
Verifying the Consistency of Remote Untrusted Services with
Conflict-Free Operations∗

Christian Cachin1

IBM Research - Zurich
cca@zurich.ibm.com

Olga Ohrimenko2

Microsoft Research, Cambridge (UK)
oohrim@microsoft.com

8 February 2018

Abstract

A group of mutually trusting clients outsources a computation service to a remote server, which they
do not fully trust and that may be subject to attacks. The clients do not communicate with each
other and would like to verify the correctness of the remote computation and the consistency of the
server’s responses. This paper presents the Conflict-free Operation verification Protocol (COP) that
ensures linearizability when the server is correct and preserves fork-linearizability in any other case.
All clients that observe each other’s operations are consistent, in the sense that their own operations
and those operations of other clients that they see are linearizable. If the server forks two clients by
hiding an operation, these clients never again see operations of each other. COP supports wait-free
client operations in the sense that when executed with a correct server, non-conflicting operations
can run without waiting for other clients, allowing more parallelism than earlier protocols. A conflict
arises when an operation causes a subsequent operation to produce a different output value for the
client who runs it. The paper gives a precise model for the guarantees of COP and includes a formal
analysis that these are achieved.
Keywords. Cloud computing, fork-linearizability, data integrity, verifiable computation, conflict-
free operations, Byzantine emulation.

1 Introduction

With the advent of cloud computing, most computations run in remote data centers and no longer on
local devices. As a result, users are bound to trust the service provider for the confidentiality and the
correctness of their computations. This work addresses the integrity of outsourced data and computations
and the consistency of the provider’s responses. Consider a group of mutually trusting clients who want
to collaborate on a resource that is provided by a remote, partially trusted server. This could be a wiki
containing data of a common project, an archival document repository, or a groupware tool running in the
cloud. A subtle change in the remote computation, whether caused inadvertently by a bug or deliberately
by a malicious adversary, may result in wrong responses to the clients. The clients do not trust the
provider to always respond correctly, hence, they would like to assess the integrity of the computation,
to verify that responses are correct, and to check that they all get consistent responses.

In an asynchronous network model without communication among clients such as considered here,
a faulty or Byzantine server may perform a forking attack and omit the effects of operations by some
clients in her responses to other clients. Not knowing which operations other clients execute, the forked
clients cannot detect such violations. The best achievable consistency guarantee in this setting is captured
by fork-linearizability, introduced by Mazières and Shasha [22] for storage systems. It ensures that
whenever the server in her responses to a client C1 has ignored an operation executed by a client C2,

∗A predecessor of this paper with a slightly different title was presented at OPODIS 2014 and appears in the proceedings [8].
1Corresponding author. IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.
2Work done at IBM Research - Zurich and at Brown University.

1

then C1 can never again observe an operation by C2 afterwards and vice versa. In other words, the views
of the two clients remain forked after the first inconsistency. This property ensures clearly defined service
semantics in the face of an attack and allows clients to detect server misbehavior easily. For instance,
the clients may periodically exchange a message outside the model over a low-bandwidth channel and
thereby verify the correctness of a service in an end-to-end way.

Several conceptual [9, 21, 6, 7] and practical advances [31, 11, 20, 26, 10] have already improved
consistency checking and verification with fork-linearizability and related notions. These protocols en-
sure that when the server is correct, the service is linearizable and ideally also wait-free, that is, every
client’s operations complete independently of other clients. It has been recognized, however, that con-
flicts between operations can cause a clients to block; this applies to fork-linearizable semantics [22, 9]
and to other forking consistency notions [6, 7]. By weakening the notion of fork-linearizability to per-
mit some inconsistent operations in the views of the forked clients, one can circumvent blocking, as
illustrated by FAUST [7] and Venus [26].

In this paper, we go beyond storage services and address the consistency of computation coordi-
nated by a Byzantine server. The Conflict-free Operation verification Protocol or COP imposes fork-
linearizable semantics for arbitrary functionalities and allows clients to operate concurrently without
blocking unless their operations conflict. COP extends earlier protocols aiming at the same goal, in par-
ticular, the Blind Stone Tablet (BST) protocol [31]; unlike previous works, COP comes with a detailed
formal analysis of its properties.

