yao’s approach to secure function evaluation [Yao86]: The circuit constructor A
scrambles the bits on the wires of the circuit by replacing each with a random token, encrypting
the truth tables of all gates accordingly such that two tokens together decrypt the corresponding
token on the outgoing wire, and providing the cleartext interpretation for the tokens appearing
in the circuit output. It sends the encrypted circuit to B (the circuit evaluator), who obtains
the tokens corresponding to his input bits using one-out-of-two oblivious transfer; this ensures
that he learns nothing about other tokens. B is then able to evaluate the circuit and to compute
the output on his own. Note that secure function evaluation is one-sided because only B learns
the output.

Our fair secure computation protocol, presented in Section 6, consists of two intertwined
executions of verifiable secure function evaluation (VFE) on committed inputs between A and
B, plus recovery involving T'. Verifiable secure function evaluation is a protocol (which we
define in Section 5) extending Yao’s construction that computes a given function on committed
inputs of A and B.

In order to obtain the initial tokens, A and B use a wverifiable oblivious transfer (VOT)
protocol that performs a one-out-of-two oblivious transfer on committed values (as defined in
Section 4).

However, this solution is not sufficient for fair secure computation in the optimistic model.
We need to escrow some information in the VFE construction such that a third party T' can
open the result of the computation in case the sender refuses to continue or some of its messages
are lost. (The escrow protocol is defined and described in Section 3.4.)

These protocols are based on proofs of knowledge about discrete logarithms and verifiable
encryption. Our notation for proofs of knowledge is introduced in Section 3.2 and allows
to describe modular composition of proofs. For verifiable encryption we use the methods of
Camenisch and Damgard [CD98| as described in Section 3.3. Our model for optimistic fair
secure two-party computation is formalized in Section 2.



1.2 Related Work

Beaver, Micali, and Rogaway [BMR90] give a constant-round cryptographic protocol for multi-
party computation. Its specialization to three parties is related to our three-party model in
that it guarantees fairness against one malicious party, but 7" needs to be always involved.

Fair protocols for two-party computation (and extensions to multiple parties) have previ-
ously been investigated by Chaum, Damgard, and van de Graaf [CDvdG88], by Beaver and
Goldwasser [BG89], and by Goldwasser and Levin [GL91]. They combine oblivious circuit eval-
uation with gradual release techniques to obtain fairness, but without focus on particularly
efficient protocols.

Feige, Kilian, and Naor [FKN94] study an extension of the multi-party secure computation
models using a third party 71", which receives a single message, does some computation, and out-
puts the function value, but does not learn anything else about the inputs. Under cryptographic
assumptions, every polynomial-time computable function can be computed efficiently (i.e., in
polynomial time) in their model. In our model, T" is not involved in regular computations and
only used in case some party misbehaves.

In the multi-party setting, the idea of fast-track computation has also been introduced and
gives protocols that run fast if all participants are honest, but may resort to slower and more
secure methods should a cheater be detected [GRR98]. However, one difference between the
optimistic model as used here and fast-track computation is that T' is a priori assumed to be
honest and A or B may fail, whereas in the multi-party setting an unknown subset of the parties
misbehaves.

2 Optimistic Fair Secure Two-Party Computation

2.1 Notation

The security parameter is denoted by k. The random choice of an element z from a set X with
uniform distribution is denoted by z € A'. The concatenation of strings is denoted by ||.

The statistical difference between two probability distributions Px and Py is denoted by
|Px — Py|. A quantity € is called negligible (as a function of k) if for all ¢ > 0 there exists a
constant kg such that e, < % for all k& > ky. The formal security notion is defined in terms of
indistinguishability of probability ensembles indexed by k, but extension from a single random
variable to an ensemble is assumed implicitly. Two probability ensembles X = {X;} and Y =
{Y}} are called computationally indistinguishable (written X N Y) if for every algorithm D that
runs in probabilistic polynomial time (in k), the quantity |Prob[D(X}) = 1] —Prob[D(Y}) = 1]|
is negligible.

2.2 Definition

The parties A, B, and T are probabilistic interactive Turing Machines (PITM) that communi-
cate via secure channels in an asynchronous environment. Let f : X4 X X — Y4 X VB be a
deterministic function with two inputs and two outputs that A and B want to evaluate, possibly
using 7’s help. Suppose f can be evaluated by a polynomial-sized circuit in k (the extension
to probabilistic functions is straightforward and omitted). Let f4 : X4 X Xp — Y4 denote the
restriction of f to A’s output and let fg : X4 x Xp — Yp denote the restriction of f to B’s
output. A has private input 24 and should output f4(z4,2p5) and B has private input zp and
should output fp(za,zp).



These requirements are expressed formally in terms of the simulatability paradigm for gen-
eral secure multi-party computation [Bea9l, MR92, Gol98, Can00], although we consider only
three parties. In this paradigm, the requirements on a protocol are expressed in terms of an
ideal process, where the parties have access to a universally trusted device that performs the
actual computation. A protocol is considered secure if all an adversary may do in the real world
can also happen in the ideal process; formally, for every real-world adversary there must exist
some adversary in the ideal process such that the real protocol execution is indistinguishable
from execution of the ideal process.

First, one has to define the real-world model and the ideal process. We assume static
corruption throughout this work.

The real-world model. We consider an asynchronous three-party protocol as a collection
(A, B,T) of PITM. All parties are initialized with the public inputs of the protocol that includes
the function f, T’s public key yr, and possibly further parameters of the encryption schemes.
The private inputs are x4 for A, xp for B, and 2z for T'.

There is no global clock and the parties are linked by secure authenticated channels in the
following sense. All communication is driven by the adversary in form of a scheduler S. There
exists a global set M of undelivered messages tagged with (S, R) that denote sender S and
receiver R. M is initially empty. At each step, S chooses a party P, selects some message
M € M with receiver P, and activates P with M on its communication input tape. If M is
empty, P may also be activated with empty input. P performs some computation and eventually
writes a message (R, T) to its communication output tape. The message 7 is then added to M,
tagged with (P, R). S repeats this step arbitrarily often and is not allowed to terminate as long
as M contains messages with receiver or sender equal to T'. (In other words, S must eventually
deliver all messages between T' and any other party P € {A, B}, but may suppress messages
between A and B.) Honest parties eventually generate an output as prescribed by the protocol
and terminate by raising a corresponding flag; they will not process any more messages.

An adversary in the real world is an algorithm C that controls & and at most two of
the parties A, B, and T. Parties controlled by the adversary are called corrupt; we assume
their output is empty. The adversary itself outputs an arbitrary function of its view, which
consists of the information observed by the scheduler and all messages written to and read from
communication tapes of corrupted parties. W.l.o.g. we assume the adversary is deterministic.
For a fixed adversary C and inputs x4 and z g, the joint output of A, B, T, and C, denoted by
Oaprc(za,zp), is a random variable induced by the internal coins of the honest parties.

The ideal process. The ideal process consists of algorithms A, B, and 7', and uses on a uni-
versally trusted party U to specify all desired properties of the real protocol. U is parametrized
by f. A has input z4, B has input zp, and T has no input. The operation is as follows. A
sends a message in X4 U {L} to U, and B sends a message in Xg U {L} to U, and T sends
two distinct messages to U in arbitrary order, one containing a value b4 € Y4 U {0, L} and the
other one containing a value bg € Yp U {0, L}. Messages are delivered instantly.

