
Fork-Consistent Constructions From Registers

Matthias Majuntke1, Dan Dobre2, Christian Cachin3, and Neeraj Suri1

1{majuntke,suri}@cs.tu-darmstadt.de
Technische Universität Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

Phone: +49 6151 16 3121 / Fax: +49 6151 16 4310
2dan.dobre@neclab.eu

NEC Laboratories Europe

3cca@zurich.ibm.com
IBM Research – Zurich

Technical Report

Abstract
Users increasingly execute services online at remote providers, but they may have security concerns and
not always trust the providers. Fork-consistent emulations offer one way to protect the clients of a remote
service, which is usually correct but may suffer from Byzantine faults. They feature linearizability as long
as the service behaves correctly, and gracefully degrade to fork-consistent semantics in case the service
becomes faulty. This guarantees data integrity and service consistency to the clients.

All currently known fork-consistent emulations require the execution of non-trivial computation steps
by the service. From a theoretical viewpoint, such a service constitutes a read-modify-write object, repre-
senting the strongest object in Herlihy’s wait-free hierarchy [12]. A read-modify-write object is much more
powerful than a shared memory made of so-called registers, which lie in the weakest class of all shared
objects in this hierarchy. In practical terms, it is important to reduce the complexity and cost of a remote
service implementation as computation resources are typically more expensive than storage resources.

In this paper, we address the fundamental structure of a fork-consistent emulation and ask the question:
Can one provide a fork-consistent emulation in which the service does not execute computation steps, but
can be realized only by a shared memory? Surprisingly, the answer is yes. Specifically, we provide two
such algorithms that can be built only from registers: A fork-linearizable construction of a universal type,
in which operations are allowed to abort under concurrency, and a weakly fork-linearizable emulation of a
shared memory that ensures wait-freedom when the registers are correct.

Keywords: distributed system, shared memory, fork-consistency, universal object, atomic register, Byzantine faults

1 Introduction

The increasing trend of executing services online “in the cloud” [23] offers many economic advantages, but
also raises the challenge of guaranteeing security and strong consistency to its users. As the service is provided
by a remote entity that wants to retain its customers, the service usually acts as specified. But online services
may fail for various reasons, ranging from simply closing down (corresponding to a crash fault) to deliberate
and sometimes malicious behavior (corresponding to a Byzantine fault).

For some kinds of services, cryptographic techniques can prevent a malicious provider from forging re-
sponses or snooping on customer data. But other violations are still possible in the asynchronous model con-
sidered here: for instance, when multiple isolated clients interact only through a remote provider, the latter may
send diverging and inconsistent replies to the clients. In this context, “forking” consistency conditions [22, 8]
offer a gracefully degrading solution because they make it much easier for the clients to detect such violations.
More precisely, they ensure that if a Byzantine provider only once sent a wrong response to some client, then
this client becomes forever isolated or forked from those other clients to which the provider responded dif-
ferently. With this notion, clients may easily detect service misbehavior from a single inconsistent operation,
e.g. by out-of-band communication.

1

Forking consistency conditions are often encapsulated in the notion of a Byzantine emulation [8], which
ensures graceful degradation of the service’s semantics: If the service is correct, then operations execute
atomically. In any other case, the clients still observe operations according to the forking consistency notion.
Fork-consistency represents a safety property — after all, a faulty service may simply stop. The liveness
property in a Byzantine emulation refers to the good case when the service behaves correctly.

Fork-linearizability [22, 8] ensures that clients always observe linearizable [14] service behavior and that
two clients, once forked, will never again see each other’s updates to the system (i.e. they share the same
history prefix up to the forking point). However, it has been found that fork-linearizable Byzantine emulations
of a shared memory cannot always provide wait-free operations [8], i.e., some clients may be blocked because
of other clients that execute operations concurrently. An escape is offered by the weaker liveness property of
abortable emulations, which allow client operations to abort under contention [20]. As another alternative,
the notion of weak fork-linearizability relaxes fork-linearizability in order to allow wait-free client operations
in Byzantine emulations [7]. Weak fork-linearizability [7] allows two clients, after being forked, to observe
a single operation of the other one (at-most-one-join), and that the real-time order induced by linearizability
may be violated by the last operation of each client (weak real-time order).

In this paper, we explore the fundamental assumptions required for building a Byzantine service emulation.
Up to now, all fork-consistent emulation protocols have required the service to execute non-trivial computation
steps, i.e., the service must be implemented by an object of universal type [12], capable of read-modify-write
operations [16]. We show the surprising result that this requirement can be dropped, and implement fork-
consistent emulation protocols only from memory objects, so-called registers. They provide simple read and
write operations and represent one of the weakest forms of computational objects. A long tradition of research
has already addressed how to realize powerful abstractions from weaker base objects (e.g., [12, 2]).

Specifically, we propose the first fork-linearizable Byzantine emulation of a universal object only from
registers. Our algorithm necessarily offers abortable operations because a wait-free construction of a universal
object from registers is not possible in an asynchronous system using only registers [12]. Moreover, we give
an algorithm for a weakly fork-linearizable Byzantine emulation of a shared memory only from registers. It
allows wait-free client operations when the underlying registers are correct.

Our two algorithms may directly replace the computation-based constructions in the existing respective
emulations of shared memory on Byzantine servers [20, 7, 24]. For instance, our second construction, which
yields a weakly fork-linearizable Byzantine emulation, allows to eliminate the server code from Venus [24].
Currently, Venus runs server code implemented by a cloud computing service, but our construction may realize
it from a cloud storage service. For practical systems this can make a big difference in cost because full-fledged
servers or virtual machines (e.g., Amazon EC2) are typically more expensive than simple disks or cloud-based
key-value stores (e.g., Amazon S3).

Note that although our approach uses a collection of registers, we refrain from making more specific failure
assumptions on them. Our remote service is comprised of registers, and as soon as one register is faulty, we
consider the service to be faulty. It is conceivable to use fault-prone registers in our algorithms. Standard
methods implementing robust shared registers from fault-prone base registers show how to tolerate up to a
fraction of Byzantine base registers [21]. This extension, which is orthogonal to our work, would further
refine our notion of graceful service degradation with faulty base objects.

Related Work The notion of fork-linearizability was introduced by Mazières and Shasha [22]. They imple-
mented a fork-linearizable multi-user storage system called SUNDR. An improved fork-linearizable storage
protocol is described by Cachin et al. [8]; it reduces the communication complexity compared to SUNDR
from O(n2) to O(n). More recently, fork-linearizable Byzantine emulations have been extended to universal
services [5]. All fork-linearizable emulations are blocking and sometimes require one client to wait for another
client to complete [8].

In order to circumvent blocking the clients, Majuntke et al. [20] propose the first abortable fork-lineariz-
able storage implementations. Their work takes up the notion of an abortable object introduced by Aguilera
et al. [1]. They demonstrated, for the first time, how an abortable (and, hence, obstruction-free [13]) universal

2

object can be constructed from abortable registers, which are base objects weaker than registers. In more recent
work, it has been shown that abortable objects can be boosted to wait-free objects in a partially synchronous
system [3]. This makes our Byzantine emulations of abortable objects very attractive in practical systems.

Actually implemented systems offering data storage integrity through forking consistency semantics in-
clude SUNDR (LKMS) [17], which realizes the protocol of Mazières and Shasha [22]. Furthermore, Cachin et
al. [6] add fork-linearizable semantics to the Subversion revision control system, such that integrity and consis-
tency of the server can be verified. The “blind stone tablet” of Williams et al. [25] provides fork-linearizable
semantics for an untrusted database server; it may abort conflicting operations. Using a relaxation of fork-
linearizability, called fork-* consistency, Feldman et al. [10] introduce a lock-free implementation for online
collaboration that protects consistency and integrity of the service against a malicious provider.

Cachin et al. [7] present the storage service FAUST, which emulates a shared memory in a wait-free
manner by exploiting the notion of weak fork-linearizability. It relaxes fork-linearizability in two fundamental
ways: (1) after being forked, two clients may observe each others’ operations once more and (2) the real-time
order of the last operation of each client is not preserved. FAUST incorporates client-to-client communication
in a higher layer, which ensures that all operations become eventually consistent over time (or the server is
detected to misbehave). The Venus system [24] implements the mechanisms behind FAUST and describes a
practical solution for ensuring integrity and consistency to the users of cloud storage.

Li and Mazières [18] study storage systems, built from 3f +1 server replicas, where more than f replicas
are Byzantine faulty. Their storage protocol ensures fork-* consistency. Similar to weak fork-linearizability,
fork-* consistency allows that two forked clients observe again at most one common operation.

Contributions We present, for the first time, Byzantine emulations with forking consistency conditions
only from registers, instead of more powerful computation objects. Any number of registers may be affected
by Byzantine failures. Our constructions are linearizable provided that the base registers are correct. The
constructions are:

• A register-based abortable Byzantine emulation of a fork-linearizable universal type.

• A register-based wait-free Byzantine emulation of weak fork-linearizable shared memory.

In Section 1, we discuss related work; Section 2 introduces the underlying system model. The two main
constructions are given in Sections 3 and 4. The paper concludes in Section 5. The correctness proofs of the
protocols have been moved to the Appendix (page 13).

