
Optimisti
 Fair Se
ure Computation

Christian Ca
hin Jan Camenis
h

IBM Resear
h, Zuri
h Resear
h Laboratory

CH-8803 R�us
hlikon, Switzerland

f

a,j
ag�zuri
h.ibm.
om

May 29, 2000

Abstra
t

We present an eÆ
ient and fair proto
ol for se
ure two-party 
omputation in the optimisti


model, where a partially trusted third party T is available, but not involved in normal pro-

to
ol exe
utions. T is needed only if 
ommuni
ation is disrupted or if one of the two parties

misbehaves. The proto
ol guarantees that although one party may terminate the proto
ol

at any time, the 
omputation remains fair for the other party. Communi
ation is over an

asyn
hronous network. All our proto
ols are based on eÆ
ient proofs of knowledge and

involve no general zero-knowledge tools. As intermediate steps we des
ribe eÆ
ient veri�-

able oblivious transfer and veri�able se
ure fun
tion evaluation proto
ols, whose se
urity is

proved under the de
isional DiÆe-Hellman assumption.

1 Introdu
tion

Se
ure 
omputation between distrusting parties is a fundamental problem in 
ryptology. Sup-

pose two parties A with input x and B with input y wish to jointly 
ompute a fun
tion f(x; y)

of their inputs without revealing anything else than the result. It is known that any fun
-

tion 
an be 
omputed se
urely and with only few rounds of intera
tion under 
ryptographi


assumptions [Yao86, GMW87, Gol98℄.

However, if the 
omputation should also be fair and give a guarantee that A learns f(x; y) if

and only if B learns f(x; y), two-party proto
ols inevitably 
ome at the 
ost of many rounds of

intera
tion [Yao86℄. The reason is that a mali
ious party 
ould always quit the proto
ol early,

e.g., as soon as it obtains the information it is interested in, and the other party may not get

any output at all. The only way to get around this are several rounds of intera
tion, in whi
h

the result is revealed veri�ably and gradually bit-by-bit so that a 
heating party has an unfair

advantage of at most one bit [Yao86, BCDvdG88, Cle86, BGMR90℄.

This work presents an eÆ
ient proto
ol for fair se
ure 
omputation using a third party T to

ensure fairness, whi
h is not a
tively involved if A and B are honest and messages are delivered

without errors. This approa
h has been proposed for fair ex
hange (e.g., of digital signatures)

by Asokan, S
hunter, Shoup, and Waidner [ASW97, ASW00℄ and is known as the optimisti


model. Its main bene�ts are a small, 
onstant number of rounds of intera
tion between A

and B, independent of the se
urity parameter, and the minimal involvement of T . Our se
ure


omputation proto
ol maintains the priva
y of one party's inputs even if T should 
ollude with

the other party (unlike [ASW00℄). We a
hieve this by 
ombining Yao's te
hnique for se
urely

evaluating a 
ir
uit with eÆ
ient zero-knowledge proofs.

1



We 
onsider a
tually a more general model of fair se
ure 
omputation, in whi
h there are

two fun
tions, f

A

(x; y) and f

B

(x; y), and A should learn f

A

(x; y) if and only if B learns f

B

(x; y),

evaluated on the same inputs.

A key feature of our proto
ol is that it works in an asyn
hronous environment su
h as the

Internet, where messages between A and B might be lost or reordered.

Our proto
ol is eÆ
ient in the sense that its 
omplexity is dire
tly proportional to the size

of the 
ir
uit 
omputing f and does not involve large initial 
osts. All our zero-knowledge proofs

and veri�able primitives are based on proofs of knowledge about dis
rete logarithms, without

resorting to expensive general zero-knowledge proof te
hniques involving NP-redu
tions. Our

solution is of pra
ti
al relevan
e for 
ases where A and B want to 
ompute f with a small


ir
uit, for example, to evaluate the predi
ate x

A

� x

B

(the \millionaire's problem" [Yao82℄),

whi
h has appli
ations to on-line bidding and au
tions [Ca
99, NPR99℄.

Baum and Waidner [BW98℄ and Mi
ali [Mi
98℄ have observed before that fair two-party


omputation is feasible in the optimisti
 model. They used general tools and did not fo
us on

eÆ
ient proto
ols for small 
ir
uits, however.

1.1 Overview

We build the fair se
ure 
omputation proto
ol in several steps and use intermediate 
on
epts

and proto
ols that may be of independent interest.

Re
all Yao's approa
h to se
ure fun
tion evaluation [Yao86℄: The 
ir
uit 
onstru
tor A

s
rambles the bits on the wires of the 
ir
uit by repla
ing ea
h with a random token, en
rypting

the truth tables of all gates a

ordingly su
h that two tokens together de
rypt the 
orresponding

token on the outgoing wire, and providing the 
leartext interpretation for the tokens appearing

in the 
ir
uit output. It sends the en
rypted 
ir
uit to B (the 
ir
uit evaluator), who obtains

the tokens 
orresponding to his input bits using one-out-of-two oblivious transfer; this ensures

that he learns nothing about other tokens. B is then able to evaluate the 
ir
uit and to 
ompute

the output on his own. Note that se
ure fun
tion evaluation is one-sided be
ause only B learns

the output.

Our fair se
ure 
omputation proto
ol, presented in Se
tion 6, 
onsists of two intertwined

exe
utions of veri�able se
ure fun
tion evaluation (VFE) on 
ommitted inputs between A and

B, plus re
overy involving T . Veri�able se
ure fun
tion evaluation is a proto
ol (whi
h we

de�ne in Se
tion 5) extending Yao's 
onstru
tion that 
omputes a given fun
tion on 
ommitted

inputs of A and B.

In order to obtain the initial tokens, A and B use a veri�able oblivious transfer (VOT)

proto
ol that performs a one-out-of-two oblivious transfer on 
ommitted values (as de�ned in

Se
tion 4).

However, this solution is not suÆ
ient for fair se
ure 
omputation in the optimisti
 model.

We need to es
row some information in the VFE 
onstru
tion su
h that a third party T 
an

open the result of the 
omputation in 
ase the sender refuses to 
ontinue or some of its messages

are lost. (The es
row proto
ol is de�ned and des
ribed in Se
tion 3.4.)

These proto
ols are based on proofs of knowledge about dis
rete logarithms and veri�able

en
ryption. Our notation for proofs of knowledge is introdu
ed in Se
tion 3.2 and allows

to des
ribe modular 
omposition of proofs. For veri�able en
ryption we use the methods of

Camenis
h and Damg�ard [CD98℄ as des
ribed in Se
tion 3.3. Our model for optimisti
 fair

se
ure two-party 
omputation is formalized in Se
tion 2.

2



1.2 Related Work

Beaver, Mi
ali, and Rogaway [BMR90℄ give a 
onstant-round 
ryptographi
 proto
ol for multi-

party 
omputation. Its spe
ialization to three parties is related to our three-party model in

that it guarantees fairness against one mali
ious party, but T needs to be always involved.

Fair proto
ols for two-party 
omputation (and extensions to multiple parties) have previ-

ously been investigated by Chaum, Damg�ard, and van de Graaf [CDvdG88℄, by Beaver and

Goldwasser [BG89℄, and by Goldwasser and Levin [GL91℄. They 
ombine oblivious 
ir
uit eval-

uation with gradual release te
hniques to obtain fairness, but without fo
us on parti
ularly

eÆ
ient proto
ols.

Feige, Kilian, and Naor [FKN94℄ study an extension of the multi-party se
ure 
omputation

models using a third party T , whi
h re
eives a single message, does some 
omputation, and out-

puts the fun
tion value, but does not learn anything else about the inputs. Under 
ryptographi


assumptions, every polynomial-time 
omputable fun
tion 
an be 
omputed eÆ
iently (i.e., in

polynomial time) in their model. In our model, T is not involved in regular 
omputations and

only used in 
ase some party misbehaves.

In the multi-party setting, the idea of fast-tra
k 
omputation has also been introdu
ed and

gives proto
ols that run fast if all parti
ipants are honest, but may resort to slower and more

se
ure methods should a 
heater be dete
ted [GRR98℄. However, one di�eren
e between the

optimisti
 model as used here and fast-tra
k 
omputation is that T is a priori assumed to be

honest and A or B may fail, whereas in the multi-party setting an unknown subset of the parties

misbehaves.

2 Optimisti
 Fair Se
ure Two-Party Computation

2.1 Notation

The se
urity parameter is denoted by k. The random 
hoi
e of an element x from a set X with

uniform distribution is denoted by x 2

R

X . The 
on
atenation of strings is denoted by k.

The statisti
al di�eren
e between two probability distributions P

X

and P

Y

is denoted by

jP

X

� P

Y

j. A quantity �

k

is 
alled negligible (as a fun
tion of k) if for all 
 > 0 there exists a


onstant k

0

su
h that �

k

<

1

k




for all k > k

0

. The formal se
urity notion is de�ned in terms of

indistinguishability of probability ensembles indexed by k, but extension from a single random

variable to an ensemble is assumed impli
itly. Two probability ensembles X = fX

k

g and Y =

fY

k

g are 
alled 
omputationally indistinguishable (written X




� Y ) if for every algorithm D that

runs in probabilisti
 polynomial time (in k), the quantity jProb[D(X

k

) = 1℄�Prob[D(Y

k

) = 1℄j

is negligible.

2.2 De�nition

The parties A, B, and T are probabilisti
 intera
tive Turing Ma
hines (PITM) that 
ommuni-


ate via se
ure 
hannels in an asyn
hronous environment. Let f : X

A

� X

B

! Y

A

� Y

B

be a

deterministi
 fun
tion with two inputs and two outputs that A and B want to evaluate, possibly

using T 's help. Suppose f 
an be evaluated by a polynomial-sized 
ir
uit in k (the extension

to probabilisti
 fun
tions is straightforward and omitted). Let f

A

: X

A

�X

B

! Y

A

denote the

restri
tion of f to A's output and let f

B

: X

A

� X

B

! Y

B

denote the restri
tion of f to B's

output. A has private input x

A

and should output f

A

(x

A

; x

B

) and B has private input x

B

and

should output f

B

(x

A

; x

B

).

3



These requirements are expressed formally in terms of the simulatability paradigm for gen-

eral se
ure multi-party 
omputation [Bea91, MR92, Gol98, Can00℄, although we 
onsider only

three parties. In this paradigm, the requirements on a proto
ol are expressed in terms of an

ideal pro
ess, where the parties have a

ess to a universally trusted devi
e that performs the

a
tual 
omputation. A proto
ol is 
onsidered se
ure if all an adversary may do in the real world


an also happen in the ideal pro
ess; formally, for every real-world adversary there must exist

some adversary in the ideal pro
ess su
h that the real proto
ol exe
ution is indistinguishable

from exe
ution of the ideal pro
ess.

First, one has to de�ne the real-world model and the ideal pro
ess. We assume stati



orruption throughout this work.

The real-world model. We 
onsider an asyn
hronous three-party proto
ol as a 
olle
tion

(A;B; T ) of PITM. All parties are initialized with the publi
 inputs of the proto
ol that in
ludes

the fun
tion f , T 's publi
 key y

T

, and possibly further parameters of the en
ryption s
hemes.

The private inputs are x

A

for A, x

B

for B, and z

T

for T .