U is a device that computes two messages, m4 and mp, for A and B, respectively. Each
message is generated as soon as all necessary inputs have arrived. The message for A depends
on r4,zp, and by, and is given by

falxa,zp) ifbg=oand x4 # L and zp # L
myg = < L ifbgy=9¢o,butzq=_1Lorxzg=_1
ba if by # o.



mp is computed analogously from z 4, zp, and bp.

Honest parties in the ideal process operate as follows. A and B just send their input to U
and T sends by = ¢ and bg = . A and B then wait for an answer from U, output the received
value, and terminate. T halts as soon as it has sent two messages to U and outputs nothing.

The ideal-process adversary is an algorithm C' that controls the behavior of the corrupted
parties in the ideal process. It sees the inputs of a corrupted party and may substitute them
by an arbitrary value before sending the specified message to U. The adversary sees also U’s
answer to a corrupted party. Corrupted parties output nothing, but the adversary outputs an
arbitrary function of all information gathered in the protocol.

For a fixed (deterministic) adversary C' and inputs z4 and zp, the output of the ideal
process is the concatenation of all outputs, denoted by O 1575(z4,2B).

In contrast to most of the literature using the simulation paradigm for secure computation,
each party (including U) sends a message as soon as it is ready in this asynchronous specification.
This means that an adversary may also delay the message of a corrupted party until it has
obtained the output of another corrupted party.

Simulatability. We are now ready to state the definition of fair secure computation. Seem-
ingly separate requirements on a protocol such as correctness, privacy, and fairness are expressed
via the simulatability by an ideal process. Recall that an adversary in the real world is an algo-
rithm C' that controls S and at most two of the three parties and that C’s output is arbitrary.

Definition 1. Let f : X4y x X — Y4 x)Yp be a function that can be evaluated by a polynomial-
sized circuit. We say that a protocol (A, B,T) performs fair secure computation if for every
real-world adversary C, there exists an adversary C in the ideal process such that for all z 4 € X4
and for all zp € X'p, the joint distribution of all outputs of the ideal process is computationally
indistinguishable from the outputs in the real world, i.e.,

C
Oaprc(za,zB) = Oz57c(za,2B).

A fair secure computation protocol is called optimistic if whenever all parties follow the protocol
and messages between them are delivered instantly, then 7" does not receive or send any message.

Remarks on the above definition.

1. By the design of the ideal process, fairness is only guaranteed if T' is not colluding with
A or B. This is unavoidable because a cheating participant of a two-party protocol may
always refuse to send the last message. Protocols to defend against such misbehavior
require a number of rounds of interaction that is inverse proportional to the cheating
probability [Yao86, BCDvdG88].

2. Conversely, if T' is corrupt, then the computation may be unfair and an honest party, say
A, may not receive its output. Moreover, B and T may still decide to block A after seeing
fB and even cause A to output a value that has nothing to do with f4. This occurs in
the ideal process if T colluding with B delays sending b4 until it has observed B’s output
and then decides to send by # o. But notice that 7' and B together do not learn more
about Alice’s input than what follows from fp.

3. A stronger requirement would be that T is only permitted to send ¢ or L, but not a
substitute for A or B’s output. The current model reflects a corresponding property of
our protocol because T’s actions in the resolve protocols are not verifiable. However, by



making all proofs non-interactive and resorting to the random oracle model, our protocol
satisfies also this stronger requirement.

4. Our model applies only to an isolated three-party case (as is customary in the literature on
secure computation). A multi-user model that allows for concurrent execution of multiple
protocol instances can be constructed by combining our model with techniques proposed
by Asokan et al. [ASWO00]. Basically, a unique transaction identifier has to be added to
all messages and techniques for concurrent composition of zero-knowledge proofs have to
be used [Dam00].

3 Proofs of Knowledge and Verifiable Encryption

This section introduces our notation for proofs of knowledge about discrete logarithms, the
notion for verifiable encryption, and our escrow scheme. It starts with a description of the
underlying encryption schemes.

3.1 Preliminaries

A semantically secure public-key cryptosystem (Ej, Dy) with security parameter & consists of
a (public) probabilistic encryption algorithm Fj(-) and a (secret) decryption algorithm Dy(+).
The encryption algorithm FEj : M — C takes a message m € M and outputs a ciphertext c;
the corresponding decryption algorithm Dy : C — M computes m from c.

Semantic security asserts that an eavesdropper cannot get partial information about the
plaintext from a ciphertext [GM84]. More precisely, (Ff, Dy) is a semantically secure public-
key system if for two arbitrary messages mg and mq, the random variables representing the two
encryptions Ej(mg) and Ej(mq) are computationally indistinguishable.

The protocols in this paper are mostly based on ElGamal encryption [EIG85]. Let G be a
group of large prime order ¢ (polynomial in k) and let g € G be a randomly chosen generator.
An ElGamal public key is (g, y) for y = ¢ with a randomly chosen = € Z, and the corresponding
secret key is z. ElGamal encryption of a message m € G proceeds as follows:

Algorithm ElGamal(g,y)(m)
1. choose a random r € Zg;
2. compute and output (¢, ') = (¢", my").

The decryption algorithm computes m = ¢’/¢* and outputs m.

Consider the two distributions over G* with Dy = (g,4%,¢",9?) for z,y,2 €g Z, and
D, = (9,9%,9Y,9") for =,y €r Z, The Decisional Diffie-Hellman (DDH) assumption is that
there exists no probabilistic polynomial-time (PPT) algorithm that distinguishes with non-
negligible probability between D and R. By a random self-reduction property [Sta96, NR97],
the DDH assumption is equivalent to assuming that there is no PPT algorithm that decides
with high probability for all tuples (g, g%, g%, ¢%) if z = zy mod q. It is well known that ElGamal
encryption is semantically secure under the DDH assumption.

Using a hybrid argument, one can show that also the two distributions

MO = (g,gxl,“‘,gxn’gyl,“"gym,gzl’...,gz'nm)



with x;,y;,2i; €r Zq and
Ml = (g’gzl’...’gzn,gyl’...,gym’gzlyl,“‘,gxnym)

with z;,y; €r Zg for ¢ = 1,...,n and j = 1,...,m are computationally indistinguishable
under the DDH Assumption. The argument is essentially the same as the one by Naor and
Reingold [NR97].

3.2 Proofs of Knowledge about Discrete Logarithms

We introduce a notation for describing proofs of knowledge about discrete logarithms. Such
three-move proofs of knowledge can be composed efficiently in parallel and in a modular way,
as shown by Cramer, Damgard, and Schoemakers [CDS94]. The notation was first used by
Camenisch and Stadler [CS97] and subsumes several discrete logarithm-based proof techniques
(see the references therein). Our extension allows to describe modular composition.

Let G be a group of large prime order g and let g,g1 € G be generators such that log, g; is
not known (e.g. provided by a trusted dealer).

The simplest example of such a proof is the proof of knowledge of a discrete logarithm of
y € G [Sch91]. For reference, we recall some of properties of this protocol between a prover P
and verifier V. Public inputs are (g,y) and P’s private input is z such that y = g*. First, P
computes a commitment £ = g" with r €z Z, and sends it to V. Then V sends to P a random
challenge ¢ € {0, l}k', to which P responds with s = r — cz mod ¢, where k' is a security
parameter. V accepts if and only if ¢t = ¢g°y°. We denote this protocol by

PK log(g,y)
{¢:y=g'}.
The witness(es) are conventionally written in Greek letters and only known to the prover while
all other parameters are known to the verifier as well.