2 System Model

We consider a distributed system consisting of n > 1 clients C1, . . . , Cn that communicate through shared
objects. Each such base object has a type which is given by a set of invocations, a set of responses, and by
its sequential specification. The sequential specification defines the allowed sequences of invocations and
responses. An invocation and the corresponding response constitute an operation of an object. A collection of
base objects is used to implement high-level objects, where clients execute algorithm A, consisting of n state
machines A1, . . . , An (where Ci implements Ai). When client Ci receives an invocation of an operation to
the high-level object, it takes steps of Ai, where it (1) either invokes an operation on some base object, (2) or
receives the response to its previous invocation to a base object, (3) or it performs some local computation. At
the end of a step, Ci changes its local state and possibly returns a response to the pending high-level operation.

An execution of algorithm A is defined as the (interleaved) sequence of invocation and response events.
Every execution induces a history which is the sequence of invocations and responses of the high-level opera-
tions. If σ is a history of an execution of algorithm A, then σ|Ci denotes the subsequence of σ containing all
events of client Ci. For sequence σ and operation o, σ|o denotes the prefix of σ that ends with the last event
of o. We say that a response matches an invocation, if both are events of the same operation. An operation is
called complete, if there exists a matching response to its invocation, else incomplete. We assume that each

3

client invokes a new operation only after the previous operation has completed. A history consisting only of
matching invocation/response pairs is called well-formed. Operation o precedes operation o′ in a sequence of
events σ (o <σ o′) iff o is complete and the response of o happens before the invocation of o′. If o precedes o′

we denote o and o′ as sequential, if neither one precedes the other, then o and o′ are said to be concurrent.
For the proposed abortable construction (Sec. 3), we introduce the special response ABORT. A complete

operation o is called unsuccessful (“o is aborted”), if it returns ABORT, else it is called successful (“o suc-
cessfully completes”). The formal definition of an abortable object comprises a non-triviality property which
allows aborts only under concurrency [1].

Clients may fail by crashing, i.e. they stop taking steps and hence, the last operation of each client might be
incomplete. Base objects may deviate arbitrarily from their specification exhibiting non-responsive-arbitrary
faults [15] (called Byzantine). Clients have access to a digital signature scheme used by each client to sign
its data such that any other client can determine the authenticity of a datum by verifying the corresponding
signature. We assume that signatures cannot be forged.

All constructions appearing in this paper are based on atomic registers. An atomic register provides two
operations, read and write1. Operation write(v) stores value v from domain Values into the register. A call
of read() returns the latest written value from the register or the special value ⊥ if no value has been written.
As the register is atomic, its history satisfies linearizability [12], i.e. operations seem to appear as sequential,
atomic events2. Further, the atomic registers used allow single-writer-multiple-reader access (SWMR), i.e. to
each register we assign a dedicated client that may call write and read, while all other clients may only call
read to that register.

A sequence of operations π satisfies weak real-time order of σ if π, excluding the last operation of each
client in π, satisfies real-time order of σ. Causality between two operations depends on the type of the im-
plemented object3. For two operations of a shared memory o and o′ in σ, o causally precedes o′ (o →σ o

′),
if o, o′ are called by the same client and o happens before o′, or if o′ is a READ operation that returns the
value written by WRITE operation o. The next definition formalizes the notion of fork-linearizability [8] and
weak fork-linearizability [7]; for a formal definition of the term possible view as well as the above-mentioned
notions we refer to the Appendix.

Definition 1. Let σ be a history of an object of type T and for each client Ci there exists a sequence of events
πi such that πi is a possible view of σ at Ci with respect to T .
History σ is fork-linearizable with respect to object type T if for each client Ci:

1. πi preserves the real-time order of σ, and

2. for every client Cj and for every o ∈ πi ∩ πj , it holds πi|o = πj |o.

History σ is weak fork-linearizable with respect to object type T if for each client Ci:

1. πi preserves the weak real-time order of σ, and

2. for every operation o ∈ πi and every operation o′ ∈ σ such that o′ →σ o, it holds that o′ ∈ πi and that
o′ <πi o, and

3. (At-most-one-join) for every client Cj and every two operations o, o′ ∈ πi ∩ πj by the same client such
that o <σ o′, it holds πi|o = πj |o.

The notion of a Byzantine emulation [8] allows us to formally define the safety and liveness properties of
our protocols. Note that the liveness condition of abortable operations is weaker than wait-freedom but still
not weaker than obstruction-freedom [1].

1We type operation calls to base registers in italic font and calls to constructed objects in CAPITALS.
2Hence, the “latest written value” is well-defined.
3As causality is needed to define weak fork-linearizability, here, we give causality for a shared memory, which is the type we

implement with weak fork-linearizability.

4

Definition 2. An algorithm A emulates an object of type T on a set of Byzantine base objects B with
{fork|weak fork}-linearizability whenever the following conditions hold:

1. If all objects in setB are correct, the history of every fair4 and well-formed execution ofA is linearizable
with respect to type T , and

2. the history of every fair and well-formed execution of A is {fork|weak fork}-linearizable with respect
to type T .

Such an emulation is wait-free (abortable resp.), iff every fair and well-formed execution of the protocol with
correct base objects is wait-free [12] (abortable [1] resp.).

3 A Fork-linearizable Universal Type

In this section we present as our first main contribution an abortable fork-linearizable Byzantine emulation
of a universal type implemented from atomic registers. The shared object ensures fork-linearizability in the
presence of any number of faulty base registers. High-level operations are abortable [1], i.e. under concur-
rency, the special response ABORT may be returned. The functionality of a universal type T is encoded in the
procedure APPLYT . For client Ci, state s and operation o, APPLYT (s, o, i) returns (s′, res), where s′ is the new
state of the universal object, res the computation result, and where the sequence of invoking APPLYT (s, o, i)
and returning (s′, res) is defined by the sequential specification of type T .

Our algorithm uses timestamp vectors called versions whose order reflects the real-time order in which
operations are applied to the shared object. Each operation carries a version and the linearization of operations
is achieved through the use of an INC&READ counter object C with two atomic operations INC&READ and
READ. An invocation to INC&READ(C) advances the counter object C and returns a value which is higher
than any value returned before, and READ(C) returns the current value of the counter object. An implemen-
tation of the INC&READ counter is given in Algorithm 3 in Appendix B together with its formal properties.
Our implementation uses wait-free atomic registers as base objects which makes it a wait-free variant of the
abortable INC&READ counter described by Aguilera et al. [1].

3.1 Algorithm Ideas

Universal Type To implement universal type T , we use n SWMR registers R1, . . . , Rn such that client Ci
can read from all registers but may write only to Ri. The registers store states of the universal object. To
implement high-level operations, client Ci reads from the register which holds the most current state, applies
the relevant state transformation, and writes the new state to Ri. Note, that all information are digitally
signed by the clients as base objects are untrusted. Thereby, operations “affect” each other which leads to the
following relation on operations: Operation o of Ci affects operation o′ of Cj , if during o′, Cj is able to verify
the signature of Ci on state s that has been written during o and if Cj executes APPLYT on s during o′; further,
an operation of Ci affects each later operation of Ci.
Concurrency detection We allow operations to abort under concurrency for two reasons: there is no wait-
free construction of a universal type from registers, as shown by Herlihy [12], and no fork-linearizable protocol
can be wait-free in all executions, as shown in a more recent work of Cachin et al. [8]. Cachin’s impossibility
is based on two runs, indistinguishable for the reader: In the first run a READ operation does not return value v
as it is concurrently written, while in the second run v has been previously written and is hidden by malicious
registers. To avoid such a situation, our protocol implements a concurrency detection mechanism [1] using
INC&READ counter object C. If concurrency is detected, a pending operation is aborted. At the invocation
of a high-level operation o, our protocol calls INC&READ(C) and remembers the timestamp returned. At the
end of o, READ(C) is executed to check whether counter C still returns the same timestamp. If not, another
operation o′ was invoked during o — thus, o is aborted. Else, if at the end of o C has not been changed, all

4For a formal definition we refer to standard literature [19]

5

successful operations either terminated before o or will be invoked after o has terminated. This is because the
timestamps, returned from INC&READ, are used to linearize operations: The current state is written together
with the timestamp, and the timestamp is used to determine the most recent state. Hence, all other operations
invoked so far write a state with a lower timestamp than o. Consequently, such operations are linearized before
o and only the state written by o can be read by later operations.
Fork-Linearizability In addition to the timestamp from INC&READ counter C, each operation is assigned
a vector of timestamps of length n, called version. The order relation ≤ defined on versions respects real-
time order and the ”affected by” relation on operations. The idea is that each operation reads the most recent
version from the storage, increments its own entry and writes the new version back to the storage. Thereby,
each operation checks, if the version it reads, has been affected by the version of its own last successful
operation, i.e. one which was not aborted. If the last successful operation of client Ci is hidden from Cj , then
Ci does not accept operations of Cj as they have not been affected by the last successful operation of Ci. This
ensures that the views of the clients after a forking attack are not rejoined. This principle is based on ideas of
Mazières and Shasha [22], and Cachin et al. [8]. To apply it to this work, we have to add a specific handling for
aborted operations: If operation o of client Ci is aborted, Ci cannot expect that o will affect later operations.
However, it is still possible that some operation of Cj is affected by aborted o. In this case we call o relevant
for Cj (Definition 8 in Appendix B).