Supporting wait-free operations and avoiding server-side locks are key features for efficient collabo-
ration with remote coordination, as geographically separated clients may operate at different speed. Con-
sequently, previous work has devoted a lot of attention to identifying and avoiding blocking [22, 9, 18].
For example, two read operations in a storage service never conflict. On the other hand, when a client
writes a data item concurrently with another client who reads it, the reader has to wait until the write
operation completes; otherwise, fork-linearizability is not guaranteed [9]. If all operations are to pro-
ceed without blocking, though, it is necessary to relax the consistency guarantees to notions such as
weak fork-linearizability [7], for instance. COP maintains the stronger property of fork-linearizability
and always lets clients proceed at their own speed; conflicting operations that would block are aborted,
as considered by Majuntke et al. [21]. The definition of conflicting operations in COP is generic and
corresponds to a “write-read conflict” between two concurrent database transactions.

In COP, the server merely coordinates client-side operations but does not compute the responses
to operations nor maintain the service state. This conceptually simple approach can be found in many
related protocols [31, 12, 11] and practical collaboration systems (such as git or Mercurial for source-
code versioning).

1.1 Contributions

This paper considers a generic service executed by an untrusted server and introduces the Conflict-free
Operation verification Protocol (COP) with the following properties:

• COP provides wait-free, abortable consistency verification and ensures fork-linearizability to a
group of clients executing an arbitrary joint functionality and using a remote Byzantine server for
coordination; it exploits sequences of non-conflicting operations. The notion of conflict considered
by COP corresponds to write-read conflicts in databases and generalizes commutative operations
used in previous work.
• COP comes with a detailed formal analysis and proof of correctness, showing that it achieves fork-

linearizable semantics for generic service emulation; previous work did not establish this notion.

COP follows the general pattern of most previous fork-linearizable emulation protocols, in particular the
Blind Stone Tablet (BST) protocol [31]. For determining when to proceed with concurrent operations,
we consider whether sequences of operations conflict and respect the state of the service, in contrast to
earlier protocols, which considered only isolated operations.

2

COP adopts the notion of conflict-freedom from VICOS [2], which appeared after the preliminary
publication of COP. VICOS also illustrates one way to extend COP through authenticated data structures
such that the service state is held by the remote server instead of the clients. Combining COP with these
appears possible but is left to future work.

1.2 Related work

This section reviews related protocols according to their features and not always in chronological order.
A summary of these systems in comparison with COP is given in Table 1.

Storage protocols. Fork-linearizability has been introduced (under the name of fork consistency) to-
gether with the SUNDR storage system [22, 17]. Conceptually SUNDR operates on storage objects with
simple read/write semantics. Subsequent work of Cachin et al. [9] improves the communication cost
of untrusted storage protocols to linear in the number of clients, compared to the quadratic overhead of
SUNDR. A lock-free storage protocol (called CONCUR) was proposed by Majuntke et al. [21] and intro-
duced the idea of aborting operations that might block. This means that all operations complete in the
absence of contention, i.e., when they arrive one after the other at the server; but with contention, all con-
current operations except for one are aborted. CONCUR does not distinguish between types operations
that conflict or not.

FAUST [7] and Venus [26] offer only weak fork-linearizability, which excludes the last operation re-
sponse from the consistency guarantee (i.e., the last operation of one client may differ from the one seen
by another client and fork-linearizability holds only after the client completes another operation). How-
ever, these two protocols also extend the model by introducing occasional message exchanges among
the clients. This allows FAUST and Venus to obtain stronger semantics, in the sense that they eventu-
ally reach consistency (i.e., linearizability) or detect server misbehavior. In the more restrictive model
considered here, fork-linearizability is the best possible guarantee [22].

In Depot [20], an even weaker notion called fork-causal consistency is ensured for the stored data by
the core algorithm. Through client-to-client communication, Depot also supports “join” operations after
forks and achieves a condition called fork-join-causal consistency. This resembles the “eventual con-
sistency” of geo-replicated cloud storage systems, where views may fork temporarily and be reconciled
again later. In contrast, COP aims at the stronger notion of fork-linearizability and does not consider
communication among clients.

All protocols mentioned so far except Depot use vector clocks (or even vectors of vector clocks) for
keeping track of the ordering relation among operations. Depot instead constructs a hash chain over all
operations.

Generic services. COP builds on the Blind Stone Tablet (BST) protocol [31], which first extended fork-
linearizability consistency verification from storage to generic services. It considers a database hosted by
a remote, untrusted server and propagates state updates to all clients after they have been ordered. Every
client builds a hash chain over the operation log for keeping track of the consistency with other clients.

BST allows some client operations that commute to proceed concurrently and aborts others that do
not commute. However, it achieves only limited wait-freedom, even for commuting operations. Further-
more, there is no formal analysis of the consistency achieved by the BST protocol. The discussion of
fork-linearizability by Williams et al. [31] only addresses database state updates, but not the responses
output by clients. We elaborate on these shortcomings in Section 3.3 and provide in Section 4 a detailed
analysis of COP as a key contribution of this work.