Unlike the simplifying description above, we assume that all proofs here are actually three-
move concurrent zero-knowledge protocols, i.e., carried out using trapdoor commitments for
the first message ¢t. Such trapdoor commitments may be constructed, for example, using an
additional generator h € G, which is chosen at random by a trusted dealer or is determined
in a once-and-for-all setup phase; the zero-knowledge simulator can extract the trapdoor log, h
from this. It will allow the simulator to open a given commitment ¢ in an arbitrary way upon
receiving a challenge ¢ because it can compute suitable s from the trapdoor, without having
to rewind the verifier (for more details see, e.g., [Dam00]); this allows also arbitrarily large
challenges (i.e., &' = O(k)).

This basic protocol can be extended in many ways. For example,

PK rep(g,91,9)
{&.p:y=9g'9"}
denotes a proof of knowledge of a representation of y with respect to g and g .

Proofs written in this notation may be composed in a modular way. It is known that this
is sound for monotone boolean expressions from the results of Cramer et al. [CDS94]. For
instance, the prover can convince the verifier that he knows the representation of at least one
of x and y w.r.t. bases g and ¢g; with

PK Or(g,gl,l’,y)
{rep(ga g1, I) \% rep(g, g1, y)}



It is also possible to prove that two discrete logarithms (or parts of representations) are
equal [CP93]. We give an example of this technique. It shows that a commitment z contains
the product modulo ¢ of the two values committed to in x and y:

PK mUl(g,gl,I,y,Z)

{o,B8,7,0,6 : 2= g% Ny =9"g.° Nz = y*qi°}.

This works also for z = g%¢g," with r = 0 and arbitrary a € Z,, which is needed in Section 5.
When such proofs are combined, some optimizations are often possible, just like in assembly

code that is produced by a compiler from a high-level language. An example that occurs in

Section 5 is that multiple parallel commitments to the same value are introduced, where only

one of them is needed.

3.3 Verifiable Encryption

Verifiable encryption is an important building block here and has been used for publicly verifi-
able secret sharing [Sta96], key escrow, and optimistic fair exchange [ASWO00]. It is a two-party
protocol between a prover and encryptor P and a verifier and receiver V. Their common inputs
are a public encryption key E, a public value v, and a binary relation R on bit strings. As a
result of the protocol, V either rejects or obtains the encryption ¢ of some value s under E such
that (s,v) € R. For instance, R could be the relation (s,¢®) C Z4; x G. The protocol should
ensure that V accepts an encryption of an invalid s only with negligible probability and that
V learns nothing beyond the fact that the encryption contains some s with (s,v) € R. The
encryption key E typically belongs to a third party, which is not involved in the protocol at all.

Generalizing the protocol of Asokan et al. [ASWO00], Camenisch and Damgard [CD98|
provide a verifiable encryption scheme for all relations R that have an honest-verifier zero-
knowledge three-move proof of knowledge where the second message is a random challenge
and the witness can be computed from two transcripts with the same first message but dif-
ferent challenges. This includes most known proofs of knowledge, and in particular, all proofs
about discrete logarithms from the previous section. The verifiable encryption scheme is itself a
three-move proof of knowledge of the encrypted witness s and is zero-knowledge if a semantically
secure encryption scheme is used [CD98].

We use a similar notation as above and denote by, e.g.,

VE (ElGamal, (g,y), tag){¢ : v = g*}

the verifiable encryption protocol for the ElGamal scheme, whereby log, v along with tag is
encrypted under public key y. The tag, an arbitrary bit string, is needed for the composition
of such protocols, as we will see later. The ciphertext c is represented by (a function of) the veri-
fier’s transcript of this protocol, which we abbreviate by writing ¢ <~ VE (ElGamal, (g,y), tag){¢ :
v = g¢¢}, and is stored by V.

Together with the corresponding secret key (z = log,y in this example), transcript ¢ con-
tains enough information to decrypt the witness efficiently. We assume that the corresponding
decryption algorithm VD(EIGamal, (g, z), ¢, string) is subject to the condition that a tag match-
ing string is encrypted in ¢; VD outputs the witness in this case and L in all other cases.

We refer to Camenisch and Damgard [CD98] for further details of the verifiable encryption
scheme.



3.4 Escrow Schemes

A (verifiable) escrow scheme [ASWO00] is a protocol involving three parties: a sender S, a
receiver R, and a third party T, whose public key yr of an encryption scheme is known to S
and R. We require that 1”’s encryption scheme is semantically secure against adaptive chosen-
ciphertext attacks [DDN91]. S has a bit string a as private input. T’s private input is zp, the
secret key corresponding to yr. Furthermore, there is a public input string tag for S and R
that controls the condition under which T" may resolve the escrow of a.

The operation of an escrow scheme consists of two phases. In the first phase, only S and R
interact. If R accepts Phase I, then he is guaranteed to receive a in Phase IT as long as either
S or T is honest. That is, R either receives a single message from S that will allow him to
compute a (and hence T needs not participate in the protocol at all) or, if this does not happen,
R sends T a single request containing tag, to which T will reply with a.

Several escrow schemes with different tags may be run concurrently among the same par-
ticipants.

The security requirements of the escrow scheme are that a malicious R cannot gain any
information on a before Phase II. More precisely, for all bit strings a’, ", and tag, suppose
S runs Phase T of the escrow scheme with R* on tag and a € {a’,a"} chosen at random.
Subsequently R* interacts arbitrarily with 7" subject only to the condition that it never submits
a request containing tag to T'; the escrow scheme is secure if such an R* cannot distinguish
a = a' from a = a” with more than negligible probability.

A secure escrow scheme can be implemented easily using verifiable encryption and a cryp-
tosystem for T that is semantically secure against chosen-ciphertext attacks. We use the
Cramer-Shoup cryptosystem [CS98], denoted by CS, with public key y7 and private key zp.

In Phase I, S chooses u €g Z;, computes A = g”g1", and sends A to R. S and R also carry
out PK rep(g,g1,A) and

out + VE (CS,yr, tag){a,5: A= gaglﬂ}.

In Phase II, S sends a and u to R and R verifies that A = ¢%¢g;". If this check fails or if R did not
receive a message from S, then R sends to T the message (out, tag). T runs VD(CS, zp, out, tag)
and sends the output to R. In either case, R learns a.

It is easy to see that this is a secure escrow scheme using the security of CS and the properties
of PK and VE.

4 Verifiable Oblivious Transfer

This section describes a variant of oblivious transfer that is needed for our fair secure compu-
tation protocol. Oblivious transfer, proposed by Rabin [Rab81] and by Even, Goldreich, and
Lempel [EGL85], is a fundamental primitive for multi-party computation. In its basic incar-
nation as a one-out-of-two oblivious transfer, a sender S has two input bits by and by, and a
receiver R has a bit c¢. As a result of the protocol R should obtain b., but should not learn
anything about b.g; whereas S should not get any information about c.