3.2 Description of Algorithm 1

We now describe the steps preformed by client Ci when executing high-level operation o. The algorithm is
given as Algorithm 1, the variables used are collected in Variables 5 (see Appendix A).

The protocol is framed by INC&READ(C) and READ(C) calls to the counter object C implementing the
concurrency detection mechanism (lines 1.2 and 1.14). If the returned timestamps are not equal, the operation
is aborted in line 1.16. In lines 1.3–1.5, the client reads from all atomic registers R1, . . . , Rn and determines
by means of the assigned timestamps the index l of the register holding the latest written data 〈tsl, Vl, sl, sigl〉,
where tsl is a timestamp, Vl is the version, sl is the state and sigl is a signature. If some data have been
written to Rl, the signature of the content of Rl is verified (line 1.6). Then, client Ci checks whether the read
version Vl is not smaller than Vsuc the version of its own last successful operation (line 1.7). When the check is
passed the new state of the universal object and the computation result is computed by calling APPLYT (sl, o, i)
(line 1.8). Finally the new version for operation o has to be computed. This is done by taking the per-entry
maximum of version V , which is the local version of Ci, and Vl, and by incrementing the ith entry (lines
1.9–1.11). After signing the current timestamp, the new version V , and new state s in line 1.12, client Ci
writes ts, V , s and the signature into register Ri (line 1.13). If operation o is successful, version V is stored
as last successful version Vsuc and the computation result is returned (lines 1.17–1.19).

3.3 Correctness Arguments

In this section we argue why Algorithm 1 satisfies fork-linearizability. The goal is to construct for each
client Ci a view πi of σ that satisfies the properties of fork-linearizability. To construct πi, we simplify our
argumentation by ignoring operations that are not relevant for Ci. Recall, any operation is relevant for client
Ci that affects Ci’s last successful operation. Hence, operations that are not relevant for client Ci do not
change the object’s state from Ci’s point of view. Thus, we can order them arbitrarily among the operations in
πi and the resulting sequences still satisfy fork-linearizability.

The idea behind the construction of the πi in the proof is that operations are ordered according to their
assigned versions. The proof shows that this order respects the “affected by” relation, the sequential specifi-
cation of a universal type, and the real-time order. As during an operation the new version is computed using
the client’s last version and the read version, proving “affected by” and real-time order is straightforward. The
core of the proof is to show that the order of version also respects the sequential specification. We sketch the
intuition behind this with the following argument leading to a contradiction:

6

Algorithm 1: Universal Object Implementation, Algorithm of Client i
EXECUTE(o) do1.1

ts← INC&READ(C) /* increment and read from counter */1.2
for j = 1, . . . , n do1.3
〈tsj , Vj , sj , sigj〉 ← read(Rj) /* low-level atomic read */1.4

let l be such that tsl = max1≤j≤n(tsj) /* find register with most recent data */1.5
if Vl 6= [0 . . . 0] ∧ ¬verifyl(sigl, 〈tsl, Vl, sl〉) then halt /* signature verified? */1.6
if ∃k : Vsuc[k] > Vl[k] then halt /* fork-linearizability check passed? */1.7
〈s, res〉 ← APPLYT (sl, o, i) /* compute new state + result */1.8
for j = 1, . . . , n, j 6= i do1.9

V [j]← max(V [j], Vl[j]) /* determine1.10
V [i]← V [i] + 1 new version */1.11
sig ← signi(ts||V ||s) /* signature on ts, version, state */1.12
write(Ri, 〈ts, V, s, sig〉) /* low-level atomic write */1.13
ts′ ← READ(C) /* read from counter */1.14
if ts 6= ts′ then1.15

return ABORT /* concurrency detected */1.16
else1.17

Vsuc ← V /* reset last successful version */1.18
return res /* return result */1.19

oa ob oc ojoinojoin suc

or

. . .

Figure 1: Correctness Idea of Algorithm 1. Arrows denote the “affected by” relation.

Assume that some operation oc is not affected by the most recent state of the universal object, which has
been written by relevant operation ob, but is affected by an older state written by operation oa. In this case,
the clients of ob and oc are forked, and neither ob nor oc affect each other. We argue, that in such a situation,
there is no relevant operation that has been affected by both ob and oc, as such an operation would join the two
clients violating fork-consistency. We assume for contradiction, that a relevant operation ojoin of client Cjoin,
affected by ob and oc exists which is also the first among such operations (see Figure 1). Operation ojoin is
affected by ojoin suc, the last successful operation of Cjoin previous to ojoin, and by or that wrote the state
which is read during ojoin. Hence, without loss of generality ojoin suc is affected by ob while or is affected by
oc. During operation ojoin suc, client Cjoin raises its value in the version to V [join]join suc. This implies that
ojoin only accepts versions where the jointh entry is at least V [join]join suc (line 1.7). As ojoin suc is not on
the path of “affected by” relations from oc to or, ojoin would block while reading the state of or which is a
contradiction. Thus, ojoin does not exist.

Finally, it follows directly from the described construction, that sequences πi satisfy the no-join property.
To complete the correctness proof of the Byzantine emulation, we show that when all base objects are correct,
no operation blocks and that no operation trivially aborts.

4 A Weak Fork-Linearizable Shared Memory

In this section we describe as our second contribution a wait-free, weak fork-linearizable Byzantine emulation
of a shared memory implemented from atomic registers. The presented construction satisfies weak fork-
linearizability in the presence of any number of faulty base objects. The implemented shared memory provides
n atomic registers, such that each client can write to one dedicated register exclusively and may read from all
registers. Operation WRITE(v), called by client Ci, writes value v to Ci’s register. Operation READ(i) returns

7

write high-level write(v) ow

high-level read or

update read

write scan write scan

Figure 2: Basic principle implemented by Algorithm 2.

the last written value from Ci’s register, and may be called by any client. Our algorithm makes use of an
atomic single-writer snapshot object S with n components [4, 11]. Snapshot object S provides two atomic
operations: UPDATE(d, S, i), that changes the state of component i of S to d, and SCAN(S) that returns vector
(d1, . . . , dn) such that di is the state of component i of S, i = 1 . . . , n. Formally, di is the state written by
the last UPDATE to component i prior to SCAN. It has been shown, that such a shared snapshot object can be
wait-free implemented only from registers [4, 11].

4.1 Algorithm Ideas

Each client locally maintains a timestamp that respects causality and real-time order of its own operations.
As the basic principle, during each operation this timestamp is written to the shared memory and timestamps
left by other operations are read. For each client Ci our implementation uses two registers only Ci may write
to, but which can be read by all clients. The first one is needed to store value and timestamp written by Ci’s
WRITE operations and is implemented by a SWMR atomic register Wi (i.e. registers W1, ...,Wn in total). The
second “register” is required to store the latest timestamp of Ci’s READ operations. It is implemented as the
ith component within the single-writer snapshot object with n components, S.

During READ(j) operation of Ci, Ci’s current timestamp is written to S using UPDATE, thereafter, Ci
reads a timestamp-value pair from register Wj (using low-level read). High-level WRITE(v) of Ci proceeds
analogously: Ci writes its current timestamp plus value v to register Wi using low-level write, thereafter, it
reads all components from S using SCAN. By this, operations are able to observe each other, as expressed in
the relation “seen”: We say that a WRITE operation ow of Cj sees a READ operation or of Ci with timestamp
ts if Ci digitally signed ts and updated the ith component of S by signed ts during or and, if during ow, Cj
scanned S and was able to verify the signature of Ci on ts; READ operation or sees WRITE operation ow if or
returns the value written by ow.

This construction guarantees the following property on interleaved high-level operations: Whenever high-
level READ(j) or of Ci and WRITE(v) ow of Cj appear in an execution such that or does not return v but a
value written before v, then, by regularity of the atomic base registers, ow.write5 does not precede or.read, i.e.,
or.read has been invoked before ow.write finishes. Consequently, or.UPDATE precedes ow.SCAN (see Figure
2). Thus, if or does not “see” ow, then ow “sees” or. A similar property on interleaving operations has also
been leveraged in our previous work [9] as well as by Aguilera et al. [2].

We can expect that clientCj writes information during its next WRITE operation such that future operations
of Ci may verify whether operation ow actually has seen operation or. More concrete, if READ or has seen
WRITE ow then the client checks during or whether the next WRITE operation after ow (of the same client as
ow), has seen READ operation or or a newer one. Else, the base objects are faulty, as shown in the following
example: Let ow and o′w be two sequential WRITE operations of Ci, o′w precedes READ operation or of Cj
but it is hidden by the malicious base objects such that or sees only ow. As o′w precedes or, o′w cannot see
or. However, as or sees ow, it expects that o′w will see or. The next WRITE operation o′′w of Ci will write this
information. If client Cj sees o′′w, which would violate weak fork-linearizablility, the check, explained above,
is not passed.

5The notation x.y denotes the call of low-level operation y during high-level operation x.