There is no global 
lo
k and the parties are linked by se
ure authenti
ated 
hannels in the

following sense. All 
ommuni
ation is driven by the adversary in form of a s
heduler S. There

exists a global set M of undelivered messages tagged with (S;R) that denote sender S and

re
eiver R. M is initially empty. At ea
h step, S 
hooses a party P , sele
ts some message

M 2 M with re
eiver P , and a
tivates P with M on its 
ommuni
ation input tape. If M is

empty, P may also be a
tivated with empty input. P performs some 
omputation and eventually

writes a message (R; �) to its 
ommuni
ation output tape. The message � is then added toM,

tagged with (P;R). S repeats this step arbitrarily often and is not allowed to terminate as long

asM 
ontains messages with re
eiver or sender equal to T . (In other words, S must eventually

deliver all messages between T and any other party P 2 fA;Bg, but may suppress messages

between A and B.) Honest parties eventually generate an output as pres
ribed by the proto
ol

and terminate by raising a 
orresponding 
ag; they will not pro
ess any more messages.

An adversary in the real world is an algorithm C that 
ontrols S and at most two of

the parties A, B, and T . Parties 
ontrolled by the adversary are 
alled 
orrupt; we assume

their output is empty. The adversary itself outputs an arbitrary fun
tion of its view, whi
h


onsists of the information observed by the s
heduler and all messages written to and read from


ommuni
ation tapes of 
orrupted parties. W.l.o.g. we assume the adversary is deterministi
.

For a �xed adversary C and inputs x

A

and x

B

, the joint output of A, B, T , and C, denoted by

O

ABTC

(x

A

; x

B

), is a random variable indu
ed by the internal 
oins of the honest parties.

The ideal pro
ess. The ideal pro
ess 
onsists of algorithms

�

A,

�

B, and

�

T , and uses on a uni-

versally trusted party U to spe
ify all desired properties of the real proto
ol. U is parametrized

by f .

�

A has input x

A

,

�

B has input x

B

, and

�

T has no input. The operation is as follows.

�

A

sends a message in X

A

[ f?g to U , and

�

B sends a message in X

B

[ f?g to U , and

�

T sends

two distin
t messages to U in arbitrary order, one 
ontaining a value b

A

2 Y

A

[ f�;?g and the

other one 
ontaining a value b

B

2 Y

B

[ f�;?g. Messages are delivered instantly.

U is a devi
e that 
omputes two messages, m

A

and m

B

, for

�

A and

�

B, respe
tively. Ea
h

message is generated as soon as all ne
essary inputs have arrived. The message for

�

A depends

on x

A

; x

B

, and b

A

, and is given by

m

A

=

8

>

<

>

:

f

A

(x

A

; x

B

) if b

A

= � and x

A

6= ? and x

B

6= ?

? if b

A

= �, but x

A

= ? or x

B

= ?

b

A

if b

A

6= �.

4



m

B

is 
omputed analogously from x

A

; x

B

, and b

B

.

Honest parties in the ideal pro
ess operate as follows.

�

A and

�

B just send their input to U

and

�

T sends b

A

= � and b

B

= �.

�

A and

�

B then wait for an answer from U , output the re
eived

value, and terminate.

�

T halts as soon as it has sent two messages to U and outputs nothing.

The ideal-pro
ess adversary is an algorithm

�

C that 
ontrols the behavior of the 
orrupted

parties in the ideal pro
ess. It sees the inputs of a 
orrupted party and may substitute them

by an arbitrary value before sending the spe
i�ed message to U . The adversary sees also U 's

answer to a 
orrupted party. Corrupted parties output nothing, but the adversary outputs an

arbitrary fun
tion of all information gathered in the proto
ol.

For a �xed (deterministi
) adversary

�

C and inputs x

A

and x

B

, the output of the ideal

pro
ess is the 
on
atenation of all outputs, denoted by O

�

A

�

B

�

T

�

C

(x

A

; x

B

).

In 
ontrast to most of the literature using the simulation paradigm for se
ure 
omputation,

ea
h party (in
ludingU) sends a message as soon as it is ready in this asyn
hronous spe
i�
ation.

This means that an adversary may also delay the message of a 
orrupted party until it has

obtained the output of another 
orrupted party.

Simulatability. We are now ready to state the de�nition of fair se
ure 
omputation. Seem-

ingly separate requirements on a proto
ol su
h as 
orre
tness, priva
y, and fairness are expressed

via the simulatability by an ideal pro
ess. Re
all that an adversary in the real world is an algo-

rithm C that 
ontrols S and at most two of the three parties and that C's output is arbitrary.

De�nition 1. Let f : X

A

�X

B

! Y

A

�Y

B

be a fun
tion that 
an be evaluated by a polynomial-

sized 
ir
uit. We say that a proto
ol (A;B; T ) performs fair se
ure 
omputation if for every

real-world adversary C, there exists an adversary

�

C in the ideal pro
ess su
h that for all x

A

2 X

A

and for all x

B

2 X

B

, the joint distribution of all outputs of the ideal pro
ess is 
omputationally

indistinguishable from the outputs in the real world, i.e.,

O

ABTC

(x

A

; x

B

)




� O

�

A

�

B

�

T

�

C

(x

A

; x

B

):

A fair se
ure 
omputation proto
ol is 
alled optimisti
 if whenever all parties follow the proto
ol

and messages between them are delivered instantly, then T does not re
eive or send any message.

Remarks on the above de�nition.

1. By the design of the ideal pro
ess, fairness is only guaranteed if T is not 
olluding with

A or B. This is unavoidable be
ause a 
heating parti
ipant of a two-party proto
ol may

always refuse to send the last message. Proto
ols to defend against su
h misbehavior

require a number of rounds of intera
tion that is inverse proportional to the 
heating

probability [Yao86, BCDvdG88℄.

2. Conversely, if T is 
orrupt, then the 
omputation may be unfair and an honest party, say

A, may not re
eive its output. Moreover, B and T may still de
ide to blo
k A after seeing

f

B

and even 
ause A to output a value that has nothing to do with f

A

. This o

urs in

the ideal pro
ess if

�

T 
olluding with

�

B delays sending b

A

until it has observed

�

B's output

and then de
ides to send b

A

6= �. But noti
e that

�

T and

�

B together do not learn more

about Ali
e's input than what follows from f

B

.

3. A stronger requirement would be that T is only permitted to send � or ?, but not a

substitute for A or B's output. The 
urrent model re
e
ts a 
orresponding property of

our proto
ol be
ause T 's a
tions in the resolve proto
ols are not veri�able. However, by

5



making all proofs non-intera
tive and resorting to the random ora
le model, our proto
ol

satis�es also this stronger requirement.

4. Our model applies only to an isolated three-party 
ase (as is 
ustomary in the literature on

se
ure 
omputation). A multi-user model that allows for 
on
urrent exe
ution of multiple

proto
ol instan
es 
an be 
onstru
ted by 
ombining our model with te
hniques proposed

by Asokan et al. [ASW00℄. Basi
ally, a unique transa
tion identi�er has to be added to

all messages and te
hniques for 
on
urrent 
omposition of zero-knowledge proofs have to

be used [Dam00℄.

3 Proofs of Knowledge and Veri�able En
ryption

This se
tion introdu
es our notation for proofs of knowledge about dis
rete logarithms, the

notion for veri�able en
ryption, and our es
row s
heme. It starts with a des
ription of the

underlying en
ryption s
hemes.

3.1 Preliminaries

A semanti
ally se
ure publi
-key 
ryptosystem (E

k

;D

k

) with se
urity parameter k 
onsists of

a (publi
) probabilisti
 en
ryption algorithm E

k

(�) and a (se
ret) de
ryption algorithm D

k

(�).

The en
ryption algorithm E

k

: M ! C takes a message m 2 M and outputs a 
iphertext 
;

the 
orresponding de
ryption algorithm D

k

: C !M 
omputes m from 
.

Semanti
 se
urity asserts that an eavesdropper 
annot get partial information about the

plaintext from a 
iphertext [GM84℄. More pre
isely, (E

k

;D

k

) is a semanti
ally se
ure publi
-

key system if for two arbitrary messages m

0

and m

1

, the random variables representing the two

en
ryptions E

k

(m

0

) and E

k

(m

1

) are 
omputationally indistinguishable.

The proto
ols in this paper are mostly based on ElGamal en
ryption [ElG85℄. Let G be a

group of large prime order q (polynomial in k) and let g 2 G be a randomly 
hosen generator.

An ElGamal publi
 key is (g; y) for y = g

x

with a randomly 
hosen x 2 Z

q

and the 
orresponding

se
ret key is x. ElGamal en
ryption of a message m 2 G pro
eeds as follows:

Algorithm ElGamal(g; y)(m)

1. 
hoose a random r 2 Z

q

;

2. 
ompute and output (
; 


0

) = (g

r

;my

r

).

The de
ryption algorithm 
omputes m = 


0

=


x

and outputs m.

Consider the two distributions over G

4

with D

0

= (g; g

x

; g

y

; g

z

) for x; y; z 2

R

Z

q

and

D

1

= (g; g

x

; g

y

; g

xy

) for x; y 2

R

Z

q

. The De
isional DiÆe-Hellman (DDH) assumption is that

there exists no probabilisti
 polynomial-time (PPT) algorithm that distinguishes with non-

negligible probability between D and R. By a random self-redu
tion property [Sta96, NR97℄,

the DDH assumption is equivalent to assuming that there is no PPT algorithm that de
ides

with high probability for all tuples (g; g

x

; g

y

; g

z

) if z = xy mod q. It is well known that ElGamal

en
ryption is semanti
ally se
ure under the DDH assumption.

Using a hybrid argument, one 
an show that also the two distributions

M

0

= (g; g

x

1

; : : : ; g

x

n

; g

y

1

; : : : ; g

y

m

; g

z

1

; : : : ; g

z

nm

)

6



with x

i

; y

j

; z

ij

2

R

Z

q

and

M

1

= (g; g

x

1

; : : : ; g

x

n

; g

y

1

; : : : ; g

y

m

; g

x

1

y

1

; : : : ; g

x

n

y

m

)

with x

i

; y

j

2

R

Z

q

for i = 1; : : : ; n and j = 1; : : : ;m are 
omputationally indistinguishable

under the DDH Assumption. The argument is essentially the same as the one by Naor and

Reingold [NR97℄.

3.2 Proofs of Knowledge about Dis
rete Logarithms

We introdu
e a notation for des
ribing proofs of knowledge about dis
rete logarithms. Su
h

three-move proofs of knowledge 
an be 
omposed eÆ
iently in parallel and in a modular way,

as shown by Cramer, Damg�ard, and S
hoemakers [CDS94℄. The notation was �rst used by

Camenis
h and Stadler [CS97℄ and subsumes several dis
rete logarithm-based proof te
hniques

(see the referen
es therein). Our extension allows to des
ribe modular 
omposition.

Let G be a group of large prime order q and let g; g

1

2 G be generators su
h that log

g

g

1

is

not known (e.g. provided by a trusted dealer).