A werifiable oblivious transfer (VOT) is an oblivious transfer on committed values, where
the sender S has made two commitments Ay and A;, containing two values ay and a1, and R
has made a commitment C', containing a bit ¢. The requirements are that R outputs a. without
learning anything about a.q1 and that S does not learn anything about c. (A committed oblivi-
ous transfer as described by Crépeau, van de Graaf, and Tapp [CvdGT95] is a similar protocol



that performs an oblivious transfer of commitments such that R ends up being committed to a;
Cramer and Damgard [CD97] give an efficient implementation for this.)

Suppose the commitments Ay, A;, and C are of the form B = ¢°¢;" for a randomly chosen
r € Zq and committed value b € Z,. In this section, we assume that corresponding commitments
are computed correctly from the inputs ag, a1, and c¢. In other words, a commitment oracle
receives ag and a; from S, chooses random to,t; € Zg, places Ag = g% g, and A; = g% g," in
the public input, and returns ¢y and ¢; to S privately; similarly, it receives ¢ from R, computes
C = g°¢1" using a random r € Zg,, places C in the public input and gives r privately to R.
This commitment oracle is an artificial construction for using VOT as part of a larger protocol.
Alternatively, one might assume that S and R generated and exchanged the commitments
beforehand, together with a proof that they are constructed correctly; this is indeed how VOT
is used in Section 6 below.

The following protocol is based on verifiable encryption and the oblivious transfer construc-
tions by Even et al. [EGL85] and Bellare and Micali [BM90]. Our notational convention for
such protocols is as follows. All inputs are written as argument lists in parentheses, grouped
by the receiving party; the first list contains public inputs, the second list private inputs of the
first party (.5), the third list private inputs of the second party (R), and so on.

Protocol VOT(g, g1, Ao, A1, C)(ag, a1, to, t1)(c,7)

1. S as encryptor and R as receiver engage in two verifiable encryption protocols

outy < VE (ElGamal,(g1,C),0){a, B : Ag = go‘glﬁ}
outy < VE (ElGamal, (g1, g),@){a,ﬁ A = go‘glﬂ}.
g

2. If R accepts both of the above protocols, he computes

a. = VD(EIGamal, (g1,7), out., ().

The above protocol uses R’s commitment C' directly as encryption public key and saves one
round compared to the direct adoption of the Bellare-Micali scheme. The way the commitment
C' is constructed from c ensures that R knows log, (C//g°) = r needed to decrypt out., but not
the discrete logarithm needed to decipher the other encryption.

Lemma 1. Under the DDH assumption, Protocol VOT is a secure verifiable oblivious transfer.

Proof. Correctness follows from the construction. It remains to show privacy for S and R. We
have to prove (1) that S gets no information about R’s bit ¢ and (2) that if R can compute
anything about a.g1 from the information from the protocol, then the verifiable encryption
scheme is insecure.

Part (1) is clear because S sees only an unconditionally hiding commitment of c.

Part (2) more involved. The properties of the verifiable encryption protocol guarantee
privacy for S if the underlying encryption scheme (here ElGamal) is semantically secure [CD98].
Consider the following game: R obtains g and gy, calls the commitment oracle with a bit ¢,
receives C' and r, and outputs two pairs (ag,a)) € G? and (a1,a}) € G2. Then a message mg
is set to ag or to af with probability one half each and, independently, m; is set to a; or to a
with probability one half each. Encryptions ElGamal(g;,C)(mg) and ElGamal(gy,C/g)(m;) are
computed and given to R. Finally, R outputs two elements dy,d; € G. We say that R wins the
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game if dy = mgy and d; = my. An R following the protocol can win the game with probability
one half by random guessing.

Next we show that if there is an R* that wins the game with non-negligible advantage over
random guessing, then there exists a distinguisher D (who also controls the commitment oracle)
for which ElGamal encryption is not semantically secure. This violates the DDH assumption.
Given an ElGamal public-key g,7, D sets ¢ = ¢y and g1 = ¢ and invokes R* on ¢,g;. It
simulates the commitment oracle and remembers the values ¢, C, and r such that C' = g°g".
Then R* provides (ag,ap) € G? and (a1,a}) € G?. We show that if ¢ = 0, then D distinguishes
encryptions of 1/a; and 1/a), and if ¢ = 1, then D distinguishes encryptions of ay and af, with
non-negligible probability.

D continues as follows:

1. If ¢ =0, then D is given (A, B), an ElGamal encryption of either 1/a; or 1/a) with public
key (g,7). D encrypts one of ag or af, with public key (g1, C) for the first encryption and
uses ciphertext (A, A™/B), supposedly with public key (g1, C'/g), for the second encryption
that it gives to R*.

2. If c =1, then D is given (A, B), an ElGamal encryption of ag or aj with public key (g, 7).
D uses ciphertext (A, A" B), supposedly with public key (g1, C), for the first encryption
and encrypts one of a; or a} with public key (g1,C/g) for the second encryption that it
gives to R*.

When R* answers with dy and dq, D outputs 1/dy if ¢ = 0 and d; if ¢ = 1. It is straightforward
to show that R* sees the same distribution as in Protocol VOT; therefore, D distinguishes
ElGamal encryptions with non-negligible probability by the assumption on R*. U

5 Verifiable Secure Function Evaluation

Verifiable secure function evaluation (VFE) is an interactive protocol between a circuit con-
structor A and an evaluator B. Both parties have as common public input values C4 and Cp,
representing commitments to their inputs. A has two private inputs strings: her input string
z 4 and a string r4 allowing her to open Cjy; likewise, B has two private input strings, zp and
rp. Their goal is to evaluate fp on the committed inputs such that B learns fp(za,2p).

We assume here, as already in Section 4, that all commitments are computed correctly
from the inputs, which in turn may have been chosen in an arbitrary way. More precisely,
assume A gives 14 to a commitment oracle, which computes C4 according to the specified
commitment scheme using the random bits r4 and returns C'4 and r4 (similarly for B). These
are the corresponding commitments used below. (Alternatively, one might assume that A and
B generated and exchanged correct commitments beforehand.)

Given concrete implementations of a parties A and B, a protocol execution between A and
B with inputs Cy,Cp, T4, 28,74, and rp defines naturally the views V4 and Vg of A and B,
respectively, which are families of random variables determined by the public input, A’s private
input, B’s private input, and the internal random coins. Moreover, if B is deterministic then
Vp is a random variable depending only on A’s coin flips.

Definition 2. A werifiable secure function evaluation protocol for a function fp: X4 x Xp —
Vg between A and B satisfies the following requirements:

Correctness: If A and B are honest and follow the protocol, then Vx4 € X4,Vzp € X and
corresponding commitments, B outputs fp(z4,2p) except with negligible probability.
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Soundness: VA* and V2% € X4 and corresponding commitments C%, if the protocol starts
with public inputs C%, Cp, then, except with negligible probability, B outputs fg(z%,zp)
or 1.

Privacy: We consider two cases, corresponding to cheating B and cheating A.

1. Privacy for A: VB* there exists a probabilistic polynomial-time algorithm (PPT)
SIMp- such that Vx4 € X4 and Vo € Ap with corresponding commitments C'4, C'g,

VB* (CA? CE, TA,TA, I*Ba T*B) é SIMB* (CAa CE» fB($A7 x*B)a x*B)

2. Privacy for B: YA* there exists a PPT algorithm SIM4- such that Vzp € Xp and
Vz? € X4 with corresponding commitments C%, Cp,

VA* (C;kla CBa xj}a 'rj;h B, TB) é SIMA* (027 CBa IZ)

The soundness condition binds A to her committed inputs. The corresponding binding for
B is part of the privacy condition for A, which ensures that B is committed to the value zp at
which he evaluates fp before the protocol starts. This is needed to use the one-sided concept
of VFE as a building block for optimistic fair secure computation below.