8

4.2 Description of Algorithm 2

Algorithm 2: Weak Fork-Linearizable Memory for n Clients, Algorithm of Client Ci
READ(j) do2.1

ots← ots+ 1 /* increment timestamp */2.2
sig ← signi(ots) /* signature on timestamp */2.3
UPDATE((ots, sig), S, i) /* update call to snapshot object */2.4
(wv,wts, r read seen, r write seen, sig)← read(Wj) /* low-level atomic read */2.5
if not verifyj(sig) then halt /* signature verified? */2.6
read seen← merge(read seen, r read seen) /* update read seen */2.7
read seen[i][j]← read seen[i][j].add((ots, wts)) /* add seen write */2.8
check() /* check passed? */2.9
write seen← merge(write seen, r write seen) /* update write seen */2.10
return wv /* return read value */2.11

WRITE(v) do2.12
ots← ots+ 1 /* increment timestamp */2.13
sig ← signi(v, ots, read seen,write seen) /* signature on timestamp */2.14
write((v, ots, read seen,write seen, sig),Wi) /* low-level atomic write */2.15
〈(tmp1, sig1), . . . , (tmpn, sign)〉 ← SCAN(S) /* scan call to snapshot object */2.16
for k = 1, ..., n do2.17

if not verifyk(sigk) then halt /* signature verified? */2.18
write seen[i][k]← write seen[i][k].add((tmpk, ots)) /* add all seen reads */2.19

return OK /* successfully return */2.20

check() do2.21
for k = 1, ..., n do2.22

forall (r, w) ∈ read seen[k][i] do2.23
/* check if own writes have seen read operations reading my values

*/
if ∃(r′, w′) ∈ write seen[i][k] s.t. w′ > w and w′ minimal then2.24

if r′ < r then halt2.25

forall (r, w) ∈ read seen[i][k] do2.26
/* check if own reads have been seen by other’s write operations */
if ∃(r′, w′) ∈ r write seen[k][i] s.t. w′ > w and w′ minimal then2.27

if r′ < r then halt2.28

This section explains the steps taken by client Ci to implement high-level READ and WRITE operations.
The algorithm is given as Algorithm 2, its variables in Variables 6 (see Appendix A).

At invocation of high-level READ(j), clientCi increments its local timestamp and generates a digital signa-
ture of it. The signed timestamp is stored to snapshot object S using operation UPDATE((ots, sig), S, i) (lines
2.2–2.4). Then, client Ci reads register Wj and verifies the signature (line 2.5–2.6). The content of register
Wj contains the written value wv, the corresponding timestamp wts, as well as two matrices r read seen and
r write seen. Both matrices are of size n× n where each entry holds a set of integer pairs (r, w). Client Ci
maintains a variable read seen of the same type, where a pair (r, w) ∈ read seen[i][j] denotes that READ of
client Ci with timestamp r has seen WRITE of client Cj with timestamp w. Analogously, client Ci maintains a
second matrix write seen, where (r, w) ∈ write seen[i][j] denotes that WRITE of client Ci with timestamp
w has seen READ of client Cj with timestamp r. In the next step (line 2.7), client Ci “merges” variables
r read seen and read seen. The merge procedure returns for each entry of two n× n set matrices A, B set
A[i][j] ∪B[i][j], i, j = 1, . . . , n. Then, Ci adds a pair consisting of its current timestamp and timestamp wts
from Wj to read seen[i][j]. To ensure weak fork-linearizability, client Ci calls procedure “check” (line 2.9).
If all checks are passed, Ci merges r write seen and write seen and returns value wv (lines 2.10–2.11).

At invocation of WRITE(v), client Ci increments its timestamp (line 2.13). It digitally signs value v, its

9

Client Ci: or o′′w

ow o′′ro′wClient Cj :

Figure 3: Correctness Ideas of Algorithm 2. Arrows denote the “seen” relation.

timestamp, and variables read seen and write seen to write to register Wi (lines 2.14–2.15). Next, it reads
all timestamps of READs by calling SCAN to snapshot object S (line 2.16). All entries in S are digitally signed
and thus client Ci verifies the signatures (line 2.18). Then, it adds to all sets write seen[i][k] (k = 1, . . . , n)
a pair consisting of the timestamp of the kth component of S and Ci’s current timestamp (line 2.19). Finally,
client Ci successfully returns (line 2.20).

Procedure “check” implements the principle sketched in section 4.1 for n clients. It ensures that weak
fork-linearizability is never violated. The procedure, called by Ci during READ(j) (line 2.21), moves through
a loop performing two checks: The first check (line 2.24–2.25) considers the information left by clients during
READ(i) operations (this information is stored in the ith column of read seen). If READ(i) with timestamp r
of client Ck has seen WRITE of Ci with timestamp w, then it is tested whether the next WRITE of Ci has read
(using SCAN) timestamp r or higher of client Ck. The check uses the local write seen variable of Ci. The
second check (line 2.27–2.28) reviews the information left by client Ci during any READ(k) (which is kept in
the ith row of read seen). If READ(k) with timestamp r of client Ci has seen WRITE of Ck with timestamp w,
then we check whether the next WRITE of Ck has read (using SCAN) timestamp r or higher of client Ci. This
check requires matrix r write seen, which has been fetched from Wj in line 2.5 before procedure “check” is
called.

4.3 Correctness Arguments

In this section we give the intuition why Algorithm 2 satisfies the properties of a wait-free Byzantine emulation
of a shared memory with weak fork-linearizability. Intuitively, the definition of weak fork-linearizability
requires for each client Ci to construct a sequence πi such that causality among operations, the sequential
specification a shared memory, and weak real-time order is satisfied, and that two sequences πi and πj share
the same prefix up to the second last common operation (at-most-one-join). The proof proceeds in steps, where
in the first step all operations that have to be included in sequence πi are causally ordered. Next, this order
is extended such that it additionally respects the sequential specification. Intuitively, as all written values are
digitally signed, the sequential specification never interferes with causality. The hardest step is to prove, that
this order can be further refined such that it does not violate the weak real-time order. The intuition for this is
given below as a proof by contradiction:

We assume that READ(j) operation or of client Ci does not return the latest value, written by WRITE

operation o′w, but an older value written by operation ow (see Figure 3). Further, let or be not the last operation
ofCi. During operation or, the pair (r, w)6 is added to set read seen[i][j]. The data written by the next WRITE

operation o′′w of Ci contains this information. Now, the algorithm prevents client Cj from reading the value
written by o′′w which would violate weak real-time order (as or is ordered before o′w according to the sequential
specification). When during o′′r Cj sees operation o′′w, it finds the pair (r, w) in r read seen. As o′w precedes
or, it could not have seen or, thus write seen[j][i] contains a pair (r′, w′) such that r′ < r and the check in
line 2.25 is not passed. Hence, operation o′′r of client Cj would block — a contradiction. This implies that
such a situation does not appear and the constructed order of operations also satisfies weak real-time order.

As the last step, showing that the sequences πi satisfy the at-most-one-join property follows directly from
a simple construction argument. To prove liveness, as required in the definition of a Byzantine emulation
(Definition 2), we show that no operation blocks when all base objects are correct, which follows from the
principle sketched in section 4.1 as in this case all checks are passed.

6We assume that operation ox is assigned timestamp x.

10

5 Analysis & Conclusions

The abortable construction in Algorithm 1 requires n atomic registers plus n additional ones to implement the
INC&READ counter. The presented construction has an overall communication complexity of O(n2), as the
size of the version vectors used in Algorithm 1 is linear in the number of clients n and as a linear number
of such version vectors are exchanged per operation. In contrast, the lock-step protocol of Cachin et al. [8],
also based on linear size version vectors, has an overall communication complexity of O(n). This difference
results from the fact that the server objects used by Cachin et al. are computationally strong enough to select
the latest written version vector while in Algorithm 1 the client is required to read from all register objects
to find the latest one by itself. For the implementation of Algorithm 2, we need n atomic registers plus 2n
additional ones for the atomic snapshot object. Algorithm 2, uses matrices of size n×n where the size of each
entry depends on the total number of operations N , resulting in a communication complexity of O(N · n2).
We leave for future research whether this complexity can be reduced by implementing a “garbage collection”.
However, both of our algorithms require only a linear number of base registers.

We have shown by ways of two protocols as a first known result that fork-consistent semantics can be
implemented only from registers. Our first protocol satisfies fork-linearizability and implements a shared ob-
ject of universal type. Similar to non-fork-consistent universal constructions from registers, our protocol may
abort operations under concurrency. Hence, fork-linearizability may be “added” to such protocols without
making additional assumptions. Our second protocol implements a shared memory object that ensures weak
fork-linearizability and where operations are wait-free as long as the base registers behave correctly. Weak
fork-linearizability is the strongest known fork-consistency property that may be implemented in a wait-free
manner. Although it weakens fork-linearizability, it has shown to be of practical relevance [7]. Moreover, our
second algorithm shows for the first time that registers are sufficient to implement a fork-consistent shared
memory. So far, all existing implementations are based on computationally stronger objects (featuring read-
modify-write operations [16]). We leave as an open question whether there is a weak fork-linearizable con-
struction of a universal type providing a stronger liveness condition than abortable in the fault-free case.