Non-blocking protocols. In the context of cloud services replicated over wide-area networks, the
tradeoff between fault-tolerance, availability, and consistency has received a lot of attention through the
“CAP Theorem” [4]. Services that explicitly allow operations to proceed in parallel whenever possible

3

Protocol Wait-free Function Consistency Execution Proof
SUNDR [22, 17] — storage fork-lin. server —
FAUST [7], Venus [26] X storage weak fork-lin. server X
CONCUR [21] — storage fork-lin. clients X
BST [31] (X) single commuting op. (fork-lin.) clients —
SPORC [11] X generic op. transform (weak fork-lin.) clients —
Depot [20] — storage fork-join-causal clients X
VICOS [2] X storage, conflict-free fork-lin. server —
COP (this work) X generic, conflict-free fork-lin. clients X

Table 1: Summary of related protocols. In this table under function, the BST protocol supports only
a single commuting operation and does not achieve wait-freedom (as indicated by the parentheses in
the first column); SPORC is wait-free for generic functions that have operational transforms; COP is
wait-free for generic non-conflicting operation sequences. For the consistency property, weak fork-lin-
earizability (and fork-* linearizability) allows the last operation of a client to be inconsistent compared
to fork-linearizability; however, BST and SPORC do not guarantee their consistency notion for client
responses, only for state changes that may occur much later (as indicated by the parentheses). The
execution column indicates whether the clients compute operations and maintain state or if this is done
by the server. Finally, proof indicates whether an algorithm has been formally proven correct. Note that
VICOS appeared after the initial publication of COP.

provide an attractive way to circumvent the impossibility of being “available” and “consistent” simul-
taneously in the presence of network “partitions” [25, 24, 27]. Commutative Replicated Data Types
(CRDTs) [24], for example, combine strong consistency with immediate responses, in order to enable
strong consistency even with replication over wide-area networks. COP exploits a similar, workload-
dependent property for achieving a different goal, which allows COP to run on an untrusted server.

SPORC [11] is a group collaboration system where operations do not need to be executed in the
same order at every client by virtue of employing operational transforms. The latter concept allows for
shifting operations to a different position in an execution by transforming them according to properties
of the skipped operations. Differently ordered and transformed variants of a common sequence converge
to the same end state. SPORC is stated to provide fork-* linearizability [18], which is almost the same
as weak fork-linearizability [7]; both notions are strict relaxations of fork-linearizability that permit
concurrent operations to proceed without blocking, such that protocols become wait-free. The increased
concurrency is traded for weaker consistency, as up to one diverging operation may exist between two
clients. Moreover, there is no formal analysis for SPORC. As in BST, SPORC addresses only the updates
of client states and does not consider local outputs; however, for showing linearizability, one has to
consider the responses of operations.

The subsequent extension of SPORC to Frientegrity [10] leverages read/write operations on storage
objects to a complete social network that may be hosted on an untrusted provider. Frientegrity provides
fork-* linearizability as consistency condition like SPORC and adds many further features beyond our
interest. However, the consistency and integrity verification properties are the same as for SPORC.

FAUST [7] and Venus [26], mentioned before, never block clients and enjoy eventual consistency,
but guarantee only weak fork-linearizability.

In contrast to these protocols, COP ensures the stronger fork-linearizability condition, where every
operation is consistent as soon as it completes and no client is ever in danger of acting upon receiving
an arbitrary output. In terms of expressiveness, SPORC is neither weaker nor stronger than COP: On
one hand, SPORC seems more general as it never blocks clients even for operations that do not appear to
commute. On the other hand, SPORC is limited to functions with transformable operations and mandates
that all operations are invertible. Therefore SPORC cannot address services with conflicting operations,
which exist in many realistic service specifications [9].

VICOS [2] protects the integrity and consistency verification of a generic cloud-object storage ser-

4

vice. It extends the protocol of this work and shows how to apply it in a practical deployment.

1.3 Organization and relation to previous version

A predecessor of this paper [8] considered only commutative operations instead of conflict-free ones.
Brandenburger et al. [2] have subsequently introduced conflict-free operations with VICOS and shown
that it is sufficient to abort only when a conflict occurs but not for all commuting operations. We take
this up here because the notion is more general than commutativity for consistency verification.

Furthermore, the authenticated version of COP in [8], which shifted the state from the clients to
the server and appeared in the earlier version, is not contained here. The reason lies in the lack of
formalization, which would go beyond the scope of this version. VICOS [2] also exploits authenticated
data types for keeping the state remotely but does not present a formal consistency analysis. The focus
of this work is on a proof for achieving fork-linearizability with COP.