5.1 Overview of the Encrypted Circuit Construction

We give a brief description of our protocol and the “encrypted circuit construction”; it follows
the approach to secure function evaluation developed by Yao [Yao86], but uses public-key
encryption instead of pseudo-random functions for the sake of verifiability. Suppose A’s private

input is a binary string £4 = (za,1,...,%4,n,) and B’s private input is a binary string zp =
(B,1,-..,TBnp); assume further w.lLo.g. that fp is represented a binary circuit consisting of
NAND gates.

Protocol VFE(g,g1,C4,CB, fB)(A,74)(zB,TB)

V1. A produces an encrypted version of the circuit computing fp. The circuit consists of
gates and wires linking the gates. Except for input and output wires, each wire connects
the output of one gate with the input of one or more other gate(s). For each wire, A
chooses two random tokens sy and s1, representing bits 0 and 1 on this wire, and produces
unconditionally hiding commitments uy and u; to these tokens.

For each gate, A encrypts the truth table as follows: First, the bits are replaced by (new)
commitments to the tokens representing the bits. Next, for each row, a “row public key”
for encryption is computed and added to the table such that the corresponding secret key
can be derived from combining the two input tokens of the row. Finally, all four rows are
permuted randomly.

These tables and the commitments are sent to B as an ordered list such that B knows
which commitment represents token 0 or 1 etc. Moreover, A proves to B in zero-knowledge
that the commitments and the encrypted gates are consistent, ensuring (1) that the tokens
of the input and output wires are the same as those committed to in the truth table, (2)
that the secret key for each row of a gate is derived correctly from the input tokens of the
row, and (3) that each encrypted gate implements NAND.
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V2. For each row of each gate of the circuit, A and B engage in verifiable encryption of the
output token under the row public key.

V3. For each of her input bits, A sends to B the corresponding token and proves to him that
this is consistent with her input x4 committed in C4. Furthermore, B obtains the tokens
representing his input bits through np verifiable oblivious transfers from A to B and A
opens all the commitments of the output wires.

V4. Once B has obtained all this information, he is able to evaluate the circuit gate by gate on
his own.

Suppose w.l.o.g. the circuit consists of n NAND gates Gi,...,G, and n + n4 + np wires
Wi, ..., Whtn,+ng and has ny 4+ np inputs and np outputs. Wires Wy, ..., W, are output
wires of the gates Gi1,...,G,. Wires Wy, 11,..., Wyin, are input wires of A and Wy4n ,41,---,
Whtns4np are input wires of B. Wires Wy,_,,,41,..., W, are the output wires of the circuit;
except for those, any wire is an input to at least one gate.

The commitment to A’s input x4 is C4 = (Ca1,...,Cap,), where for i =1,...,n4, a bit
commitment

Ca; =g g™

has been constructed using a random r4; € Z, and r4 = (ra1,...,74,n,) is a private input
of A.

Similarly, the commitment to B’s input zp is Cp = (Cp,a,...,CBny), where for i =
1,...,np, a bit commitment

xT i T i
Cpi=g"P'g"?"

has been constructed using a random rp; € Z4 and rg = (rg1,...,"Bn,) i a private input
of B.

The following subsections describe Steps V1-V4 in more detail. Throughout the description
we assume that B outputs L and halts as soon as he rejects any PK or VE protocol.

5.2 Constructing the Committed Circuit (Step V1)

Let 7,0 : {1,...,n} = {1,...,n + na + np} be such that j(:) and [(i) denote the index of the
left and right input wire of gate G;. A carries out the following step to obtain an encrypted
circuit:

1. For each wire W; choose s;0,5,1 €r Z4 as tokens representing 0 and 1. Next, choose
7i,0,7i,1 €ER Zq and compute the commitments

S T
uig = g"°gp"°

S; T
ui,l — g z,lgl 1,1_

2. For each gate G; construct the committed truth table T; as follows:

(a) Choose twelve entries of a 4 X 3 matrix R; randomly from Z,. The commitment table
T; contains information-theoretic commitments to all input and output tokens, plus
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the encryption public key, derived from the input tokens, in the last column:

g* im0 g BillD)  gsi0 g Ri(12)  gsing Ri(1,3)  g85(i).081(0).0

_ P im0 g B gsiig g Ri(2.2)  gsing Ri(2,3)  gsi@,081),1
i = gsf(i)’lg1 R;(3,1) gs’(i)’°g1 R;(3,2) gsi’lg1Ri(3’3) gsj(i),l 51(i),0
o1 g Bk gsiina g Ri(2) - gsiog Ri(43) g8 asui

(b) Choose a random permutation m; : {1,2,3,4} — {1,2,3,4} and obtain T; by per-
muting the rows of T; accordingly:

T;(m) = T;(w(m))
form=1,...,4.

The list of commitments

CfB = (ul,Oaul,la e 7Un—l—nA-l—nB,OaUn-i—nA-i-nB,laTla s 7Tn)

is sent to B. Next, A proves to B for each wire W; that the tokens committed to in w; g, u;1
are different mod ¢:

PK tokens(g, g1, 6i,0,ui,1)
{o,p:9 = (uip/uin)’a”}.

Furthermore, for each gate G; A proves to B (1) that the public key attached to each row is
constructed correctly and (2) that T; indeed implements all four rows of the NAND truth-table.
Let

Wi = (6,05 Wi, 15 Uj(3),00 Wji(i),15 Yi(i),05 Yi(i),1)
denote the list of commitments of the wires incident to G;. The first part is done with
PK gate-keys(g, g1, T;, W5)
{mul(g,01, 71,1, T1(1,2), T3(1,4) A mul(g, 91, T5(2,1), T4(2,2), Ty (2, 4)
Amol(g,91, Ti(3,1), T5(3,2), T(3,4)) A mul(g, 90, Ti(4, 1), T:(4,2), T:(4,4)) };

it shows that the key (committed to) in T'(m,4) is the product of the two tokens in T'(m, 1)
and T(m,2). The second part is done with

PK gate-nand(g, g1, T, W)
{nand0,0(97917,1—'i7 Wz) A nandO,l(ga glaT,ia WZ)

Anandio(g,91, T Wi) A nandy,i(g,91, T, Wi) },
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where the following protocol is used:

PK nand, (g, 91, T;, Ws)

{a17/8177laul7V17p170'177—171917 s 70547/847747,u47U47p470'477'47194 :

(uj(iya = 9° 91 ANy = 97 017 AN aze) = 97 91!
ATi(1,1) = g7 1™ AT(1,2) = g7 91" ATi(1,3) = g™ 1)
V (w0 = 9° 91'/2 ANy = g7 917 AN (aze) = 991"
ANT;(2,1) = g% 1™ ATi(2,2) = g1 A T;(2,3) = ¢°917?)
V (w0 = 9° 91 "N uy e = 90 AN ax) = 95 91"
ATi(3,1) = g% g™ AT;(3,2) = g1 ATi(3,3) = g% 17)

V (W) = 9791 Ny p = 97 917 A azn) = 9% 91"
ANTi(4,1) = g% ™ AT;(4,2) = g7 1" AT;(4,3) = g™ 1”") }

PK nand,; shows that some row of the permuted encrypted truth table T; with token com-
mitments W; corresponds to the row in the cleartext truth table with input bits a and b and
output bit a A b.