References

[1] Marcos K. Aguilera, Svend Frolund, Vassos Hadzilacos, Stephanie L. Horn, and Sam Toueg. Abortable
and Query-Abortable Objects and Their Efficient Implementation. In PODC: Principles of distributed
computing, pages 23–32, New York, NY, USA, 2007. ACM.

[2] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic Atomic Storage With-
out Consensus. J. ACM, 58:7:1–7:32, April 2011.

[3] Marcos K. Aguilera and Sam Toueg. Timeliness-Based Wait-Freedom: A Gracefully Degrading Progress
Condition. In PODC ’08: Proceedings of the twenty-seventh ACM symposium on Principles of dis-
tributed computing, pages 305–314, New York, NY, USA, 2008. ACM.

[4] Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial Snapshot Objects. In Proc. SPAA, pages
336–343, 2008.

[5] Christian Cachin. Integrity and Consistency for Untrusted Services. In Proceedings of the 37th inter-
national conference on Current trends in theory and practice of computer science, SOFSEM’11, pages
1–14, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] Christian Cachin and Martin Geisler. Integrity Protection for Revision Control. In Proceedings of the 7th
International Conference on Applied Cryptography and Network Security, ACNS ’09, pages 382–399,
Berlin, Heidelberg, 2009. Springer-Verlag.

[7] Christian Cachin, Idit Keidar, and Alexander Shraer. Fail-Aware Untrusted Storage. SIAM Journal on
Computing, 40(2):493–533, April 2011.

11

[8] Christian Cachin, Abhi Shelat, and Alexander Shraer. Efficient Fork-Linearizable Access to Untrusted
Shared Memory. In PODC, pages 129–138, New York, NY, USA, 2007. ACM.

[9] Dan Dobre, Matthias Majuntke, and Neeraj Suri. On the time-complexity of robust and amnesic storage.
In OPODIS, pages 197–216, 2008.

[10] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten. SPORC: Group
Collaboration on Untrusted Resources. In Proc. 9th Symposium on Operating Systems Design and Im-
plementation (OSDI 10), Vancouver, BC, October 2010.

[11] Faith Ellen Fich. How Hard Is It to Take a Snapshot? In Proc. SOFSEM, pages 28–37, 2005.

[12] Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, 1991.

[13] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Synchronization: Double-Ended
Queues as an Example. In ICDCS, page 522, Washington, DC, USA, 2003. IEEE Computer Society.

[14] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[15] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant Wait-free Shared Objects. J.
ACM, 45(3):451–500, 1998.

[16] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient Synchronization of Multiprocessors with
Shared Memory. ACM Trans. Program. Lang. Syst., 10:579–601, October 1988.

[17] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure Untrusted Data Repository
(SUNDR). In Proc. 6th Symp. Operating Systems Design and Implementation (OSDI 04), pages 121–
136, 2004.

[18] Jinyuan Li and David Mazières. Beyond One-Third Faulty Replicas in Byzantine Fault Tolerant Systems.
In Proc. NSDI, 2007.

[19] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1998.

[20] Matthias Majuntke, Dan Dobre, Marco Serafini, and Neeraj Suri. Abortable Fork-Linearizable Storage.
In Proceedings of the 13th International Conference on Principles of Distributed Systems, OPODIS ’09,
pages 255–269, Berlin, Heidelberg, 2009. Springer-Verlag.

[21] Dahlia Malkhi and Michael K. Reiter. Byzantine Quorum Systems. Distributed Computing, 11(4):203–
213, 1998.

[22] David Mazières and Dennis Shasha. Building Secure File Systems out of Byzantine Storage. In PODC,
pages 108–117, New York, NY, USA, 2002. ACM.

[23] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Report, National Institute of
Standards and Technology (NIST), January 2011. Available online at http://csrc.nist.gov/
publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf.

[24] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan Michalevsky, and Dani Shaket. Venus:
Verification for Untrusted Cloud Storage. In Proceedings of the 2010 ACM Workshop on Cloud Comput-
ing Security, CCSW ’10, pages 19–30, New York, NY, USA, 2010. ACM.

[25] Peter Williams, Radu Sion, and Dennis Shasha. The Blind Stone Tablet: Outsourcing Durability to
Untrusted Parties. In Proc. NDSS, 2009.

12

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

Appendix

A Definitions

To complete the definition of (weak) fork-linearizability in Definition 1 on page 4, we first have to introduce
the notion of a possible view [7] and the weak real-time order [7]. Definitions of the causal precedence relation
between operations are given as Definition 18 in Appendix C for the weak fork-linearizable shared memory.

Definition 3. A sequence of events π is called a possible view of a history σ at a client Ci with respect to a
type T if σ can be extended (by appending zero or more responses) to a history σ′ such that:

1. π is a sequential permutation of some subsequence of complete(σ′),

2. π|Ci = complete(σ′)|Ci , and

3. π satisfies the sequential specification of T .

Where for a sequence of events σ, complete(σ) is the maximal subsequence of σ consisting only of complete
operations.

Definition 4. Let π be a sequence of events and let lastops(π) be a function of π returning the set containing
the last operation from every client in π (if it exists), that is,

lastops(π) :=
⋃

i=1,...,n

{o ∈ π|Ci
∣∣6 ∃o′ ∈ π|Ci s.t. o precedes o′ in π}

We say that π preserves the weak real-time order of a sequence of operations σ whenever π excluding all
events belonging to operations in lastops(π) preserves the real-time order7 of π.

Variables 5. Variables used in Algorithm 1:

Universal Object Implementation, Algorithm of Client i
C INC&READ counter object, initially 0
R1, . . . Rn SWMR atomic register, initially 〈0, (0, ..., 0),⊥,⊥〉 /* ts+version+state+sig */
ts, ts′, tsl, cn integer, initially 0 /* timestamp & counter */
V [1..n], Vl[1..n], Vsuc[1..n] array of integers, intially (0, ..., 0) /* version */
s, sl state, initially ⊥ /* state */
res operation result, initially ⊥ /* return value */
sig, sigl signature, initially ⊥ /* signature */

Variables 6. Variables used in Algorithm 2:

Weak Fork-Linearizable Memory for n Clients, Algorithm of Client Ci
S, atomic snapshot object with n componenets, initially ((0,⊥), ..., (0,⊥)) /* timestamp+sig */
W1, . . . ,Wn, SWMR atomic registers, initially (⊥, 0, ∅, ∅,⊥) /* val+ts+rs+ws+sig */
v, wv value, initially ⊥ /* value written to storage */
wts, ots, i, k, r, r′, w, w′, tmp1, . . . , tmpn integer, initially 0 /* timestamps + temp. variables */
read seen[1..n][1..n], write seen[1..n][1..n], /* matrices of seen

r write seen[1..n][1..n], matrix of sets of pairs (integer, integer), initially ∅ operations */
sig, sig1, . . . , sign signature, initially ⊥ /* signatures */

7Sequence π preserves the real-time order of history σ if for each operations o, o′ in π holds: if o <σ o′ then o <π o.

13

B Proof of Correctness of Algorithm 1

This section formally proves that Algorithm 1 implements an abortable, fork-linearizable Byzantine emulation
of a universal type.

The implementation uses an INC&READ counter object, given as Algorithm 3. An INC&READ counter
object C provides two atomic operations INC&READ(C) and READ(C). An invocation to INC&READ(C)
advances the counter objectC and returns a value which is higher than any value returned before the invocation
of INC&READ(C). An invocation to READ(C) returns the current value of the counter object. The INC&READ

counter C has two properties:

P1 If a client process runs in isolation and it first calls INC&READ(C) and then later READ(C), then the same
value is returned by both invocations, and

P2 the values returned by INC&READ(C) reflect the real-time order of invocations to INC&READ(C).

The counter object C is a wait-free variant of the abortable INC&READ counter described by Aguilera et
al. [1]. For the implementation of the INC&READ counter, instead of abortable base registers [1], wait-free
atomic registers are used here, hence the counter does not need to abort.

Algorithm 3: INC&READ Counter for n Clients, Algorithm of Client Ci

Variables:
R1, . . . , Rn, SWMR atomic registers, initially (0,⊥)
cnt1, . . . , cntn, k, c, id, integers, initially 0

INC&READ() do3.1
for k = 1, . . . , n do cntk ← read(Rk)3.2
c← max1≤k≤n{cntk}+ 13.3
write(c,Ri)3.4
return n · c+ i3.5

READ() do3.6
for k = 1, . . . , n do cntk ← read(Rk)3.7
c← max1≤k≤n{cntk}3.8
id← max1≤k≤n{k|cntk = c}3.9
return n · c+ id3.10

We further define the “affected by” relation of two (high-level) operations implemented by our protocol
(Definition 7), the notion of relevant operations (Definitions 8 and 9), and the ≤ order relation on versions
(Definition 10).

Definition 7. For two operations o, o′ in history σ of the universal type implemented by Algorithm 1 we say
that o affects o′ in σ (o′ is affected by o) whenever one of the following conditions hold:

1. Operations o and o′ are both invoked by the same client, o is successful and o finishes before o′ is
invoked.

2. Operation o′ reads the state sl (version Vl) written by o, successfully verifies the signature and executes
APPLYT to sl (during o′ in lines (1.5—1.10), Vl is the version, sl the state, tsl the timestamp and sigl
the signature written during o).