The simplest example of su
h a proof is the proof of knowledge of a dis
rete logarithm of

y 2 G [S
h91℄. For referen
e, we re
all some of properties of this proto
ol between a prover P

and veri�er V . Publi
 inputs are (g; y) and P 's private input is x su
h that y = g

x

. First, P


omputes a 
ommitment t = g

r

with r 2

R

Z

q

and sends it to V . Then V sends to P a random


hallenge 
 2 f0; 1g

k

0

, to whi
h P responds with s = r � 
x mod q, where k

0

is a se
urity

parameter. V a

epts if and only if t = g

s

y




. We denote this proto
ol by

PK log(g; y)

f� : y = g

�

g:

The witness(es) are 
onventionally written in Greek letters and only known to the prover while

all other parameters are known to the veri�er as well.

Unlike the simplifying des
ription above, we assume that all proofs here are a
tually three-

move 
on
urrent zero-knowledge proto
ols, i.e., 
arried out using trapdoor 
ommitments for

the �rst message t. Su
h trapdoor 
ommitments may be 
onstru
ted, for example, using an

additional generator h 2 G, whi
h is 
hosen at random by a trusted dealer or is determined

in a on
e-and-for-all setup phase; the zero-knowledge simulator 
an extra
t the trapdoor log

g

h

from this. It will allow the simulator to open a given 
ommitment t in an arbitrary way upon

re
eiving a 
hallenge 
 be
ause it 
an 
ompute suitable s from the trapdoor, without having

to rewind the veri�er (for more details see, e.g., [Dam00℄); this allows also arbitrarily large


hallenges (i.e., k

0

= O(k)).

This basi
 proto
ol 
an be extended in many ways. For example,

PK rep(g; g

1

; y)

f�; � : y = g

�

g

1

�

g

denotes a proof of knowledge of a representation of y with respe
t to g and g

1

.

Proofs written in this notation may be 
omposed in a modular way. It is known that this

is sound for monotone boolean expressions from the results of Cramer et al. [CDS94℄. For

instan
e, the prover 
an 
onvin
e the veri�er that he knows the representation of at least one

of x and y w.r.t. bases g and g

1

with

PK or(g; g

1

; x; y)

frep(g; g

1

; x) _ rep(g; g

1

; y)g:

7



It is also possible to prove that two dis
rete logarithms (or parts of representations) are

equal [CP93℄. We give an example of this te
hnique. It shows that a 
ommitment z 
ontains

the produ
t modulo q of the two values 
ommitted to in x and y:

PK mul(g; g

1

; x; y; z)

f�; �; 
; Æ; " : x = g

�

g

1




^ y = g

�

g

1

Æ

^ z = y

�

g

1

"

g:

This works also for z = g

a

g

1

r

with r = 0 and arbitrary a 2 Z

q

, whi
h is needed in Se
tion 5.

When su
h proofs are 
ombined, some optimizations are often possible, just like in assembly


ode that is produ
ed by a 
ompiler from a high-level language. An example that o

urs in

Se
tion 5 is that multiple parallel 
ommitments to the same value are introdu
ed, where only

one of them is needed.

3.3 Veri�able En
ryption

Veri�able en
ryption is an important building blo
k here and has been used for publi
ly veri�-

able se
ret sharing [Sta96℄, key es
row, and optimisti
 fair ex
hange [ASW00℄. It is a two-party

proto
ol between a prover and en
ryptor P and a veri�er and re
eiver V . Their 
ommon inputs

are a publi
 en
ryption key E, a publi
 value v, and a binary relation R on bit strings. As a

result of the proto
ol, V either reje
ts or obtains the en
ryption 
 of some value s under E su
h

that (s; v) 2 R. For instan
e, R 
ould be the relation (s; g

s

) � Z

q

� G. The proto
ol should

ensure that V a

epts an en
ryption of an invalid s only with negligible probability and that

V learns nothing beyond the fa
t that the en
ryption 
ontains some s with (s; v) 2 R. The

en
ryption key E typi
ally belongs to a third party, whi
h is not involved in the proto
ol at all.

Generalizing the proto
ol of Asokan et al. [ASW00℄, Camenis
h and Damg�ard [CD98℄

provide a veri�able en
ryption s
heme for all relations R that have an honest-veri�er zero-

knowledge three-move proof of knowledge where the se
ond message is a random 
hallenge

and the witness 
an be 
omputed from two trans
ripts with the same �rst message but dif-

ferent 
hallenges. This in
ludes most known proofs of knowledge, and in parti
ular, all proofs

about dis
rete logarithms from the previous se
tion. The veri�able en
ryption s
heme is itself a

three-move proof of knowledge of the en
rypted witness s and is zero-knowledge if a semanti
ally

se
ure en
ryption s
heme is used [CD98℄.

We use a similar notation as above and denote by, e.g.,

VE (ElGamal; (g; y); tag )f� : v = g

�

g

the veri�able en
ryption proto
ol for the ElGamal s
heme, whereby log

g

v along with tag is

en
rypted under publi
 key y. The tag , an arbitrary bit string, is needed for the 
omposition

of su
h proto
ols, as we will see later. The 
iphertext 
 is represented by (a fun
tion of) the veri-

�er's trans
ript of this proto
ol, whi
h we abbreviate by writing 
 VE (ElGamal; (g; y); tag )f� :

v = g

�

g, and is stored by V .

Together with the 
orresponding se
ret key (x = log

g

y in this example), trans
ript 
 
on-

tains enough information to de
rypt the witness eÆ
iently. We assume that the 
orresponding

de
ryption algorithm VD(ElGamal; (g; x); 
; string ) is subje
t to the 
ondition that a tag mat
h-

ing string is en
rypted in 
; VD outputs the witness in this 
ase and ? in all other 
ases.

We refer to Camenis
h and Damg�ard [CD98℄ for further details of the veri�able en
ryption

s
heme.

8



3.4 Es
row S
hemes

A (veri�able) es
row s
heme [ASW00℄ is a proto
ol involving three parties: a sender S, a

re
eiver R, and a third party T , whose publi
 key y

T

of an en
ryption s
heme is known to S

and R. We require that T 's en
ryption s
heme is semanti
ally se
ure against adaptive 
hosen-


iphertext atta
ks [DDN91℄. S has a bit string a as private input. T 's private input is z

T

, the

se
ret key 
orresponding to y

T

. Furthermore, there is a publi
 input string tag for S and R

that 
ontrols the 
ondition under whi
h T may resolve the es
row of a.

The operation of an es
row s
heme 
onsists of two phases. In the �rst phase, only S and R

intera
t. If R a

epts Phase I, then he is guaranteed to re
eive a in Phase II as long as either

S or T is honest. That is, R either re
eives a single message from S that will allow him to


ompute a (and hen
e T needs not parti
ipate in the proto
ol at all) or, if this does not happen,

R sends T a single request 
ontaining tag , to whi
h T will reply with a.

Several es
row s
hemes with di�erent tags may be run 
on
urrently among the same par-

ti
ipants.

The se
urity requirements of the es
row s
heme are that a mali
ious R 
annot gain any

information on a before Phase II. More pre
isely, for all bit strings a

0

, a

00

, and tag , suppose

S runs Phase I of the es
row s
heme with R

�

on tag and a 2 fa

0

; a

00

g 
hosen at random.

Subsequently R

�

intera
ts arbitrarily with T subje
t only to the 
ondition that it never submits

a request 
ontaining tag to T ; the es
row s
heme is se
ure if su
h an R

�


annot distinguish

a = a

0

from a = a

00

with more than negligible probability.

A se
ure es
row s
heme 
an be implemented easily using veri�able en
ryption and a 
ryp-

tosystem for T that is semanti
ally se
ure against 
hosen-
iphertext atta
ks. We use the

Cramer-Shoup 
ryptosystem [CS98℄, denoted by CS, with publi
 key y

T

and private key z

T

.

In Phase I, S 
hooses u 2

R

Z

�

q

, 
omputes A = g

a

g

1

u

, and sends A to R. S and R also 
arry

out PK rep(g; g

1

; A) and

out  VE (CS; y

T

; tag)f�; � : A = g

�

g

1

�

g:

In Phase II, S sends a and u to R and R veri�es that A = g

a

g

1

u

. If this 
he
k fails or if R did not

re
eive a message from S, then R sends to T the message (out ; tag). T runs VD(CS; z

T

; out ; tag)

and sends the output to R. In either 
ase, R learns a.

It is easy to see that this is a se
ure es
row s
heme using the se
urity of CS and the properties

of PK and VE.

4 Veri�able Oblivious Transfer

This se
tion des
ribes a variant of oblivious transfer that is needed for our fair se
ure 
ompu-

tation proto
ol. Oblivious transfer, proposed by Rabin [Rab81℄ and by Even, Goldrei
h, and

Lempel [EGL85℄, is a fundamental primitive for multi-party 
omputation. In its basi
 in
ar-

nation as a one-out-of-two oblivious transfer, a sender S has two input bits b

0

and b

1

, and a

re
eiver R has a bit 
. As a result of the proto
ol R should obtain b




, but should not learn

anything about b


�1

whereas S should not get any information about 
.

A veri�able oblivious transfer (VOT) is an oblivious transfer on 
ommitted values, where

the sender S has made two 
ommitments A

0

and A

1

, 
ontaining two values a

0

and a

1

, and R

has made a 
ommitment C, 
ontaining a bit 
. The requirements are that R outputs a




without

learning anything about a


�1

and that S does not learn anything about 
. (A 
ommitted oblivi-

ous transfer as des
ribed by Cr�epeau, van de Graaf, and Tapp [CvdGT95℄ is a similar proto
ol

9



that performs an oblivious transfer of 
ommitments su
h that R ends up being 
ommitted to a




;

Cramer and Damg�ard [CD97℄ give an eÆ
ient implementation for this.)

Suppose the 
ommitments A

0

; A

1

, and C are of the form B = g

b

g

1

r

for a randomly 
hosen

r 2 Z

q

and 
ommitted value b 2 Z

q

. In this se
tion, we assume that 
orresponding 
ommitments

are 
omputed 
orre
tly from the inputs a

0

, a

1

, and 
. In other words, a 
ommitment ora
le

re
eives a

0

and a

1

from S, 
hooses random t

0

; t

1

2 Z

q

, pla
es A

0

= g

a

0

g

1

t

0

and A

1

= g

a

1

g

1

t

1

in

the publi
 input, and returns t

0

and t

1

to S privately; similarly, it re
eives 
 from R, 
omputes

C = g




g

1

r

using a random r 2 Z

q

, pla
es C in the publi
 input and gives r privately to R.

This 
ommitment ora
le is an arti�
ial 
onstru
tion for using VOT as part of a larger proto
ol.

Alternatively, one might assume that S and R generated and ex
hanged the 
ommitments

beforehand, together with a proof that they are 
onstru
ted 
orre
tly; this is indeed how VOT

is used in Se
tion 6 below.

The following proto
ol is based on veri�able en
ryption and the oblivious transfer 
onstru
-

tions by Even et al. [EGL85℄ and Bellare and Mi
ali [BM90℄. Our notational 
onvention for

su
h proto
ols is as follows. All inputs are written as argument lists in parentheses, grouped

by the re
eiving party; the �rst list 
ontains publi
 inputs, the se
ond list private inputs of the

�rst party (S), the third list private inputs of the se
ond party (R), and so on.