5.3 Verifiably Encrypting the Gate Output Tokens (Step V2)

For each gate G;, parties A and B carry out the following four verifiable encryptions protocols:

vy « VE (ElGamal, (g,T;(1,4)),0){c, 8 : T;(1,3) = g%9:"}
vz « VE (ElGamal,(g,T;(2,4)),0){c, B : T;(2,3) = g%9:"}
vis < VE (ElGamal,(g,T;(3,4)),0){a,f : Ti(3,3) = ¢%¢:°}
vi4 < VE (ElGamal,(g,T;(4,4)),0){, 8 : T;(4,3) = g°¢:"}

5.4 Transferring the Input and Output Tokens (Step V3)

For each input wire W, ;; of A, she sends the token representing = 4; to B; that is, A sends
Sptio ifxa; =0
W4 = .
Spying fxa;=1
fori =1,...,n4 and carries out
PK input(g, g1, CAis Wntiy Un+i,0, Un+i,1)
{‘plapla(pZMOQ :

(Cai= 91" Aunsio/g""t = g1”) V (Caifg = 31" Nuppin /9“1 = Qlw)}'

This ensures B that w,; is the token representing A’s input x4 ; as committed to in Cy ;.
Next, A opens the commitments to the tokens of the circuit output wires; that is, A sends
B the values s; 0, 5i1,7i0,7i,1 fori=n—no+1,...,n.
Finally, A and B run np verifiable oblivious transfer protocols: for each input wire W;, 1, , 4
of B, A offers tokens s;,n ,+i,0 and s,4p 4,1 committed to in w, 4y, 44,0 and vy 4,441, and B
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chooses to receive the one representing the bit he committed to in Cp;. That is, they engage
in

VOT(g, g1, Untna+i,0 Untna+i,1s CB.i) (Sntna+i,05 Sntna+i,ls Tntna+i,05 Tntna+i,1) (TBis TB,i)

in parallel for s = 1,...,np. Denote the values that B receives by wpin,+1,.--, Wnins4npg-

5.5 Evaluating the Circuit (Step V4)

If B has accepted all the proofs and verifiable encryption protocols, he is convinced that the
encrypted circuit construction is correct and he has obtained all necessary information for com-
puting the value of fp by himself. He proceeds by evaluating the circuit gate by gate, computing
a token w; for each gate G;. Note that B already knows the input tokens wyy1, ..., Wnin,+ng-
Suppose G; has not been evaluated yet and B knows the tokens w;(;) and wy;). Then B

L. computes s; = wjywy;) mod g;
2. finds index m € {1,...,4} such that g% = Tj(m,4); and
3. computes w; = VD(EIGamal, (g, 3;), vim, 0).

Once all gates are evaluated, B also knows the tokens of the output gates G,_ny41,...,Gn. B
decodes them by letting o; € {0, 1} such that w; = s;,, and his output is O = (0 —ngy+1,---0n).

5.6 Analysis

The round complexity of the protocol is minimal: because the proofs of knowledge and verifiable
encryptions have only three moves and can be composed in parallel, all steps in the verifiable
secure function evaluation protocol can be arranged in three moves only. Furthermore, some
steps could be simplified by omitting multiple commitments to the same value.

The security analysis is based on the following lemma.

Lemma 2. Under the DDH assumption, B* can decrypt at most one row of the truth table for
each gate and cannot compute any further information from the other three rows.

Proof (Sketch). The proof is by induction on the structure of the circuit. Consider an input gate.
The properties of VOT ensure that if the sender inputs two random tokens, the receiver gets
one but cannot compute further information about the other token under the DDH assumption.

Consider an arbitrary gate G; and assume the claim holds for G; and G; that feed into G;.
Then B* knows at most one of the four possible token products and this allows to decrypt one
row. The semantic security of the remaining three encryptions is guaranteed under the DDH
assumption; in other words, B* cannot distinguish which tokens are encrypted in the other
three rows.

Apart form the public keys ¢g%i«.b, the gate tables contain only information-theoretic com-
mitments and they do not reveal any information about the permutations or the cleartext bits
associated with a particular row. The tokens s; 4, s;, occurring in the public keys of G; (and
possibly in other gates in the same “layer” of the circuit) correspond to z;,y; in the distribu-
tions My, My from Section 3.1. Hence, they are indistinguishable from random elements under
the DDH assumption. O

Theorem 3. Under the DDH assumption, Protocol VFE from Sections 5.1-5.5 is a verifiable
secure function evaluation protocol.
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Proof (Sketch). We have to show correctness, soundness, and privacy for A and for B. Correct-
ness is clear from the construction of the protocol. Soundness follows from the soundness of the
proofs of knowledge, of the verifiable encryptions, and of the VOT protocols, which together
enforce that B obtains fp only evaluated at A*’s input committed to by C*.

Privacy for A: this is the most interesting part because it involves showing that B* does
not learn more than what follows from fp(x4,2%). To this end, we describe a simulator SIMp-
that has black-box access to B*; the simulator’s output is computationally indistinguishable
from B*’s view in a real protocol execution. The idea behind the simulator is that B* knows
only one “computation path” through the circuit and learns nothing about the values involved
except for the output gates. The simulator thus interacts with B* for an arbitrary input z 4
of A; it only has to make sure that B*’s output will be fg(za,z}).

More precisely, SIMp- is the following PPT algorithm. It takes as input the function value
fB(z4,2}). From the commitment oracle it obtains B*’s input z7;, chooses an arbitrary value
Z 4 for the input of A and executes the Steps 1-4 (Sections 5.2-5.5) exactly as A with the
following exceptions:

1. In Step V1 (Section 5.2) for i = n —np+1,...,n, the simulator uses the same token s; ,,
in all commitments T;(1, 3), T;(2, 3), T;(3, 3), and T;(4, 3), where o; is the output bit of fp
that SIMp~ has been given. Consequently, the simulator has to forge the proofs gate-nand
for these gates, which it can do by exploiting the simulatability of these protocols.

2. Analogously, in Step V2 (Section 5.3) for i = n — np + 1,...,n, the simulator encrypts
the same s; ,, in all four verifiable encryptions.

3. In Step V3 (Section 5.4), the simulator behaves like A except for PK input; here it has to
forge the proof of the correspondence between A’s input commitment C'4 and Z4 chosen
by the simulator, again by exploiting the simulatability of the proof.

It remains to argue that B*’s view when interacting with the real A and the view provided
by SIMp+ are computationally indistinguishable. Because the whole construction uses uncon-
ditionally hiding commitments and all proofs are zero-knowledge, the only place where there
could be a difference is the encryption of the output tokens of the output gates. However, by
Lemma, 1 this is not the case and we have established privacy for A.