3. There exists an operation o′′ such that o affects o′′ and o′′ affects o′.

The notion of a relevant operation is defined recursively.

14

Definition 8. An operation o is relevant if and only if

1. o is successful OR

2. there exists a relevant operation o′ that has been affected by o.

Definition 9. An operation o is relevant for client Ci if and only if some successful operation of Ci has been
affected by o.

Definition 10 (Order Relation). A version V is a vector of integers of length n, initially (0, . . . , 0). For two
versions V and V ′ holds V ≤ V ′ if and only if

∀i : V [i] ≤ V ′[i].

It holds V = V ′ if and only if V and V ′ are the same versions.
For two operations o and o′ with versions V and V ′ holds o ≤ o′ if and only if

V ≤ V ′

It holds o = o′ if and only if o and o′ are the same operations.

It is easy to see that ≤ relation on operations (versions) is transitive. The next definition introduces the
notion of operations taking effect. Note, that the last operation of each client, when the client crashes, may be
incomplete but may appear as a complete operation to others — i.e. it took effect.

Definition 11. An operation of client Ci takes effect if and only if the low-level write operation in line 1.13
successfully returns.

The next Corollary shows that ≤ relation on operations respects the real-time order of sequential opera-
tions.

Corollary 12. If o and o′ are two operations and o ≤ o′ then o′ does not precede o.

Proof. Let o and o′ have associated versions V and V ′ respectively. Assume by contradiction that o′ precedes
o and that o ≤ o′. During o, the entry V [i] is incremented. As o′ precedes o and as versions are digitally signed
(line 1.12), it holds that V ′[i] < V [i]. Hence, V ′ 6≥ V and therefore o 6≤ o′.

The following two Corollaries show that operations which affect each other are ordered by≤ such that the
“affected by” relation is respected. According to Definition 7, the successful operations of one client affect
each other (Corollary 13) as well as an operation that is applied to the state updated by another operation
(Corollary 14).

Corollary 13. All operations of the same client are totally ordered by ≤ relation on operations.

Proof. We show that operation o′ of client Ci is greater than its previous completed operation o. Let V and V ′

be the versions of operation o and o′ respectively. Let Vl be the version read by operation o′. The entries V ′[k],
k 6= i is assigned the maximum of Vl[k] and V [k] (line 1.10), and V ′[i] is updated with a value larger than
V [i], as V [i] is incremented with every invoked operation of Ci (line 1.11). Clearly, V ′ > V . By induction on
Ci’s operations, it follows that o′ is greater than any preceding operation of Ci.

Corollary 14. If o′ is reading state s from some register Ri updated by operation o, then o > o′.

Proof. Let V and V ′ be the versions of o and o′ respectively. When operation o′ is applied to state s, then V
is version Vl during operation o′. By lines 1.10–1.11 and analogously to the proof of Corollary 13 it follows
directly that V ′ > V .

15

The following Lemma shows the main result of this section: The universal type, implemented in Algorithm
1 satisfies fork-linearizability (Definition 1 on page 4). The proof shows how for each client the subsequences
πi are constructed. Then, by proving two claims, we show that sequences π satisfy the properties of fork-
linearizability. To ease the argumentation, operations which are not relevant at all or not relevant for client Ci
are ignored.

Lemma 15. The history σ induced by any execution of Algorithm 1 satisfies fork-linearizability with respect
to the universal object type T .

Proof. Let σ be the sequence of events observed by the clients in the protocol. We first remove all invocations
of incomplete operations that do not take effect (Definition 11). We add the corresponding completion event
of incomplete operations that take effect directly at the end of σ. Then we remove all operations that are not
relevant. Note, that σ now contains only complete and relevant operations.

We construct a sequential permutation π by totally ordering all events in σ. To achieve this, we order the
events in σ by the following rules:

1. Sort the operations in σ by ≤ relation on operations.

2. Sort any yet unsorted operations by the real-time order of their completion event.

We construct the subsequences πi (for i = 1, . . . , n) as required by the definition of fork-linearizability
(Definition 1). We include in πi all operations of client Ci in π. Then, for all o ∈ πi we include into πi all
operations o′ in π such that o′ ≤ o. Finally, we remove all operations that are not relevant for Ci.

By Corollary 12, as≤ relation on operations respects real-time order, the following claim follows directly:

Claim 15.1 Let o and o′ be two operations and o precedes o′ in σ. Then, o precedes o′ in π.

Claim 15.2 Let oc be an operation of client Ci in sequence πm of client Cm, m ∈ 1, . . . , n, that updates state
s in register Rj ; state s was written by operation oa of client Cj , j ∈ 1, . . . , n, into register Rj . Then:

1. Operation oa is in πm, and

2. in πm there is no operation by client Ck, k ∈ 1, . . . , n, that is relevant for Cm, that is subsequent
to oa in πm, and that completes before oc is invoked.

By Corollary 14 holds that oc > oa. Hence, oa is included in πm by construction and the first statement of
Claim 15.2 follows directly.

To prove the second statement of Claim 15.2, let us assume for contradiction that such an operation ob of
client Ck exists in πm which is invoked after oa completes and which completes before oc is invoked. Hence,
oa, ob, oc are three sequential operations in that order in σ.

We first show that ob and oc do not affect each other, i.e. ob is not affected by oc and oc is not affected by
ob:

• “oc is not affected by ob”: Operation oc is affected by oa and by osuc, the last successful operation by
client Ci previous to oc, if it exists. If osuc is affected by ob then oa precedes osuc. Hence, the ith entry
in the version of osuc is greater then the one of oa and therefore oa could not affect oc (as the check in
line 1.7 is not passed) — a contradiction. If osuc is not affected by ob, then oc is also not affected by ob
(as “affected by” relation is transitive; Definition 7).

• “ob is not affected by oc”: Follows directly as ob precedes oc.

Next, we derive a contradiction to the assumption that operation ob exists. As operations ob and oc are
both relevant for client Cm and oc and ob do not affect each other, there are successful operations o′b and o′c of
client Cm such that o′b is affected by ob and o′c is affected by oc. Let o′b and o′c be the operations of Cm that are
affected by ob or oc respectively with the smallest versions (they exists by Corollary 13). Note that, as o′b and

16

o′c are both successful operations of the same client Cm, they affect each other. Let us assume w.l.o.g. that o′c
is affected by o′b. This means, there exists some operation ojoin of client Cjoin, join ∈ 1, ..., n, which is the
operation with the smallest timestamp that is affected by both ob and oc. For operation ojoin either holds

• (A) ojoin ≤ o′b and o′b(= o′c) is affected by ojoin, or

• (B) ojoin is affected by o′b and o′c(6= o′b) is affected by ojoin.

To have ojoin to be affected by two operations that do not affect each other, by Definition 7, (1) there must be
some operation ojoin suc which is the last successful operation of client Cjoin previous to ojoin that is affected
either by ob or oc. W.l.o.g. we assume that ojoin suc is affected by ob. Note, that ojoin suc ≥ ob. Further,
ojoin suc is not affected by oc, as otherwise ojoin would not be the first operation affected by both ob and oc
(ojoin suc < ojoin by Corollary 13). Further, (2) ojoin reads the state written by some operation or that is
affected by oc and or ≥ oc. Analogously, or is not affected by ob (or < ojoin by Corollary 14). Hence, as ob
and oc do not affect each other, there are disjunct “affected by” paths8 from ob to ojoin suc and from oc to or
(Figure 4).

During operation ojoin suc the jointh entry of its version is raised to Vjoin suc[join] (line and 1.11) and
as ojoin suc is successful, also Vsuc[join] ≥ Vjoin suc[join] (line 1.18) from this point on at client Cjoin.
Consequently, during ojoin, as ojoin suc precedes ojoin, client Cjoin does not accept version Vl such that
Vl[join] < Vjoin suc[join] (check in line 1.7 would not be passed). Hence, there must be an operation o′join
on the path from oc to or that raises the jointh entry in the versions to Vjoin suc[join] or higher. Note, as
the jointh entry is only raised by an operation of Cjoin (line 1.11), o′join has to be an operation of Cjoin as
well. Operation o′join cannot precede ojoin suc, as ojoin suc is the first operation to raise the jointh entry to
Vjoin suc[join] (line 1.11). If o′join follows ojoin suc, then o′join does not accept versions Vl with Vl[join] <
Vjoin suc[join] (check in line 1.7), as Vsuc[join] ≥ Vjoin suc[join] at Cjoin after ojoin suc has finished. Hence,
o′join does not exists on the path from oc to or and ojoin would block when reading the version of or. Thus,
we have a contradiction and ojoin does not exists.

This means that either o′b does not exist (case A) which implies that ob is not relevant for Cm or o′c does
not exists (case B) which implies that oc is not relevant for Cm. Consequently, the assumption that there is an
operation ob between oa and oc in πm is wrong and thus, all operations in πm are totally ordered by ≤.