Proto
ol VOT(g; g

1

; A

0

; A

1

; C)(a

0

; a

1

; t

0

; t

1

)(
; r)

1. S as en
ryptor and R as re
eiver engage in two veri�able en
ryption proto
ols

out

0

 VE (ElGamal; (g

1

; C ); ;)f�; � : A

0

= g

�

g

1

�

g

out

1

 VE (ElGamal; (g

1

;

C

g

); ;)f�; � : A

1

= g

�

g

1

�

g:

2. If R a

epts both of the above proto
ols, he 
omputes

a




= VD(ElGamal; (g

1

; r); out




; ;):

The above proto
ol uses R's 
ommitment C dire
tly as en
ryption publi
 key and saves one

round 
ompared to the dire
t adoption of the Bellare-Mi
ali s
heme. The way the 
ommitment

C is 
onstru
ted from 
 ensures that R knows log

g

1

(C=g




) = r needed to de
rypt out




, but not

the dis
rete logarithm needed to de
ipher the other en
ryption.

Lemma 1. Under the DDH assumption, Proto
ol VOT is a se
ure veri�able oblivious transfer.

Proof. Corre
tness follows from the 
onstru
tion. It remains to show priva
y for S and R. We

have to prove (1) that S gets no information about R's bit 
 and (2) that if R 
an 
ompute

anything about a


�1

from the information from the proto
ol, then the veri�able en
ryption

s
heme is inse
ure.

Part (1) is 
lear be
ause S sees only an un
onditionally hiding 
ommitment of 
.

Part (2) more involved. The properties of the veri�able en
ryption proto
ol guarantee

priva
y for S if the underlying en
ryption s
heme (here ElGamal) is semanti
ally se
ure [CD98℄.

Consider the following game: R obtains g and g

1

, 
alls the 
ommitment ora
le with a bit 
,

re
eives C and r, and outputs two pairs (a

0

; a

0

0

) 2 G

2

and (a

1

; a

0

1

) 2 G

2

. Then a message m

0

is set to a

0

or to a

0

0

with probability one half ea
h and, independently, m

1

is set to a

1

or to a

0

1

with probability one half ea
h. En
ryptions ElGamal(g

1

; C)(m

0

) and ElGamal(g

1

; C=g)(m

1

) are


omputed and given to R. Finally, R outputs two elements d

0

; d

1

2 G. We say that R wins the

10



game if d

0

= m

0

and d

1

= m

1

. An R following the proto
ol 
an win the game with probability

one half by random guessing.

Next we show that if there is an R

�

that wins the game with non-negligible advantage over

random guessing, then there exists a distinguisherD (who also 
ontrols the 
ommitment ora
le)

for whi
h ElGamal en
ryption is not semanti
ally se
ure. This violates the DDH assumption.

Given an ElGamal publi
-key ~g; ~y, D sets g = ~y and g

1

= ~g and invokes R

�

on g; g

1

. It

simulates the 
ommitment ora
le and remembers the values 
, C, and r su
h that C = ~y




~g

r

.

Then R

�

provides (a

0

; a

0

0

) 2 G

2

and (a

1

; a

0

1

) 2 G

2

. We show that if 
 = 0, then D distinguishes

en
ryptions of 1=a

1

and 1=a

0

1

, and if 
 = 1, then D distinguishes en
ryptions of a

0

and a

0

0

with

non-negligible probability.

D 
ontinues as follows:

1. If 
 = 0, then D is given (A;B), an ElGamal en
ryption of either 1=a

1

or 1=a

0

1

with publi


key (~g; ~y). D en
rypts one of a

0

or a

0

0

with publi
 key (g

1

; C) for the �rst en
ryption and

uses 
iphertext (A;A

r

=B), supposedly with publi
 key (g

1

; C=g), for the se
ond en
ryption

that it gives to R

�

.

2. If 
 = 1, then D is given (A;B), an ElGamal en
ryption of a

0

or a

0

0

with publi
 key (~g; ~y).

D uses 
iphertext (A;A

r

B), supposedly with publi
 key (g

1

; C), for the �rst en
ryption

and en
rypts one of a

1

or a

0

1

with publi
 key (g

1

; C=g) for the se
ond en
ryption that it

gives to R

�

.

When R

�

answers with d

0

and d

1

, D outputs 1=d

0

if 
 = 0 and d

1

if 
 = 1. It is straightforward

to show that R

�

sees the same distribution as in Proto
ol VOT; therefore, D distinguishes

ElGamal en
ryptions with non-negligible probability by the assumption on R

�

.

5 Veri�able Se
ure Fun
tion Evaluation

Veri�able se
ure fun
tion evaluation (VFE) is an intera
tive proto
ol between a 
ir
uit 
on-

stru
tor A and an evaluator B. Both parties have as 
ommon publi
 input values C

A

and C

B

,

representing 
ommitments to their inputs. A has two private inputs strings: her input string

x

A

and a string r

A

allowing her to open C

A

; likewise, B has two private input strings, x

B

and

r

B

. Their goal is to evaluate f

B

on the 
ommitted inputs su
h that B learns f

B

(x

A

; x

B

).

We assume here, as already in Se
tion 4, that all 
ommitments are 
omputed 
orre
tly

from the inputs, whi
h in turn may have been 
hosen in an arbitrary way. More pre
isely,

assume A gives x

A

to a 
ommitment ora
le, whi
h 
omputes C

A

a

ording to the spe
i�ed


ommitment s
heme using the random bits r

A

and returns C

A

and r

A

(similarly for B). These

are the 
orresponding 
ommitments used below. (Alternatively, one might assume that A and

B generated and ex
hanged 
orre
t 
ommitments beforehand.)

Given 
on
rete implementations of a parties A and B, a proto
ol exe
ution between A and

B with inputs C

A

; C

B

; x

A

; x

B

; r

A

, and r

B

de�nes naturally the views V

A

and V

B

of A and B,

respe
tively, whi
h are families of random variables determined by the publi
 input, A's private

input, B's private input, and the internal random 
oins. Moreover, if B is deterministi
 then

V

B

is a random variable depending only on A's 
oin 
ips.

De�nition 2. A veri�able se
ure fun
tion evaluation proto
ol for a fun
tion f

B

: X

A

�X

B

!

Y

B

between A and B satis�es the following requirements:

Corre
tness: If A and B are honest and follow the proto
ol, then 8x

A

2 X

A

;8x

B

2 X

B

and


orresponding 
ommitments, B outputs f

B

(x

A

; x

B

) ex
ept with negligible probability.

11



Soundness: 8A

�

and 8x

�

A

2 X

A

and 
orresponding 
ommitments C

�

A

, if the proto
ol starts

with publi
 inputs C

�

A

; C

B

, then, ex
ept with negligible probability, B outputs f

B

(x

�

A

; x

B

)

or ?.

Priva
y: We 
onsider two 
ases, 
orresponding to 
heating B and 
heating A.

1. Priva
y for A: 8B

�

there exists a probabilisti
 polynomial-time algorithm (PPT)

SIM

B

�

su
h that 8x

A

2 X

A

and 8x

�

B

2 X

B

with 
orresponding 
ommitments C

A

; C

�

B

,

V

B

�

(C

A

; C

�

B

; x

A

; r

A

; x

�

B

; r

�

B

)




� SIM

B

�

(C

A

; C

�

B

; f

B

(x

A

; x

�

B

); x

�

B

):

2. Priva
y for B: 8A

�

there exists a PPT algorithm SIM

A

�

su
h that 8x

B

2 X

B

and

8x

�

A

2 X

A

with 
orresponding 
ommitments C

�

A

; C

B

,

V

A

�

(C

�

A

; C

B

; x

�

A

; r

�

A

; x

B

; r

B

)




� SIM

A

�

(C

�

A

; C

B

; x

�

A

):

The soundness 
ondition binds A to her 
ommitted inputs. The 
orresponding binding for

B is part of the priva
y 
ondition for A, whi
h ensures that B is 
ommitted to the value x

B

at

whi
h he evaluates f

B

before the proto
ol starts. This is needed to use the one-sided 
on
ept

of VFE as a building blo
k for optimisti
 fair se
ure 
omputation below.

5.1 Overview of the En
rypted Cir
uit Constru
tion

We give a brief des
ription of our proto
ol and the \en
rypted 
ir
uit 
onstru
tion"; it follows

the approa
h to se
ure fun
tion evaluation developed by Yao [Yao86℄, but uses publi
-key

en
ryption instead of pseudo-random fun
tions for the sake of veri�ability. Suppose A's private

input is a binary string x

A

= (x

A;1

; : : : ; x

A;n

A

) and B's private input is a binary string x

B

=

(x

B;1

; : : : ; x

B;n

B

); assume further w.l.o.g. that f

B

is represented a binary 
ir
uit 
onsisting of

nand gates.

Proto
ol VFE(g; g

1

; C

A

; C

B

; f

B

)(x

A

; r

A

)(x

B

; r

B

)

V1. A produ
es an en
rypted version of the 
ir
uit 
omputing f

B

. The 
ir
uit 
onsists of

gates and wires linking the gates. Ex
ept for input and output wires, ea
h wire 
onne
ts

the output of one gate with the input of one or more other gate(s). For ea
h wire, A


hooses two random tokens s

0

and s

1

, representing bits 0 and 1 on this wire, and produ
es

un
onditionally hiding 
ommitments u

0

and u

1

to these tokens.

For ea
h gate, A en
rypts the truth table as follows: First, the bits are repla
ed by (new)


ommitments to the tokens representing the bits. Next, for ea
h row, a \row publi
 key"

for en
ryption is 
omputed and added to the table su
h that the 
orresponding se
ret key


an be derived from 
ombining the two input tokens of the row. Finally, all four rows are

permuted randomly.

These tables and the 
ommitments are sent to B as an ordered list su
h that B knows

whi
h 
ommitment represents token 0 or 1 et
. Moreover, A proves to B in zero-knowledge

that the 
ommitments and the en
rypted gates are 
onsistent, ensuring (1) that the tokens

of the input and output wires are the same as those 
ommitted to in the truth table, (2)

that the se
ret key for ea
h row of a gate is derived 
orre
tly from the input tokens of the

row, and (3) that ea
h en
rypted gate implements nand.

12



V2. For ea
h row of ea
h gate of the 
ir
uit, A and B engage in veri�able en
ryption of the

output token under the row publi
 key.

V3. For ea
h of her input bits, A sends to B the 
orresponding token and proves to him that

this is 
onsistent with her input x

A


ommitted in C

A

. Furthermore, B obtains the tokens

representing his input bits through n

B

veri�able oblivious transfers from A to B and A

opens all the 
ommitments of the output wires.

V4. On
e B has obtained all this information, he is able to evaluate the 
ir
uit gate by gate on

his own.

Suppose w.l.o.g. the 
ir
uit 
onsists of n nand gates G

1

; : : : ;G

n

and n + n

A

+ n

B

wires

W

1

; : : : ; W

n+n

A

+n

B

and has n

A

+ n

B

inputs and n

O

outputs. Wires W

1

; : : : ;W

n

are output

wires of the gates G

1

; : : : ;G

n

. Wires W

n+1

; : : : ;W

n+n

A

are input wires of A and W

n+n

A

+1

; : : : ;

W

n+n

A

+n

B

are input wires of B. Wires W

n�n

O

+1

; : : : ;W

n

are the output wires of the 
ir
uit;

ex
ept for those, any wire is an input to at least one gate.