Privacy for B: it suffices to consider VOT, which is the only step where B ever sends
information to A that could compromise B’s inputs. Protocol VOT of Section 4 provides even
information-theoretic privacy for B in the role of R and the proofs can be simulated by the
standard techniques. O

Remark. The invocations of Protocol VOT at the end of Step V3 deserve special attention
because of the way Protocol VFE is used in the next section. Step 1 of each VOT involves two
verifiable encryptions with the circuit constructor A as prover and the circuit evaluator B as
verifier. These proofs may also be verified by an independent third party 7', which B trusts
to act as verifier. More precisely, because the verifiable encryption public keys are also known
beforehand (they are derived from the commitments), the VOT protocol may, equivalently,
consist of an interaction between A and T, followed by interaction between T to B, where T
sends to B the transcript of its interaction with A. Such a T' may not know how to decrypt the
transferred values.
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6

Optimistic Fair Secure Computation Protocol

We are now ready to describe our protocol for optimistic fair secure two-party computation. In
short, the protocol consists of two intertwined executions of the verifiable secure function evalu-
ation protocol from the previous section, where the output tokens are not directly revealed, but
mutually escrowed with 7T first and opened later. Recall that optimistic fair secure computation
involves three parties A, B, and T, in the asynchronous communication model of Definition 1.

In the following we use Protocol VOT from Section 4 and the secure escrow scheme based

on Cramer-Shoup encryption from Section 3.4.

Common inputs are a function f : X4 x Xp = Y4 X Vg, T’s public key yr, and generators

g,91 € G. The private input of A is ©4 € X4, the private input of B is zp € X, and the
private input of T is the secret key zr corresponding to yr.

Protocol FAIRCOMP(g, g1, f,yr)(za)(xp)(27)

F1.

F2.

F3.

F4.

A chooses 74,1,...,74n, €ER Zg computes the commitments
Ca=(Capy...,Capy) = (g"Mrg" ..., g"4mag "Ama),
sends C4 to B, and runs with B
PK {1, B, angs By : Ca = g% g1 Ao A Capy = g*magi7a)}
If B rejects any proof, it outputs 1 and halts.

B chooses rg 1,...,7"Bng €R Zg, computes the commitments

Cs=(CBas..,Cng) = ("2 q1"2, ..., ¢"P" B g "B B),
sends Cpg to A, and runs with A
PK {a1,B1,-. -, 0nyyBny : Co1 = g% @17 Ao AChpy = g™ B g17m8)}
If A rejects any proof, it outputs | and halts.

A and B invoke a modification of Protocol VFE(g,g1,Ca,Cp, fB)(za,74)(zB,7B), Where
they replace opening the commitments of the output tokens by escrowing them with T'.
That is, in Step V3, A and B run Phase I of the escrow scheme for each of the values
51,05 8,1, 73,0, 73,1 tagged with C4||C|| fgl|i for i = n—np+1,...,n in the circuit computing
fB. They interrupt Protocol VFE after Step V3. (Note that T has not been involved so
far.)

If this fails, B simply outputs | and halts.

B and A invoke a modification of Protocol VFE(g, g1,Cp,Ca, fa)(zp,78)(xA,74), where
they replace opening the commitments of the output tokens by escrowing them with T'.
That is, in Step V3, B and A run Phase I of the escrow scheme for each of the values
51,05 8i,1, 73,0, 73,1 tagged with C4||Cgl|falli for i = n—no+1,...,n in the circuit computing
fa. They interrupt Protocol VFE after Step V3.

If this fails, A invokes Protocol abort with T'. If T answers abort, then A outputs L and
halts. If T answers resolvel||transcript then A completes the VFE protocol computing f4
as read from transcript (continuing with Step V3), outputs O 4, and halts.
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F5. A and B continue with Phase IT of the escrow protocols started in Step F3. According to
this, A sends B the corresponding messages, B checks their contents, and if a check fails or
if some message does not arrive, B invokes Protocol B-resolve with T'. If T answers abort,
then B outputs | and halts.

If T answers resolve||transcript then B completes the VFE protocol computing fp as read
from transcript (continuing with Step V3), outputs Op, and halts.

Otherwise B resumes Protocol VFE started in Step F3 with Step V4 and obtains Op.

F6. B and A continue with Phase IT of the escrow protocols started in Step F4. According to
this, B sends A the corresponding messages. Then B outputs Op and halts.

A checks the messages received from B, and if a check fails or if some message does not
arrive, A invokes Protocol A-resolve with T'. If T' answers abort, A outputs L and halts.

If T answers resolve|| transcript then A completes the VFE protocol computing f4 as read
from transcript from Step V3, outputs O4, and halts.

Otherwise A resumes Protocol VFE started in Step F4 with Step V4, outputs O4, and
halts.

We now describe the sub-protocols for aborting and resolving. They also take place in the
model of Definition 1, where all parties maintain internal state (private inputs are sometimes
mentioned nevertheless). In particular, 7' maintains a list of tuples internally and processes
all abort and resolve requests atomically. Recall that the transcript of a party of a protocol
consists of all messages received or sent by this party.

Protocol abort is a protocol between A and T it is invoked by A with inputs C'4 and Cp.
Protocol abort(ga g1, fa yT)(OAa OB)()
1. A sends the message (abort,C4||Cgl f) to T

2. If T's internal state contains an entry of the form (Cy4||Cg||f, string), then T returns to A
the message string.

3. Otherwise, T' adds the tuple (C4||Cp||f,abort) to its internal state and returns to A the
message abort.

Protocol B-resolve is a protocol between B and T it is invoked by B with input a string
transcript, containing B’s complete transcript of Steps F1-F4 in Protocol FAIRCOMP, which
includes also C4 and Cp.

Protocol B-resolve(qg, g1, f,yr)(transcript)(zr)

1. B sends the message (B-resolve, transcript) to T.

2. If T's internal state contains an entry of the form (C4||/Cg||f, string), then T returns to B
the message string and halts.

3. Otherwise, B and T run Steps V1-V3 of Protocol VFE(g,¢1,Cp,Ca, f4)(zp,r5)(0) un-
modified with B in the role of circuit constructor (VFE-)A and T in the role of circuit
evaluator (VFE-)B. They stop after Step 1 in Protocol VOT, before T" would have to
decrypt the tokens. (Thus, T's inputs to the protocol may be empty.)

If T rejects any of the proofs by B, then T adds the tuple (C4||Cgl|f, abort) to its
internal state and returns to B the message abort.
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4.

Otherwise, T reads the transcript sent by B and carries out its part of Phase II for the
escrows of the tokens on the output wires for fp from Step F3. T opens the escrows subject
to all tags matching Cy4||Cgl|fgl|s- In other words, T' runs the decryption algorithm
VD(CS, zr,...) and returns the outputs to B if all tags match, or L if one or more
decryptions yield L.

T computes the transcript ¢ of Protocol B-resolve and adds (C4||Cg||f, resolvel|t) to its
internal state.

Protocol A-resolve is a protocol between A and T'; it is invoked by A with input a string
transcript, containing her complete transcript of Steps F1-F3 in Protocol FAIRCOMP, which
includes also C'4 and Cp.

Protocol A-resolve(qg, g1, f,yr)(transcript)(zr)

1.
2.

A sends the message (A-resolve, transcript) to T.

If T’s internal state contains an entry of the form (C4||Cg||f, string), then T returns to A
the message string and halts.

. Otherwise, A and T run Steps V1-V3 of Protocol VFE(g, g1,Ca,Cg, fB)(zA,74)(0) un-

modified with A in the role of circuit constructor (VFE-)A and T in the role of circuit
evaluator (VFE-)B. They stop after Step 1 in Protocol VOT, before T" would have to
decrypt the tokens. (Thus, T's inputs to the protocol may be empty.)

If T rejects any of the proofs by A, then T adds the tuple (C4||Cglf, abort) to its
internal state and returns to A the message abort.