We now show that πm for allm = 1, ..., n satisfy fork-linearizability as given in Definition 1. To show that
πm is a possible view of client Cm, properties 1. and 2. of Definition 3 follow directly from the construction
of πm given at the beginning of the Lemma. Claim 15.2 proves property 3. of Definition 3. Hence, πm is a
possible view of client Cm. Each sequence πm satisfies real-time ordering as shown in claim 15.1. The no-join
property (condition 3. in Definition 1) is also an easy consequence of the construction of πm. The non-relevant
operations that have been removed at the beginning of this proof, can be added to all πm in real-time order of
there completion event. As they are not relevant, they do not effect the sequential specification and thus, they
do not violate fork-linearizability.

The next two Lemmas show that Algorithm 1 implements an abortable Byzantine emulation with fork-
linearizability of a universal type (see Definition 2 on page 5). Lemma 16 shows that no operation blocks, and
Lemma 17 proves that no operation is trivially aborted.

Lemma 16. If registers Ri, . . . Rn and INC&READ object C are correct, and σ is the history induced by any
execution of Algorithm 1, then no operation in σ halts in line 1.6 nor in line 1.7 of Algorithm 1.

Proof. We show that no operation in Algorithm 1 blocks: If the base objects are correct, and as clients are
trusted, no signature is forged and thus no operation blocks in line 1.6.

It remains to show that no operation of client Ci blocks in line 1.7. Assume by contradiction that during
operation o of client Ci ∃k : Vsuc[k] > Vl[k]. Let osuc be the successful operation of Ci that wrote some

8An “affected by” path from operation o1 to ox is a sequence of operations o1, o2, ..., ox such that for i = 1, ..., x − 1, oi affects
oi+1.

17

ojoinojoin suc

or

o′b

oa ob oc ojoinojoin suc

or

Case A

o′b = o′c

oa ob oc o′c

Case B

Figure 4: Proof of Lemma 15. The arrows denote the “affected by” relation between operations.

state with version Vsuc to register Ri. As osuc is not aborted, client Ci has read the same timestamp from the
INC&READ object C in line 1.2 and 1.14 during osuc. This means, as the INC&READ object C is correct, that
no other operation executed INC&READ(C) between INC&READ(C) and READ(C) of osuc and that osuc has
written the highest timestamp so far (line 1.13). Hence, INC&READ(C) of operation ol, that wrote version
Vl, happened either (1) before INC&READ(C) of osuc or (2) after READ(C) of osuc. In case (1) o would not
find l as the highest index in line 1.5 and thus it would not read ol as osuc holds a higher timestamp than ol
(INC&READ object is correct) — a contradiction. For case (2), ol would read a version ≥ Vsuc and thus Vl ≥
Vsuc (line 1.10)— a contradiction. Concluding, during operation o of client Ci no such k : Vsuc[k] > Vl[k]
exists and thus, the protocol does not block in line 1.7.

Lemma 17. If registers Ri, . . . Rn and INC&READ object C are correct then, if operation o in an execution of
Algorithm 1 returns ABORT, then o is concurrent with some other operation.

Proof. The correctness follows directly from the properties of INC&READ object C: Operation o is only
aborted if the condition in line 1.15 is satisfied. This is the case when object C returns a different value to call
in line 1.14 than in line 1.2. The properties of C imply, that this happens only if some other operations calls
INC&READ(C) in the meanwhile. This means, some other operation is concurrent with o (according to the
definition in Section 2 on page 3) and thus, we are done.

Note, that Lemma 17 is sufficient to show that Algorithm 1 implements an abortable object. It is easy to
see that in every situation where an operation of Algorithm 1 aborts, Aguilera’s universal type construction
([1], Algorithm 2) would abort as well.

Finally, the correctness of Algorithm 1 has been shown in Lemma 15 (Fork-Linearizability), Lemma 16
(No Blocking), and Lemma 17 (Nontriviality).

18

C Proof of Correctnes of Algorithm 2

Now we prove that Algorithm 2 implements a wait-free, weakly fork-linearizable Byzantine emulation of a
shared memory. To complete the definition of weak fork-linearizability in Definition 1 on page 4, we first add
the formal definition of the causal precedence relation between READ and WRITE operation of Algorithm 2.

Definition 18. For two operations o, o′ in history σ of the shared memory implemented by Algorithm 2 we say
that o causally precedes o′ in σ (o′ causally depends on o), denoted o →σ o

′ whenever one of the following
conditions hold:

1. Operations o and o′ are both invoked by the same client and o finishes before o′ is invoked.

2. operation o′ is a READ operation, o is a WRITE operation, and o′ reads the value written by o.

3. There exists an operation o′′ such that o→σ o
′′ and o′′ →σ o

′.

Now, we can proceed with the proof that Algorithm 2 satisfies the properties of weak fork-linearizability
as given in Definition 1.

To show the existence of sequential permutations πi for every client Ci that satisfy weak fork-linearizabi-
lity, let oi1, . . . , opili be the operations of Ci ordered by their timestamps, i ∈ 1, . . . , n, li ∈ N. The timestamp
of an operation is variable ots that is assigned to a READ operation in line 2.4 and to a WRITE operation in line
2.15, respectively. For every clientCi we define a directed graphGπi , where the set of operations oi1, . . . , opili
are the vertices. For all k ∈ 1, . . . , li − 1, we draw an edge from oik to oi(k+1).

Next, we construct a directed graph Gπ as Gπ1 ∪ Gπ2 ∪ . . . ∪ Gπn . We add an edge from oiwi to ojrj to
graph Gπ if oiwi is a WRITE operation of Ci, i ∈ 1, . . . , n, and ojrj is a READ operation of Cj , j ∈ 1, . . . , n,
that reads the value written by oiwi .

The purpose of the next Corollary is to show that a partial order of the operations can be defined according
to the ordering of the vertices of graph Gπ

Corollary 19. Graph Gπ does not contain directed cycles.

Proof. Let us assume there exists the following directed cycle which is also the shortest possible one: (oir, oiw,
ojr, ojw), where oir is a READ and oiw is a WRITE operation of clientCi, and ojr is a READ and ojw is a WRITE

operation of client Cj . Further, let oir have a lower timestamp than oiw, let ojr read the value written by oiw,
let ojr have a lower timestamp than ojw, and let oir read the value written by ojw. We now can deduce the
following statements:

1. oir precedes oiw, as both are operations of Ci and oir has a lower timestamp than oiw (line 2.13).

2. ojr returns after oiw has been invoked, as otherwise ojr cannot read the value written by oiw (written
values are digitally signed).

3. ojr precedes ojw, as both are operations of Cj and ojr has a lower timestamp than ojw (line 2.13).

4. ojw is invoked after oiw has been invoked, by 2. and 3.

5. oir returns after ojw has been invoked, as otherwise oir cannot read the value written by ojw (written
values are digitally signed).

By statements 1.–5. we have the contradiction that oir returns before and after oiw is invoked. The analogous
arguments hold, if the circle is extended between ojw and oir to a circle (oir, oiw, ojr, ojw, . . .) of arbitrary
length.

Hence, graph Gπ does not contain directed cycles.

19

For each client Ci we recursively define the subgraph T (oili) that contains oili as a vertex, and if o is a
vertex of T (oili), and (o′, o) is an edge of Gπ, then vertex o′ and edge (o′, o) is added to T (oili) until no more
edges can be added.

Corollary 20. The set of operations represented by the vertices of T (oili) contains all operations of client Ci.

Proof. By construction of graphGπi , there is a path from any operation of client Ci to oili . Thus, all operation
of Ci are contained in T (oili).

Now, we start constructing for each client Ci a subsequence πi of the history σ induced by any execution
of Algorithm 2 that satisfies the properties of weak fork-linearizability (Definition 1). The next corollary
constructs an order relation among operations in πi.

Corollary 21. There is a sequential permutation πi of the set of operations represented by the vertices of
T (oili) and an order relation <πi that satisfies the following condition: For every operation o ∈ πi and every
WRITE operation o′ ∈ V (Gπ) s.t. o′ causally precedes o, it holds that o′ ∈ πi and that o′ <πi o.

Proof. By Corollary 20, we know that every operation of Ci is contained in πi. Further, by the construction of
graphs G(π) and T (oili) every operation that causally precedes an operation in πi (Definition 18) is contained
in πi. As T (oili) contains no cycles (Corollary 19), for o, o′ ∈ πi we order o before o′ (o <πi o

′) if there is an
edge from o to o′ in T (oili).

The order relation constructed in the proof of Corollary 21 does not necessarily respect the sequential
specification of a shared memory. The next corollary shows how this can be achieved.

Corollary 22. The order relation <πi , constructed in Corollary 21 can be extended such that πi satisfies the
sequential specification of shared memory: If okr is a READ operation of some client Ck, k ∈ 1, . . . , n, in πi
that reads the value written by WRITE operation olw from client Cl, l ∈ 1, . . . , n, then we additionally order
okr before ol(w+1) where ol(w+1) is the next WRITE operation of Cl in πi (if it exists in πi).

Proof. By causality olw is ordered before okr. There is no WRITE operation of Cl between olw and okr in πi,
as ol(w+1) is the next WRITE operation of Cl in πi after olw, and okr can be ordered before it.