The 
ommitment to A's input x

A

is C

A

= (C

A;1

; : : : ; C

A;n

A

), where for i = 1; : : : ; n

A

, a bit


ommitment

C

A;i

= g

x

A;i

g

1

r

A;i

has been 
onstru
ted using a random r

A;i

2 Z

q

and r

A

= (r

A;1

; : : : ; r

A;n

A

) is a private input

of A.

Similarly, the 
ommitment to B's input x

B

is C

B

= (C

B;1

; : : : ; C

B;n

B

), where for i =

1; : : : ; n

B

, a bit 
ommitment

C

B;i

= g

x

B;i

g

1

r

B;i

has been 
onstru
ted using a random r

B;i

2 Z

q

and r

B

= (r

B;1

; : : : ; r

B;n

B

) is a private input

of B.

The following subse
tions des
ribe Steps V1{V4 in more detail. Throughout the des
ription

we assume that B outputs ? and halts as soon as he reje
ts any PK or VE proto
ol.

5.2 Constru
ting the Committed Cir
uit (Step V1)

Let j; l : f1; : : : ; ng ! f1; : : : ; n+ n

A

+ n

B

g be su
h that j(i) and l(i) denote the index of the

left and right input wire of gate G

i

. A 
arries out the following step to obtain an en
rypted


ir
uit:

1. For ea
h wire W

i


hoose s

i;0

; s

i;1

2

R

Z

q

as tokens representing 0 and 1. Next, 
hoose

r

i;0

; r

i;1

2

R

Z

q

and 
ompute the 
ommitments

u

i;0

= g

s

i;0

g

1

r

i;0

u

i;1

= g

s

i;1

g

1

r

i;1

:

2. For ea
h gate G

i


onstru
t the 
ommitted truth table T

i

as follows:

(a) Choose twelve entries of a 4�3 matrix R

i

randomly from Z

q

. The 
ommitment table

�

T

i


ontains information-theoreti
 
ommitments to all input and output tokens, plus

13



the en
ryption publi
 key, derived from the input tokens, in the last 
olumn:

�

T

i

=

0

B

B

�

g

s

j(i);0

g

1

R

i

(1;1)

g

s

l(i);0

g

1

R

i

(1;2)

g

s

i;1

g

1

R

i

(1;3)

g

s

j(i);0

s

l(i);0

g

s

j(i);0

g

1

R

i

(2;1)

g

s

l(i);1

g

1

R

i

(2;2)

g

s

i;1

g

1

R

i

(2;3)

g

s

j(i);0

s

l(i);1

g

s

j(i);1

g

1

R

i

(3;1)

g

s

l(i);0

g

1

R

i

(3;2)

g

s

i;1

g

1

R

i

(3;3)

g

s

j(i);1

s

l(i);0

g

s

j(i);1

g

1

R

i

(4;1)

g

s

l(i);1

g

1

R

i

(4;2)

g

s

i;0

g

1

R

i

(4;3)

g

s

j(i);1

s

l(i);1

1

C

C

A

(b) Choose a random permutation �

i

: f1; 2; 3; 4g ! f1; 2; 3; 4g and obtain T

i

by per-

muting the rows of

�

T

i

a

ordingly:

T

i

(m) =

�

T

i

(�(m))

for m = 1; : : : ; 4.

The list of 
ommitments

C

f

B

= (u

1;0

; u

1;1

; : : : ; u

n+n

A

+n

B

;0

; u

n+n

A

+n

B

;1

; T

1

; : : : ; T

n

)

is sent to B. Next, A proves to B for ea
h wire W

i

that the tokens 
ommitted to in u

i;0

; u

i;1

are di�erent mod q:

PK tokens(g; g

1

; u

i;0

; u

i;1

)

�

�; � : g = (u

i;0

=u

i;1

)

�

g

1

�

	

:

Furthermore, for ea
h gate G

i

A proves to B (1) that the publi
 key atta
hed to ea
h row is


onstru
ted 
orre
tly and (2) that T

i

indeed implements all four rows of the nand truth-table.

Let

W

i

= (u

i;0

; u

i;1

; u

j(i);0

; u

j(i);1

; u

l(i);0

; u

l(i);1

)

denote the list of 
ommitments of the wires in
ident to G

i

. The �rst part is done with

PK gate-keys(g; g

1

; T

i

;W

i

)

n

mul

�

g; g

1

; T

i

(1; 1); T

i

(1; 2); T

i

(1; 4)

�

^ mul

�

g; g

1

; T

i

(2; 1); T

i

(2; 2); T

i

(2; 4)

�

^mul

�

g; g

1

; T

i

(3; 1); T

i

(3; 2); T

i

(3; 4)

�

^ mul

�

g; g

1

; T

i

(4; 1); T

i

(4; 2); T

i

(4; 4)

�

o

;

it shows that the key (
ommitted to) in T (m; 4) is the produ
t of the two tokens in T (m; 1)

and T (m; 2). The se
ond part is done with

PK gate-nand(g; g

1

; T

i

;W

i

)

n

nand

0;0

(g; g

1

; T

i

;W

i

) ^ nand

0;1

(g; g

1

; T

i

;W

i

)

^ nand

1;0

(g; g

1

; T

i

;W

i

) ^ nand

1;1

(g; g

1

; T

i

;W

i

)

o

;

14



where the following proto
ol is used:

PK nand

a;b

(g; g

1

; T

i

;W

i

)

n

�

1

; �

1

; 


1

; �

1

; �

1

; �

1

; �

1

; �

1

; #

1

; : : : ; �

4

; �

4

; 


4

; �

4

; �

4

; �

4

; �

4

; �

4

; #

4

:

�

u

j(i);a

= g

�

1

g

1

�

1

^ u

l(i);b

= g




1

g

1

�

1

^ u

i;(aZb)

= g

�

1

g

1

�

1

^ T

i

(1; 1) = g

�

1

g

1

�

1

^ T

i

(1; 2) = g




1

g

1

#

1

^ T

i

(1; 3) = g

�

1

g

1

�

1

�

_

�

u

j(i);a

= g

�

2

g

1

�

2

^ u

l(i);b

= g




2

g

1

�

2

^ u

i;(aZb)

= g

�

2

g

1

�

2

^ T

i

(2; 1) = g

�

2

g

1

�

2

^ T

i

(2; 2) = g




2

g

1

#

2

^ T

i

(2; 3) = g

�

2

g

1

�

2

�

_

�

u

j(i);a

= g

�

3

g

1

�

3

^ u

l(i);b

= g




3

g

1

�

3

^ u

i;(aZb)

= g

�

3

g

1

�

3

^ T

i

(3; 1) = g

�

3

g

1

�

3

^ T

i

(3; 2) = g




3

g

1

#

3

^ T

i

(3; 3) = g

�

3

g

1

�

3

�

_

�

u

j(i);a

= g

�

4

g

1

�

4

^ u

l(i);b

= g




4

g

1

�

4

^ u

i;(aZb)

= g

�

4

g

1

�

4

^ T

i

(4; 1) = g

�

4

g

1

�

4

^ T

i

(4; 2) = g




4

g

1

#

4

^ T

i

(4; 3) = g

�

4

g

1

�

4

�

o

:

PK nand

a;b

shows that some row of the permuted en
rypted truth table T

i

with token 
om-

mitments W

i


orresponds to the row in the 
leartext truth table with input bits a and b and

output bit a Z b.

5.3 Veri�ably En
rypting the Gate Output Tokens (Step V2)

For ea
h gate G

i

, parties A and B 
arry out the following four veri�able en
ryptions proto
ols:

v

i;1

 VE (ElGamal; (g; T

i

(1; 4)); ;)f�; � : T

i

(1; 3) = g

�

g

1

�

g

v

i;2

 VE (ElGamal; (g; T

i

(2; 4)); ;)f�; � : T

i

(2; 3) = g

�

g

1

�

g

v

i;3

 VE (ElGamal; (g; T

i

(3; 4)); ;)f�; � : T

i

(3; 3) = g

�

g

1

�

g

v

i;4

 VE (ElGamal; (g; T

i

(4; 4)); ;)f�; � : T

i

(4; 3) = g

�

g

1

�

g

5.4 Transferring the Input and Output Tokens (Step V3)

For ea
h input wire W

n+i

of A, she sends the token representing x

A;i

to B; that is, A sends

w

n+i

=

(

s

n+i;0

if x

A;i

= 0

s

n+i;1

if x

A;i

= 1

for i = 1; : : : ; n

A

and 
arries out

PK input(g; g

1

; C

A;i

; w

n+i

; u

n+i;0

; u

n+i;1

)

n

'

1

; �

1

; '

2

; �

2

:

�

C

A;i

= g

1

�

1

^ u

n+i;0

=g

w

n+i

= g

1

'

1

�

_

�

C

A;i

=g = g

1

�

2

^ u

n+i;1

=g

w

n+f

i

= g

1

'

2

�

o

:

This ensures B that w

n+i

is the token representing A's input x

A;i

as 
ommitted to in C

A;i

.

Next, A opens the 
ommitments to the tokens of the 
ir
uit output wires; that is, A sends

B the values s

i;0

; s

i;1

; r

i;0

; r

i;1

for i = n� n

O

+ 1; : : : ; n.

Finally, A and B run n

B

veri�able oblivious transfer proto
ols: for ea
h input wireW

n+n

A

+i

of B, A o�ers tokens s

n+n

A

+i;0

and s

n+n

A

+i;1


ommitted to in u

n+n

A

+i;0

and u

n+n

A

+i;1

, and B

15




hooses to re
eive the one representing the bit he 
ommitted to in C

B;i

. That is, they engage

in

VOT(g; g

1

; u

n+n

A

+i;0

; u

n+n

A

+i;1

; C

B;i

)(s

n+n

A

+i;0

; s

n+n

A

+i;1

; r

n+n

A

+i;0

; r

n+n

A

+i;1

)(x

B;i

; r

B;i

)

in parallel for i = 1; : : : ; n

B

. Denote the values that B re
eives by w

n+n

A

+1

; : : : , w

n+n

A

+n

B

.

5.5 Evaluating the Cir
uit (Step V4)

If B has a

epted all the proofs and veri�able en
ryption proto
ols, he is 
onvin
ed that the

en
rypted 
ir
uit 
onstru
tion is 
orre
t and he has obtained all ne
essary information for 
om-

puting the value of f

B

by himself. He pro
eeds by evaluating the 
ir
uit gate by gate, 
omputing

a token w

i

for ea
h gate G

i

. Note that B already knows the input tokens w

n+1

; : : : ; w

n+n

A

+n

B

.

Suppose G

i

has not been evaluated yet and B knows the tokens w

j(i)

and w

l(i)

. Then B

1. 
omputes ~s

i

= w

j(i)

w

l(i)

mod q;

2. �nds index m 2 f1; : : : ; 4g su
h that g

~s

i

= T

i

(m; 4); and

3. 
omputes w

i

= VD(ElGamal; (g; ~s

i

); v

i;m

; ;).

On
e all gates are evaluated, B also knows the tokens of the output gates G

n�n

O

+1

; : : : ;G

n

. B

de
odes them by letting o

i

2 f0; 1g su
h that w

i

= s

i;o

i

and his output is O = (o

n�n

O

+1

; : : : ; o

n

).