. Otherwise, T reads the transcript sent by A and carries out its part of Phase II for the

escrows of the tokens on the output wires for f4 from Step F4. T opens the escrows subject
to all tags matching C4||Cgl|falli. In other words, T' runs the decryption algorithm
VD(CS, zp,...) and returns the outputs to A if all tags match, or L if one or more
decryptions yield L.

T computes the transcript ¢ of Protocol A-resolve and adds (C4||Cg||f, resolve||t) to its
internal state.

Remarks about the protocol.

1.

3.

Protocol FAIRCOMP as described above consists of seven rounds (14 moves). By pipelining
the execution of Steps F1-F4 one can reduce this to five rounds (ten moves). Using non-
interactive proofs in the random oracle model, this could even be reduced further to three
rounds (six moves).

. A major difference between the resolve protocols here and those used for optimistic fair

exchange of signatures [ASWO00] is that T' cannot directly replace the other party here.
Whereas in a fair exchange of digital signatures, 7' can verify that the party requesting
to resolve supplies a correct signature, 7" has to re-run almost the complete VFE protocol
here. After T has done this, the other party is able to complete VFE and its part of the
computation from this transcript.

T does not have to know any secrets of the other party for re-running VFE. For instance,
in Step 3 of Protocol B-resolve, when B and T run Protocol VFE for f4 (and T plays
the role of A), T' does not have to know anything about A’s secret input 4 besides the
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commitments C4; this follows because the VFE protocol is stopped after Step V3 and
because of a special feature of the underlying Protocol VOT, in which the commitments
are used for encryption.

Theorem 4. Under the DDH assumption, Protocol FAIRCOMP above is an optimistic fair
secure computation protocol.

Proof (Sketch). We have to consider zero, one, or two corrupted parties and show indistin-
guishability according to Definition 1. Note that these three cases can be interpreted to establish
correctness, fairness (assuming uncorrupted T'), and privacy (for A or B) of a protocol.

No Corruptions (Correctness). It follows from the construction and from the remarks
above that for any S, the protocol between A and B terminates and they output the correct
results except with negligible probability. Moreover, if S delivers all messages instantly, then
T is never contacted and the conditions for an optimistic protocol are met.

One Corrupted Party (Fairness). Consider a given real-world adversary C' that controls
B and S (although they are absorbed in C, we sometimes use B* and S* for the corrupted
parties).

We describe a simulator that transforms C into an adversary C for the ideal process and
emulates C’s behavior in the ideal process with access to U. The simulator has oracle access
to (', including the capability to rewind C. The simulator uses C' to deliver messages through
S*, including messages to B* supposedly originating from A and T. We adopt a simplified
terminology below, however, and just say that “A sends a message to B*” etc. The simulator
also communicates (externally) with U in the ideal process, playing the role of B; note that the
ideal-process implementations of A and T are fixed as in Definition 1 and beyond the control
of the simulator.

The simulator is started on inputs f,yr,g,91, and zg. According to our assumptions, it
also knows the discrete log of g1 with respect to ¢ and zr, the private key corresponding to yr.

The simulator initializes B* with g, g1, f,yr, and zp and starts §*. Then it interacts with
C by running copies of A and T internally, which communicate via §*. They behave according
to the protocol specification, except for the following changes:

— if C halts before A completes Step F2, send L to U from B;

— in Step F2, when B* has completed the proof, rewind C to the beginning of F2, let A
provide different challenges for B*, and extract z7% from B*’s answer;

— when T adds the tuple (C4||Cgl|f, abort) to its state, send L to U in the ideal process;

— in Step F3, run the simulator provided by the VFE protocol (Theorem 3) on behalf of A
on zr’; and an arbitrary value 74, but encrypt arbitrary values for the escrowed output
token commitments; simulate the corresponding proofs for VE;

— in Step F'5, when A has to reveal the tokens on the output wires, determine if message =73
(from Step F2) was already sent to U in the ideal process; if yes, retrieve U’s answer and
if not, send z}; to U and receive fg(z,%); then compute suitable commitment openings
that a honest B would decode to fp(z4,z}) by exploiting the knowledge of the relation
between g and g1;
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— in Protocol B-resolve, Step 4, when T has to decrypt the escrowed tokens on the output
wires for fp, determine if message z7}; (from Step F2) was already sent to U in the ideal
process; if yes, retrieve U’s answer and if not, send z7; to U and receive fg(za,z%); then
compute suitable commitment openings that a honest B would decode to fp(z4,z}) by
exploiting the knowledge of the relation between g and g;.

The simulator runs this modified protocol until C' generates an output and halts; then it copies
C’s output to its own output for the ideal process and halts as well.

We have to argue that the simulator produces only one message to U from B and that
it induces a distribution of the ideal-process outputs that is indistinguishable from that of the
real-world protocol outputs. Because T processes requests atomically, it follows from inspection
of the protocol that it generates at most one message for U per invocation of T and 1 is sent
at most once. Two messages # | might be generated when running T' in B-resolve and when
running A in Step F5; however, because of the simulator’s check for previous messages to U, it
will not send 7 twice. Moreover, if A has received abort from 7', it will halt before reaching
Step F5.

It follows now from the construction of the simulator, the security of the VFE protocol, the
security of the escrow scheme, and the fact that all commitments hide their inputs, that the
joint output of in the ideal process is indistinguishable from the output in the real world.

The simulator for A uses essentially the same method and is left as an exercise for the
reader.

Two Corrupted Parties (Privacy). Consider a given real-world adversary C' that controls
B, T, and S (the same notational conventions apply as above).

We describe a simulator that transforms C into an adversary C for the ideal process and
emulates C’s behavior in the ideal process with access to U. The simulator interacts with C
(allowing rewinding) and delivers messages through S*. The simulator plays the roles of B and
T to U in the ideal process.

The simulator is started on inputs f,yr,g,91, and zg. According to our assumptions, it
also knows the discrete log of g1 with respect to g and zr, the private key corresponding to yr.

The simulator initializes B* with g, g1, f, yr, and zp, initializes T with g, g1, f, yr, and zp,
and starts S*. Then it interacts with C' by emulating A according to the protocol specification,
except for the following changes:

— if C halts before A completes Step F2, send L to U from B and by = b = o from T

— in Step F2, when B* has completed the proof, rewind C to the beginning of F2, let A
provide different challenges for B*, and extract z7% from B*’s answer;

— in Step F3, send z% to U from B and bg = ¢ from T'; receive fp(z4,z%) from U and run
the unmodified simulator provided by the VFE protocol (Theorem 3) on behalf of A on
= and an arbitrary value Z 4 (using correct values in the escrows here);

— in Steps F3-F6, when A receives a message that causes it to output a value vy € Y4 U{ L},
send by = vy to U.

The simulator runs this modified protocol until C' generates an output and halts; then it copies
C’s output to its own output for the ideal process and halts as well.

It is easy to see that the simulator produces one message to U from B and two messages
from T and that it induces a distribution of the ideal-process outputs that is indistinguishable
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from that of the real-world protocol outputs. Moreover, the simulator causes A to generate the
same output as A in the real world.

It follows now from the construction of the simulator, the security of the VFE protocol, and
the fact that all commitments hide their inputs, that the joint output of in the ideal process is
indistinguishable from the output in the real world.

The simulator for A and T uses essentially the same method and is left as an exercise for
the reader.
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