Now we define how the remaining operations have to be ordered such that πi satisfies weak real-time
ordering. The proof of the following lemma distinguishes two cases to show that when a READ reads a value
written by some WRITE, then the WRITE is the last one that precedes the READ. The two cases correspond to
the fact that a READ operation of client Ci may appear in its own sequence πi (case B) as well as in sequence
πj of Cj .

Corollary 23. The order relation <πi , constructed in Corollaries 21 and 22 does not violate weak real-time
order.

Proof. We distinguish the following cases:

Case A: Let w and w′ be two WRITE operations of client Ci and let r be a READ operation of client Cj that
reads the value written by w. Let w precede w′ in πi. Let r be not the last operation of Cj in πi. Then
w′ does not happen before r, i.e. r.UPDATE happens before w′.SCAN9.

Proof. We assume by contradiction that WRITE operation w′ happens before READ operation r, i.e.
w′.SCAN precedes r.UPDATE (Ass. A). By assumption, r reads the value written by operationw and thus
by line 2.8 set read seenj [j][i] at client Cj contains the couple (r, w)10. Let wmin ≤ w′ be the WRITE

9In the following x.UPDATE (x.SCAN) denotes a call of procedure UPDATE (SCAN) during READ (WRITE) operation x in line 2.4
(line 2.16). The analogous notation holds for x.write (x.read) in line 2.5 (line 2.15) during Lemma 28.

10To simplify the presentation, let r denote the timestamp assigned to operation r and w the timestamp assigned to w.

20

operations of client Ci directly following w. Then, during operation wmin, by line 2.17, the couple
(xmin, wmin) is added to set write seeni[i][j] at client Ci. By Ass. A and as all written timestamps are
digitally signed, it holds that xmin < r. As r is not the last operation of Cj in πi, there exists a read
operation r′′ of Ci that happens after w′, a write operation w′′ of Cj that happens after r, and there exists
a path in graph T (opili) from r to r′′ that contains w′′ (see Figure 5). During operation w′′ of client Cj ,
variable read seenj is written by line 2.15. As there is the causal path from w′′ to r′′, by lines 2.7 and
2.15, during operation r′′ of client Ci, r read seen[j][i] contains couple (r, w). By line, 2.7 it is also
contained in read seeni[j][i] during operation r′′. We further know that write seeni[i][j] at client Ci
contains (xmin, wmin). As operation wmin is the minimal operation larger then w, the check in line 2.25
is not passed as xmin < r and operation r′′ blocks. This means that r is not in πi — a contradiction.

Case B: Let w and w′ be two WRITE operations of client Cj and let r be a READ operation of client Ci that
reads the value written by w. Let w precede w′ in πi. Let w′ be not the last operation of Cj in πi. Then
w′ does not happen before r, i.e. r.UPDATE happens before w′.SCAN.

Proof. We assume by contradiction that WRITE operation w′ happens before READ operation r, i.e.
w′.SCAN precedes r.UPDATE (Ass. B). By assumption, r reads the value written by operation w and
thus by line 2.8 set read seen[i][j]i at client Ci contains the couple (r, w). Let wmin ≤ w′ be the WRITE

operations of client Cj directly following w. Then, during operation wmin, by line 2.17, the couple
(xmin, wmin) is added to set write seenj [j][i] at client Cj . By Ass. B and as all written timestamps are
digitally signed, it holds that xmin < r. As w′ is not the last operation of Cj in πi, there exists a read
operation r′′ of Ci that happens after r, a write operation w′′ of Cj that happens after w′, and there exists
a path in graph T (opili) from w to r′′ that contains w′ and w′′ (see Figure 5). During operation w′′ of
client Cj , variable write seenj is written by line 2.15. As there is the causal path from w′′ to r′′, by
lines 2.10 and 2.15, during operation r′′ of client Ci, r write seen[j][i] contains couple (xmin, wmin).
We further know that read seeni[i][j] at client Ci contains (r, w). As operation wmin is the minimal
operation larger then w, the check in line 2.28 is not passed as xmin < r and operation r′′ blocks. This
means that w′ is not in πi — a contradiction.

It remains to show that in πi READ operations of client Cj that read values written by operations of client Ck
can be ordered to satisfy weak real-time order. The proof is obvious as weak real-time order holds for πj when
case B from above is applied.

Hence, the order induced in Corollary 22 does not violate weak real-time order — i.e. the not yet ordered
operations can be ordered in real-time order or in any deterministic order if they are concurrent.

Client Ci:

Client Cj :

Client Ci:

Client Cj :

Case B

Case A
w r′′w′

r w′′

w w′ w′′

r r′′

Figure 5: Proof of Corollary 23. Arrows denote the causality relation.

Corollary 24. If all operations in πi which have not yet been ordered in Corollary 21 or 22 are ordered
according to their real-time order if they are sequential and by the real-time order of their completion event
else, then order relation <πi of πi satisfies weak real-time ordering.

21

Proof. The proof follows directly from construction and Corollary 23.

To complete the correctness proof, we have to add operations to each πi such that the join-at-most-once
property is satisfied. This is because πi may contain operations of πj but none of πk, but πj might have
common operations with πk. To ensure that πi and πj share a common prefix such operations have to be added
to πi. Thus, we define a merge operation on totally ordered command sequences πi.

Definition 25. Let πi and πj be two totally ordered command sequences such that there are at least two
operation o, o′ for which holds o ∈ πi ∩ πj and o′ ∈ πi ∩ πj11. Let π|x denote the prefix of an operation
sequence π that ends with operation x. To merge πi and πj we perform the following steps: Let o2ndlast be the
second last operation in πi ∩ πj . In πi and πj we replace the prefix πi|op2ndlast and πj |op2ndlast by πmergeij :

• πmergeij contains all operations from πi|op2ndlast ∪ πj |op2ndlast

• If for two operations o, o′ in πmergeij holds o <πi o
′ or o <πj o

′, then we order o before o′ in πmergeij ,
i.e. o <πmergeij o

′.

• If for two operations o, o′ in πmergeij neither o <πmergeij o
′ nor o >πmergeij o

′ holds, then we order o and
o′ in πmergeij according to their real-time ordering or by the real-time order of their completion event if
they are concurrent.

Corollary 26. For all pairs, i, j ∈ 1, ..., n, if we merge πi and πj whenever they have two or more operations
in common until no more changes appear. Then sequences πi, ...πn satisfy the At-most-one-join property
(Definition 1).

Proof. Correctness follows directly from the construction given in Definition 25.

Lemma 27. The history σ induced by any execution of Algorithm 2 satisfies weak fork-linearizability with
respect to a shared memory object with n registers.

Proof. The correctness follows from Corollaries 20 and 22 which ensures that πi is a view of σ with respect
to the functionality of a shared memory object, from Corollary 21 that guarantees that causality is respected,
from Corollary 24 that ensures weak real-time ordering, and Corollary 26 that guarantees the At-most-one-join
property.

Lemma 28. If all base registers and the snapshot object S is correct, and σ is the history induced by any
execution of Algorithm 2, then no READ operation blocks in line 2.6, 2.25, nor 2.28 and no WRITE operation
blocks in line 2.18.

Proof. We show that no operation of the shared memory implemented in Algorithm 2 blocks when the base
registers behave correctly. As the clients behave correctly and registers do not forge signatures, it is easy to
see that WRITE operations do not block. The same argument holds for the check in line 2.6 during READ

operations. Thus, it remains to show that READ operations do not block in line 2.25 and 2.28.
Let us assume for contradiction that there is a READ operation of client Ci that blocks in line 2.25 or 2.28:

Line 2.25 There exists a READ operation r of clientCk that has read from WRITE operationw of clientCi (line
2.8). By assumption, the minimal WRITE operation of Ci after w, called w′ has seen READ operation r′

of client Ck (line 2.17). As r′ < r, and as all registers are correct, r.UPDATE does not precede w′.SCAN.
Thus, w′.write precedes r.read. However, as w precedes w′, we conclude that r reads the value written
by w′ — a contradiction.

11By construction, for all such operations hold o <πi o
′ and o <πj o

′ or o >πi o
′ and o >πj o

′.

22

Line 2.28 There exists a READ operation r of clientCi that has read from WRITE operationw of clientCk (line
2.8). By assumption, the minimal WRITE operation of Ck after w, called w′ has seen READ operation r′

of client Ci (line 2.17). As r′ < r, and as all registers are correct, r.UPDATE does not precede w′.SCAN.
Thus, w′.write precedes r.read. However, as w precedes w′, we conclude that r reads the value written
by w′ — a contradiction.

Hence, no operation in σ blocks.

Finally, it has been shown in Lemma 27 (Weak Fork-Linearizability), and Lemma 28 (No Blocking),
that Algorithm 2 correctly implements a wait-free, weak fork-linearizable Byzantine emulation of a shared
memory.

23

	Introduction
	System Model
	A Fork-linearizable Universal Type
	Algorithm Ideas
	Description of Algorithm 1
	Correctness Arguments

	A Weak Fork-Linearizable Shared Memory
	Algorithm Ideas
	Description of Algorithm 2
	Correctness Arguments

	Analysis & Conclusions
	Definitions
	Proof of Correctness of Algorithm 1
	Proof of Correctnes of Algorithm 2