5.6 Analysis

The round 
omplexity of the proto
ol is minimal: be
ause the proofs of knowledge and veri�able

en
ryptions have only three moves and 
an be 
omposed in parallel, all steps in the veri�able

se
ure fun
tion evaluation proto
ol 
an be arranged in three moves only. Furthermore, some

steps 
ould be simpli�ed by omitting multiple 
ommitments to the same value.

The se
urity analysis is based on the following lemma.

Lemma 2. Under the DDH assumption, B

�


an de
rypt at most one row of the truth table for

ea
h gate and 
annot 
ompute any further information from the other three rows.

Proof (Sket
h). The proof is by indu
tion on the stru
ture of the 
ir
uit. Consider an input gate.

The properties of VOT ensure that if the sender inputs two random tokens, the re
eiver gets

one but 
annot 
ompute further information about the other token under the DDH assumption.

Consider an arbitrary gate G

i

and assume the 
laim holds for G

j

and G

l

that feed into G

i

.

Then B

�

knows at most one of the four possible token produ
ts and this allows to de
rypt one

row. The semanti
 se
urity of the remaining three en
ryptions is guaranteed under the DDH

assumption; in other words, B

�


annot distinguish whi
h tokens are en
rypted in the other

three rows.

Apart form the publi
 keys g

s

j;a

s

l;b

, the gate tables 
ontain only information-theoreti
 
om-

mitments and they do not reveal any information about the permutations or the 
leartext bits

asso
iated with a parti
ular row. The tokens s

j;a

; s

l;b

o

urring in the publi
 keys of G

i

(and

possibly in other gates in the same \layer" of the 
ir
uit) 
orrespond to x

i

; y

j

in the distribu-

tions M

0

;M

1

from Se
tion 3.1. Hen
e, they are indistinguishable from random elements under

the DDH assumption.

Theorem 3. Under the DDH assumption, Proto
ol VFE from Se
tions 5.1{5.5 is a veri�able

se
ure fun
tion evaluation proto
ol.

16



Proof (Sket
h). We have to show 
orre
tness, soundness, and priva
y for A and for B. Corre
t-

ness is 
lear from the 
onstru
tion of the proto
ol. Soundness follows from the soundness of the

proofs of knowledge, of the veri�able en
ryptions, and of the VOT proto
ols, whi
h together

enfor
e that B obtains f

B

only evaluated at A

�

's input 
ommitted to by C

�

A

.

Priva
y for A: this is the most interesting part be
ause it involves showing that B

�

does

not learn more than what follows from f

B

(x

A

; x

�

B

). To this end, we des
ribe a simulator SIM

B

�

that has bla
k-box a

ess to B

�

; the simulator's output is 
omputationally indistinguishable

from B

�

's view in a real proto
ol exe
ution. The idea behind the simulator is that B

�

knows

only one \
omputation path" through the 
ir
uit and learns nothing about the values involved

ex
ept for the output gates. The simulator thus intera
ts with B

�

for an arbitrary input x

A

of A; it only has to make sure that B

�

's output will be f

B

(x

A

; x

�

B

).

More pre
isely, SIM

B

�

is the following PPT algorithm. It takes as input the fun
tion value

f

B

(x

A

; x

�

B

). From the 
ommitment ora
le it obtains B

�

's input x

�

B

, 
hooses an arbitrary value

~x

A

for the input of A and exe
utes the Steps 1{4 (Se
tions 5.2{5.5) exa
tly as A with the

following ex
eptions:

1. In Step V1 (Se
tion 5.2) for i = n�n

O

+1; : : : ; n, the simulator uses the same token s

i;o

i

in all 
ommitments T

i

(1; 3), T

i

(2; 3), T

i

(3; 3), and T

i

(4; 3), where o

i

is the output bit of f

B

that SIM

B

�

has been given. Consequently, the simulator has to forge the proofs gate-nand

for these gates, whi
h it 
an do by exploiting the simulatability of these proto
ols.

2. Analogously, in Step V2 (Se
tion 5.3) for i = n � n

O

+ 1; : : : ; n, the simulator en
rypts

the same s

i;o

i

in all four veri�able en
ryptions.

3. In Step V3 (Se
tion 5.4), the simulator behaves like A ex
ept for PK input; here it has to

forge the proof of the 
orresponden
e between A's input 
ommitment C

A

and ~x

A


hosen

by the simulator, again by exploiting the simulatability of the proof.

It remains to argue that B

�

's view when intera
ting with the real A and the view provided

by SIM

B

�

are 
omputationally indistinguishable. Be
ause the whole 
onstru
tion uses un
on-

ditionally hiding 
ommitments and all proofs are zero-knowledge, the only pla
e where there


ould be a di�eren
e is the en
ryption of the output tokens of the output gates. However, by

Lemma 1 this is not the 
ase and we have established priva
y for A.

Priva
y for B: it suÆ
es to 
onsider VOT, whi
h is the only step where B ever sends

information to A that 
ould 
ompromise B's inputs. Proto
ol VOT of Se
tion 4 provides even

information-theoreti
 priva
y for B in the role of R and the proofs 
an be simulated by the

standard te
hniques.

Remark. The invo
ations of Proto
ol VOT at the end of Step V3 deserve spe
ial attention

be
ause of the way Proto
ol VFE is used in the next se
tion. Step 1 of ea
h VOT involves two

veri�able en
ryptions with the 
ir
uit 
onstru
tor A as prover and the 
ir
uit evaluator B as

veri�er. These proofs may also be veri�ed by an independent third party T , whi
h B trusts

to a
t as veri�er. More pre
isely, be
ause the veri�able en
ryption publi
 keys are also known

beforehand (they are derived from the 
ommitments), the VOT proto
ol may, equivalently,


onsist of an intera
tion between A and T , followed by intera
tion between T to B, where T

sends to B the trans
ript of its intera
tion with A. Su
h a T may not know how to de
rypt the

transferred values.

17



6 Optimisti
 Fair Se
ure Computation Proto
ol

We are now ready to des
ribe our proto
ol for optimisti
 fair se
ure two-party 
omputation. In

short, the proto
ol 
onsists of two intertwined exe
utions of the veri�able se
ure fun
tion evalu-

ation proto
ol from the previous se
tion, where the output tokens are not dire
tly revealed, but

mutually es
rowed with T �rst and opened later. Re
all that optimisti
 fair se
ure 
omputation

involves three parties A, B, and T , in the asyn
hronous 
ommuni
ation model of De�nition 1.

In the following we use Proto
ol VOT from Se
tion 4 and the se
ure es
row s
heme based

on Cramer-Shoup en
ryption from Se
tion 3.4.

Common inputs are a fun
tion f : X

A

�X

B

! Y

A

�Y

B

, T 's publi
 key y

T

, and generators

g; g

1

2 G. The private input of A is x

A

2 X

A

, the private input of B is x

B

2 X

B

, and the

private input of T is the se
ret key z

T


orresponding to y

T

.

Proto
ol FAIRCOMP(g; g

1

; f; y

T

)(x

A

)(x

B

)(z

T

)

F1. A 
hooses r

A;1

; : : : ; r

A;n

A

2

R

Z

q

, 
omputes the 
ommitments

C

A

= (C

A;1

; : : : ; C

A;n

A

) = (g

x

A;1

g

1

r

A;1

; : : : ; g

x

A;n

A

g

1

r

A;n

A

);

sends C

A

to B, and runs with B

PK f�

1

; �

1

; : : : ; �

n

A

; �

n

A

: C

A;1

= g

�

1

g

1

�

1

^ � � � ^ C

A;n

A

= g

�

n

A

g

1

�

n

A

)g:

If B reje
ts any proof, it outputs ? and halts.

F2. B 
hooses r

B;1

; : : : ; r

B;n

B

2

R

Z

q

, 
omputes the 
ommitments

C

B

= (C

B;1

; : : : ; C

B;n

B

) = (g

x

B;1

g

1

r

B;1

; : : : ; g

x

B;n

B

g

1

r

B;n

B

);

sends C

B

to A, and runs with A

PK f�

1

; �

1

; : : : ; �

n

B

; �

n

B

: C

B;1

= g

�

1

g

1

�

1

^ � � � ^ C

B;n

B

= g

�

n

B

g

1

�

n

B

)g:

If A reje
ts any proof, it outputs ? and halts.

F3. A and B invoke a modi�
ation of Proto
ol VFE(g; g

1

; C

A

; C

B

; f

B

)(x

A

; r

A

)(x

B

; r

B

), where

they repla
e opening the 
ommitments of the output tokens by es
rowing them with T .

That is, in Step V3, A and B run Phase I of the es
row s
heme for ea
h of the values

s

i;0

; s

i;1

; r

i;0

; r

i;1

tagged with C

A

kC

B

kf

B

ki for i = n�n

O

+1; : : : ; n in the 
ir
uit 
omputing

f

B

. They interrupt Proto
ol VFE after Step V3. (Note that T has not been involved so

far.)

If this fails, B simply outputs ? and halts.

F4. B and A invoke a modi�
ation of Proto
ol VFE(g; g

1

; C

B

; C

A

; f

A

)(x

B

; r

B

)(x

A

; r

A

), where

they repla
e opening the 
ommitments of the output tokens by es
rowing them with T .

That is, in Step V3, B and A run Phase I of the es
row s
heme for ea
h of the values

s

i;0

; s

i;1

; r

i;0

; r

i;1

tagged with C

A

kC

B

kf

A

ki for i = n�n

O

+1; : : : ; n in the 
ir
uit 
omputing

f

A

. They interrupt Proto
ol VFE after Step V3.

If this fails, A invokes Proto
ol abort with T . If T answers abort, then A outputs ? and

halts. If T answers resolvektrans
ript then A 
ompletes the VFE proto
ol 
omputing f

A

as read from trans
ript (
ontinuing with Step V3), outputs O

A

, and halts.

18



F5. A and B 
ontinue with Phase II of the es
row proto
ols started in Step F3. A

ording to

this, A sends B the 
orresponding messages, B 
he
ks their 
ontents, and if a 
he
k fails or

if some message does not arrive, B invokes Proto
ol B-resolve with T . If T answers abort,

then B outputs ? and halts.

If T answers resolvektrans
ript then B 
ompletes the VFE proto
ol 
omputing f

B

as read

from trans
ript (
ontinuing with Step V3), outputs O

B

, and halts.

Otherwise B resumes Proto
ol VFE started in Step F3 with Step V4 and obtains O

B

.

F6. B and A 
ontinue with Phase II of the es
row proto
ols started in Step F4. A

ording to

this, B sends A the 
orresponding messages. Then B outputs O

B

and halts.

A 
he
ks the messages re
eived from B, and if a 
he
k fails or if some message does not

arrive, A invokes Proto
ol A-resolve with T . If T answers abort, A outputs ? and halts.

If T answers resolvektrans
ript then A 
ompletes the VFE proto
ol 
omputing f

A

as read

from trans
ript from Step V3, outputs O

A

, and halts.

Otherwise A resumes Proto
ol VFE started in Step F4 with Step V4, outputs O

A

, and

halts.

We now des
ribe the sub-proto
ols for aborting and resolving. They also take pla
e in the

model of De�nition 1, where all parties maintain internal state (private inputs are sometimes

mentioned nevertheless). In parti
ular, T maintains a list of tuples internally and pro
esses

all abort and resolve requests atomi
ally. Re
all that the trans
ript of a party of a proto
ol


onsists of all messages re
eived or sent by this party.

Proto
ol abort is a proto
ol between A and T ; it is invoked by A with inputs C

A

and C

B

.

Proto
ol abort(g; g

1

; f; y

T

)(C

A

; C

B

)()

1. A sends the message (abort; C

A

kC

B

kf) to T .

2. If T 's internal state 
ontains an entry of the form (C

A

kC

B

kf; string), then T returns to A

the message string .

3. Otherwise, T adds the tuple (C

A

kC

B

kf; abort) to its internal state and returns to A the

message abort.

Proto
ol B-resolve is a proto
ol between B and T ; it is invoked by B with input a string

trans
ript , 
ontaining B's 
omplete trans
ript of Steps F1{F4 in Proto
ol FAIRCOMP, whi
h

in
ludes also C

A

and C

B

.

Proto
ol B-resolve(g; g

1

; f; y

T

)(trans
ript )(z

T

)

1. B sends the message (B-resolve; trans
ript ) to T .

2. If T 's internal state 
ontains an entry of the form (C

A

kC

B

kf; string), then T returns to B

the message string and halts.

3. Otherwise, B and T run Steps V1{V3 of Proto
ol VFE(g; g

1

; C

B

; C

A

; f

A

)(x

B

; r

B

)(;) un-

modi�ed with B in the role of 
ir
uit 
onstru
tor (VFE-)A and T in the role of 
ir
uit

evaluator (VFE-)B. They stop after Step 1 in Proto
ol VOT, before T would have to

de
rypt the tokens. (Thus, T 's inputs to the proto
ol may be empty.)

If T reje
ts any of the proofs by B, then T adds the tuple (C

A

kC

B

kf , abort) to its

internal state and returns to B the message abort.

19



4. Otherwise, T reads the trans
ript sent by B and 
arries out its part of Phase II for the

es
rows of the tokens on the output wires for f

B

from Step F3. T opens the es
rows subje
t

to all tags mat
hing C

A

kC

B

kf

B

ki. In other words, T runs the de
ryption algorithm

VD(CS; z

T

; : : : ) and returns the outputs to B if all tags mat
h, or ? if one or more

de
ryptions yield ?.

T 
omputes the trans
ript t of Proto
ol B-resolve and adds (C

A

kC

B

kf , resolvekt) to its

internal state.

Proto
ol A-resolve is a proto
ol between A and T ; it is invoked by A with input a string

trans
ript , 
ontaining her 
omplete trans
ript of Steps F1{F3 in Proto
ol FAIRCOMP, whi
h

in
ludes also C

A

and C

B

.

Proto
ol A-resolve(g; g

1

; f; y

T

)(trans
ript )(z

T

)

1. A sends the message (A-resolve; trans
ript ) to T .

2. If T 's internal state 
ontains an entry of the form (C

A

kC

B

kf; string), then T returns to A

the message string and halts.

3. Otherwise, A and T run Steps V1{V3 of Proto
ol VFE(g; g

1

; C

A

; C

B

; f

B

)(x

A

; r

A

)(;) un-

modi�ed with A in the role of 
ir
uit 
onstru
tor (VFE-)A and T in the role of 
ir
uit

evaluator (VFE-)B. They stop after Step 1 in Proto
ol VOT, before T would have to

de
rypt the tokens. (Thus, T 's inputs to the proto
ol may be empty.)

If T reje
ts any of the proofs by A, then T adds the tuple (C

A

kC

B

kf , abort) to its

internal state and returns to A the message abort.

4. Otherwise, T reads the trans
ript sent by A and 
arries out its part of Phase II for the

es
rows of the tokens on the output wires for f

A

from Step F4. T opens the es
rows subje
t

to all tags mat
hing C

A

kC

B

kf

A

ki. In other words, T runs the de
ryption algorithm

VD(CS; z

T

; : : : ) and returns the outputs to A if all tags mat
h, or ? if one or more

de
ryptions yield ?.

T 
omputes the trans
ript t of Proto
ol A-resolve and adds (C

A

kC

B

kf , resolvekt) to its

internal state.

Remarks about the proto
ol.

1. Proto
ol FAIRCOMP as des
ribed above 
onsists of seven rounds (14 moves). By pipelining

the exe
ution of Steps F1{F4 one 
an redu
e this to �ve rounds (ten moves). Using non-

intera
tive proofs in the random ora
le model, this 
ould even be redu
ed further to three

rounds (six moves).

2. A major di�eren
e between the resolve proto
ols here and those used for optimisti
 fair

ex
hange of signatures [ASW00℄ is that T 
annot dire
tly repla
e the other party here.

Whereas in a fair ex
hange of digital signatures, T 
an verify that the party requesting

to resolve supplies a 
orre
t signature, T has to re-run almost the 
omplete VFE proto
ol

here. After T has done this, the other party is able to 
omplete VFE and its part of the


omputation from this trans
ript.

3. T does not have to know any se
rets of the other party for re-running VFE. For instan
e,

in Step 3 of Proto
ol B-resolve, when B and T run Proto
ol VFE for f

A

(and T plays

the role of A), T does not have to know anything about A's se
ret input x

A

besides the

20




ommitments C

A

; this follows be
ause the VFE proto
ol is stopped after Step V3 and

be
ause of a spe
ial feature of the underlying Proto
ol VOT, in whi
h the 
ommitments

are used for en
ryption.

Theorem 4. Under the DDH assumption, Proto
ol FAIRCOMP above is an optimisti
 fair

se
ure 
omputation proto
ol.

Proof (Sket
h). We have to 
onsider zero, one, or two 
orrupted parties and show indistin-

guishability a

ording to De�nition 1. Note that these three 
ases 
an be interpreted to establish


orre
tness, fairness (assuming un
orrupted T ), and priva
y (for A or B) of a proto
ol.

No Corruptions (Corre
tness). It follows from the 
onstru
tion and from the remarks

above that for any S, the proto
ol between A and B terminates and they output the 
orre
t

results ex
ept with negligible probability. Moreover, if S delivers all messages instantly, then

T is never 
onta
ted and the 
onditions for an optimisti
 proto
ol are met.

One Corrupted Party (Fairness). Consider a given real-world adversary C that 
ontrols

B and S (although they are absorbed in C, we sometimes use B

�

and S

�

for the 
orrupted

parties).

We des
ribe a simulator that transforms C into an adversary

�

C for the ideal pro
ess and

emulates C's behavior in the ideal pro
ess with a

ess to U . The simulator has ora
le a

ess

to C, in
luding the 
apability to rewind C. The simulator uses C to deliver messages through

S

�

, in
luding messages to B

�

supposedly originating from A and T . We adopt a simpli�ed

terminology below, however, and just say that \A sends a message to B

�

" et
. The simulator

also 
ommuni
ates (externally) with U in the ideal pro
ess, playing the role of

�

B; note that the

ideal-pro
ess implementations of

�

A and

�

T are �xed as in De�nition 1 and beyond the 
ontrol

of the simulator.

The simulator is started on inputs f; y

T

; g; g

1

, and x

B

. A

ording to our assumptions, it

also knows the dis
rete log of g

1

with respe
t to g and z

T

, the private key 
orresponding to y

T

.

The simulator initializes B

�

with g; g

1

; f; y

T

, and x

B

and starts S

�

. Then it intera
ts with

C by running 
opies of A and T internally, whi
h 
ommuni
ate via S

�

. They behave a

ording

to the proto
ol spe
i�
ation, ex
ept for the following 
hanges:

{ if C halts before A 
ompletes Step F2, send ? to U from

�

B;

{ in Step F2, when B

�

has 
ompleted the proof, rewind C to the beginning of F2, let A

provide di�erent 
hallenges for B

�

, and extra
t x

�

B

from B

�

's answer;

{ when T adds the tuple (C

A

kC

B

kf; abort) to its state, send ? to U in the ideal pro
ess;

{ in Step F3, run the simulator provided by the VFE proto
ol (Theorem 3) on behalf of A

on x

�

B

and an arbitrary value ~x

A

, but en
rypt arbitrary values for the es
rowed output

token 
ommitments; simulate the 
orresponding proofs for VE ;

{ in Step F5, when A has to reveal the tokens on the output wires, determine if message x

�

B

(from Step F2) was already sent to U in the ideal pro
ess; if yes, retrieve U 's answer and

if not, send x

�

B

to U and re
eive f

B

(x

A

; x

�

B

); then 
ompute suitable 
ommitment openings

that a honest B would de
ode to f

B

(x

A

; x

�

B

) by exploiting the knowledge of the relation

between g and g

1

;

21



{ in Proto
ol B-resolve, Step 4, when T has to de
rypt the es
rowed tokens on the output

wires for f

B

, determine if message x

�

B

(from Step F2) was already sent to U in the ideal

pro
ess; if yes, retrieve U 's answer and if not, send x

�

B

to U and re
eive f

B

(x

A

; x

�

B

); then


ompute suitable 
ommitment openings that a honest B would de
ode to f

B

(x

A

; x

�

B

) by

exploiting the knowledge of the relation between g and g

1

.

The simulator runs this modi�ed proto
ol until C generates an output and halts; then it 
opies

C's output to its own output for the ideal pro
ess and halts as well.

We have to argue that the simulator produ
es only one message to U from

�

B and that

it indu
es a distribution of the ideal-pro
ess outputs that is indistinguishable from that of the

real-world proto
ol outputs. Be
ause T pro
esses requests atomi
ally, it follows from inspe
tion

of the proto
ol that it generates at most one message for U per invo
ation of T and ? is sent

at most on
e. Two messages 6= ? might be generated when running T in B-resolve and when

running A in Step F5; however, be
ause of the simulator's 
he
k for previous messages to U , it

will not send x

�

B

twi
e. Moreover, if A has re
eived abort from T , it will halt before rea
hing

Step F5.

It follows now from the 
onstru
tion of the simulator, the se
urity of the VFE proto
ol, the

se
urity of the es
row s
heme, and the fa
t that all 
ommitments hide their inputs, that the

joint output of in the ideal pro
ess is indistinguishable from the output in the real world.

The simulator for A uses essentially the same method and is left as an exer
ise for the

reader.

Two Corrupted Parties (Priva
y). Consider a given real-world adversary C that 
ontrols

B, T , and S (the same notational 
onventions apply as above).

We des
ribe a simulator that transforms C into an adversary

�

C for the ideal pro
ess and

emulates C's behavior in the ideal pro
ess with a

ess to U . The simulator intera
ts with C

(allowing rewinding) and delivers messages through S

�

. The simulator plays the roles of

�

B and

�

T to U in the ideal pro
ess.

The simulator is started on inputs f; y

T

; g; g

1

, and x

B

. A

ording to our assumptions, it

also knows the dis
rete log of g

1

with respe
t to g and z

T

, the private key 
orresponding to y

T

.

The simulator initializes B

�

with g; g

1

; f; y

T

, and x

B

, initializes T

�

with g; g

1

; f; y

T

, and z

T

,

and starts S

�

. Then it intera
ts with C by emulating A a

ording to the proto
ol spe
i�
ation,

ex
ept for the following 
hanges:

{ if C halts before A 
ompletes Step F2, send ? to U from

�

B and b

A

= b

B

= � from

�

T ;

{ in Step F2, when B

�

has 
ompleted the proof, rewind C to the beginning of F2, let A

provide di�erent 
hallenges for B

�

, and extra
t x

�

B

from B

�

's answer;

{ in Step F3, send x

�

B

to U from

�

B and b

B

= � from

�

T ; re
eive f

B

(x

A

; x

�

B

) from U and run

the unmodi�ed simulator provided by the VFE proto
ol (Theorem 3) on behalf of A on

x

�

B

and an arbitrary value ~x

A

(using 
orre
t values in the es
rows here);

{ in Steps F3{F6, when A re
eives a message that 
auses it to output a value v

A

2 Y

A

[f?g,

send b

A

= v

A

to U .

The simulator runs this modi�ed proto
ol until C generates an output and halts; then it 
opies

C's output to its own output for the ideal pro
ess and halts as well.

It is easy to see that the simulator produ
es one message to U from

�

B and two messages

from

�

T and that it indu
es a distribution of the ideal-pro
ess outputs that is indistinguishable

22



from that of the real-world proto
ol outputs. Moreover, the simulator 
auses

�

A to generate the

same output as A in the real world.

It follows now from the 
onstru
tion of the simulator, the se
urity of the VFE proto
ol, and

the fa
t that all 
ommitments hide their inputs, that the joint output of in the ideal pro
ess is

indistinguishable from the output in the real world.

The simulator for A and T uses essentially the same method and is left as an exer
ise for

the reader.

A
knowledgments

We thank Ran Canetti and Vi
tor Shoup for helpful suggestions and dis
ussions about modeling

optimisti
 fair se
ure 
omputation.

Referen
es

[ASW97℄ N. Asokan, M. S
hunter, and M. Waidner, Optimisti
 proto
ols for fair ex
hange,

Pro
. 4th ACM Conferen
e on Computer and Communi
ations Se
urity, 1997,

pp. 6, 8{17.

[ASW00℄ N. Asokan, V. Shoup, and M. Waidner, Optimisti
 fair ex
hange of digital sig-

natures, IEEE Journal on Sele
ted Areas in Communi
ations 18 (2000), no. 4,

591{610.

[BCDvdG88℄ E. F. Bri
kell, D. Chaum, I. Damg�ard, and J. van de Graaf, Gradual and veri�able

release of a se
ret, Advan
es in Cryptology: CRYPTO '87 (C. Pomeran
e, ed.),

Le
ture Notes in Computer S
ien
e, vol. 293, Springer, 1988.

[Bea91℄ D. Beaver, Se
ure multiparty proto
ols and zero-knowledge proof systems tolerat-

ing a faulty minority, Journal of Cryptology 4 (1991), no. 2, 75{122.

[BG89℄ D. Beaver and S. Goldwasser, Multiparty 
omputation with faulty majority (ex-

tended announ
ement), Pro
. 30th IEEE Symposium on Foundations of Computer

S
ien
e (FOCS), 1989, pp. 468{473.

[BGMR90℄ M. Ben-Or, O. Goldrei
h, S. Mi
ali, and R. L. Rivest, A fair proto
ol for signing


ontra
ts, IEEE Transa
tions on Information Theory 36 (1990), no. 1, 40{46.

[BM90℄ M. Bellare and S. Mi
ali, Non-intera
tive oblivious transfer and appli
ations, Ad-

van
es in Cryptology: CRYPTO '89 (G. Brassard, ed.), Le
ture Notes in Com-

puter S
ien
e, vol. 435, Springer, 1990, pp. 547{557.

[BMR90℄ D. Beaver, S. Mi
ali, and P. Rogaway, The round 
omplexity of se
ure proto
ols,

Pro
. 22nd Annual ACM Symposium on Theory of Computing (STOC), 1990,

pp. 503{513.

[BW98℄ B. Baum-Waidner and M. Waidner, Optimisti
 asyn
hronous multi-party 
ontra
t

signing, Resear
h Report RZ 3078 (#93124), IBM Resear
h, November 1998.

23



[Ca
99℄ C. Ca
hin, EÆ
ient private bidding and au
tions with an oblivious third party,

Pro
. 6th ACM Conferen
e on Computer and Communi
ations Se
urity, 1999,

pp. 120{127.

[Can00℄ R. Canetti, Se
urity and 
omposition of multi-party 
ryptographi
 proto
ols, Jour-

nal of Cryptology 13 (2000), no. 1, 143{202.

[CD97℄ R. Cramer and I. Damg�ard, Linear zero-knowledge|a note on eÆ
ient zero-

knowledge proofs and arguments, Pro
. 29th Annual ACM Symposium on Theory

of Computing (STOC), 1997.

[CD98℄ J. Camenis
h and I. Damg�ard, Veri�able en
ryption and appli
ations to group

signatures and signature sharing, Te
h. Report RS-98-32, BRICS, Departement

of Computer S
ien
e, University of Aarhus, De
ember 1998.

[CDS94℄ R. Cramer, I. Damg�ard, and B. S
hoemakers, Proofs of partial knowledge and

simpli�ed design of witness hiding proto
ols, Advan
es in Cryptology: CRYPTO

'94 (Y. G. Desmedt, ed.), Le
ture Notes in Computer S
ien
e, vol. 839, 1994.

[CDvdG88℄ D. Chaum, I. Damg�ard, and J. van de Graaf, Multiparty 
omputations ensuring

priva
y of ea
h party's input and 
orre
tness of the result, Advan
es in Cryptol-

ogy: CRYPTO '87 (C. Pomeran
e, ed.), Le
ture Notes in Computer S
ien
e, vol.

293, Springer, 1988.

[Cle86℄ R. Cleve, Limits on the se
urity of 
oin 
ips when half the pro
essors are faulty,

Pro
. 18th Annual ACM Symposium on Theory of Computing (STOC), 1986,

pp. 364{369.

[CP93℄ D. Chaum and T. P. Pedersen, Wallet databases with observers, Advan
es in

Cryptology: CRYPTO '92 (E. F. Bri
kell, ed.), Le
ture Notes in Computer S
i-

en
e, vol. 740, Springer-Verlag, 1993, pp. 89{105.

[CS97℄ J. Camenis
h and M. Stadler, EÆ
ient group signature s
hemes for large groups,

Advan
es in Cryptology: CRYPTO '97 (B. Kaliski, ed.), Le
ture Notes in Com-

puter S
ien
e, vol. 1233, Springer, 1997, pp. 410{424.

[CS98℄ R. Cramer and V. Shoup, A pra
ti
al publi
-key 
ryptosystem provably se
ure

against adaptive 
hosen-
iphertext atta
k, Advan
es in Cryptology: CRYPTO '98

(H. Kraw
zyk, ed.), Le
ture Notes in Computer S
ien
e, vol. 1462, Springer, 1998.

[CvdGT95℄ C. Cr�epeau, J. van de Graaf, and A. Tapp, Committed oblivious transfer and

private multi-party 
omputation, Advan
es in Cryptology: CRYPTO '95 (D. Cop-

persmith, ed.), Le
ture Notes in Computer S
ien
e, vol. 963, Springer, 1995.

[Dam00℄ I. B. Damg�ard, EÆ
ient 
on
urrent zero-knowledge in the auxiliary string model,

Advan
es in Cryptology: EUROCRYPT 2000 (B. Preneel, ed.), Le
ture Notes in

Computer S
ien
e, vol. 1087, Springer, 2000, pp. 418{430.

[DDN91℄ D. Dolev, C. Dwork, and M. Naor, Non-malleable 
ryptography (extended ab-

stra
t), Pro
. 23rd Annual ACM Symposium on Theory of Computing (STOC),

1991, pp. 542{552.

24



[EGL85℄ S. Even, O. Goldrei
h, and A. Lempel, A randomized proto
ol for signing 
on-

tra
ts, Communi
ations of the ACM 28 (1985), 637{647.

[ElG85℄ T. ElGamal, A publi
 key 
ryptosystem and a signature s
heme based on dis
rete

logarithms, IEEE Transa
tions on Information Theory 31 (1985), no. 4, 469{472.

[FKN94℄ U. Feige, J. Kilian, and M. Naor, A minimal model for se
ure 
omputation (ex-

tended abstra
t), Pro
. 26th Annual ACM Symposium on Theory of Computing

(STOC), 1994, pp. 554{563.

[GL91℄ S. Goldwasser and L. Levin, Fair 
omputation of general fun
tions in presen
e

of immoral majority, Advan
es in Cryptology: CRYPTO '90 (A. J. Menezes and

S. A. Vanstone, eds.), Le
ture Notes in Computer S
ien
e, vol. 537, Springer,

1991.

[GM84℄ S. Goldwasser and S. Mi
ali, Probabilisti
 en
ryption, Journal of Computer and

System S
ien
es 28 (1984), 270{299.

[GMW87℄ O. Goldrei
h, S. Mi
ali, and A. Wigderson, How to play any mental game or a


ompleteness theorem for proto
ols with honest majority, Pro
. 19th Annual ACM

Symposium on Theory of Computing (STOC), 1987, pp. 218{229.

[Gol98℄ O. Goldrei
h, Se
ure multi-party 
omputation, Manus
ript, 1998, (Version 1.1).

[GRR98℄ R. Gennaro, M. O. Rabin, and T. Rabin, Simpli�ed VSS and fast-tra
k multi-

party 
omputations with appli
ations to threshold 
ryptography, Pro
. 17th ACM

Symposium on Prin
iples of Distributed Computing (PODC), 1998.

[Mi
98℄ S. Mi
ali, Se
ure proto
ols with invisible trusted parties, Presentation at the Work-

shop on Multi-Party Se
ure Proto
ols, Weizmann Institute of S
ien
e, Israel, June

1998.

[MR92℄ S. Mi
ali and P. Rogaway, Se
ure 
omputation, Advan
es in Cryptology:

CRYPTO '91 (J. Feigenbaum, ed.), Le
ture Notes in Computer S
ien
e, vol.

576, Springer, 1992, pp. 392{404.

[NPR99℄ M. Naor, B. Pinkas, and O. Reingold, Priva
y preserving au
tions and me
hanism

design, Pro
. 1st ACM Conferen
e on Ele
troni
 Commer
e, 1999.

[NR97℄ M. Naor and O. Reingold, Number-theoreti
 
onstru
tions of eÆ
ient pseudo-

random fun
tions, Pro
. 38th IEEE Symposium on Foundations of Computer

S
ien
e (FOCS), 1997.

[Rab81℄ M. O. Rabin, How to ex
hange se
rets by oblivious transfer, Te
h. Report TR-81,

Harvard University, 1981.

[S
h91℄ C. P. S
hnorr, EÆ
ient signature generation by smart 
ards, Journal of Cryptol-

ogy 4 (1991), 161{174.

[Sta96℄ M. Stadler, Publi
ly veri�able se
ret sharing, Advan
es in Cryptology: EURO-

CRYPT '96 (U. Maurer, ed.), Le
ture Notes in Computer S
ien
e, vol. 1233,

Springer, 1996, pp. 190{199.

25



[Yao82℄ A. C. Yao, Proto
ols for se
ure 
omputation, Pro
. 23rd IEEE Symposium on

Foundations of Computer S
ien
e (FOCS), 1982, pp. 160{164.

[Yao86℄ A. C. Yao, How to generate and ex
hange se
rets, Pro
. 27th IEEE Symposium

on Foundations of Computer S
ien
e (FOCS), 1986, pp. 162{167.

26