This paper continues by first introducing the notation and basic concepts in Section 2. The subsequent
section presents COP and discusses its properties. A detailed analysis of COP follows in Section 4.
Finally Section 5 concludes the paper.

2 Definitions

2.1 System model

We consider an asynchronous distributed system with n clients, C1, . . . , Cn and a server S, modeled
as processes. Each client is connected to the server through an asynchronous, reliable communication
channel that respects FIFO order. A protocol specifies the operations of the processes. All clients are
correct and follow the protocol, whereas S operates in one of two modes: either she is correct and
follows the protocol or she is Byzantine and may deviate arbitrarily from the specification.

2.2 Functionality

We consider a deterministic functionality F (also called a type) defined over a set of states S and a set
of operations O. F takes as arguments a state s ∈ S and an operation o ∈ O and returns a tuple (s′, r),
where s′ ∈ S is a state that reflects any changes that o caused to s and r ∈ R is a response to o

(s′, r)← F (s, o).

This is also called the sequential specification of F .
We extend this notation for executing a sequence of operations 〈o1, . . . , ok〉, starting from an initial

state s0, and write
(s′, r) = F (s0, 〈o1, . . . , ok〉)

for (si, ri) = F (si−1, oi) with i = 1, . . . , k and (s′, r) = (sk, rk). Note that an operation in O may
represent a batch of multiple application-level operations.

2.3 Operations and conflicts

Conflicts between operations of F play an important role in protocols that may execute multiple opera-
tions concurrently and have been studied intensively in the context of multi-version concurrency control
for databases [30] as well as in concurrent and distributed computing [15]. In this work, an operation
o1 ∈ O is said to conflict with an operation o2 ∈ O in a state s ∈ S if and only if the presence of o1
before o2 influences the return value of o2. In other words, ifC1 executes o1 and o1 does not conflict with
o2 executed by C2, then C2 can go ahead and generate output for o2 without waiting until o1 finishes.
This improves the throughput of COP compared to earlier protocols.

5

Conflicts are asymmetric. Formally, o1 does not conflict with o2 in a state s if and only if, for

(s′, r1) ← F (s, o1)

(s′′, r2) ← F (s′, o2)

(t, q) ← F (s, o2)

it holds
r2 = q.

Furthermore, we say that o1 does not conflict with o2 whenever o1 does not conflict with o2 in any
state of F . Commuting operations (as considered in earlier work) never conflict, but two non-conflicting
operations may not commute.

Not only individual operations, also sequences of them may be conflict-free to each other in this
sense. Suppose two sequences µ and ρ consisting of operations in O are mixed together into one se-
quence π such that the partial order among the operations from µ and from ρ is retained in π, respec-
tively. If executing π starting from a state s gives the same responses for all operations of ρ as in every
other such mixed sequence, in particular µ ◦ ρ and ρ ◦ µ, where ◦ denotes concatenation, we say that
µ does not conflict with ρ in state s. Analogously, we say that µ does not conflict with ρ if µ does not
conflict with ρ in any state.

We define a Boolean predicate conflictF (s, µ, ρ) that returns TRUE if and only if a sequence of oper-
ations µ conflicts with a sequence ρ in s according to F . W.l.o.g. we assume that all operations of F and
the predicate conflictF are efficiently computable.

Observe that changes to the state of F are not considered in the conflict relation. In particular, two
operation sequences µ and ρ that “write” to the same low-level value do not conflict as long as the
responses of ρ remain the same as in the absence of µ. This might look different from the usual notion of
conflicts considered in other works, because the effects on the underlying state are considered implicitly,
only through operations of ρ whose output depends on the state. (Indeed, if µ modifies the state and an
operation in ρ returns the complete state, then µ always conflicts with ρ.) As will become clear later, the
conflict relation introduced here is adequate for consistency verification.

2.4 Abortable services

When operations of F conflict, a protocol may either decide to block or to abort. Aborting and giving the
client a chance to retry the operation at his own rate often has advantages compared to blocking, which
might delay an application in unexpected ways.

As in previous work that permitted aborts [1, 21], we allow operations to abort and augment F :
S × O → S × R to an abortable functionality G accordingly. G : S × O → S × R⊥ is defined
over the same set of states S and operations O as F , but returns a tuple defined over S and response set
R⊥ = R∪{⊥}. G will usually return the same output as F , but it may also return ⊥ and leave the state
unchanged, denoting that a client is not able to execute F . Hence, G is a relation and satisfies

G(s, o) =
{

(s,⊥), F (s, o)
}
.

The abortableG inherits most properties of F apart from its deterministic specification. In particular,
since G is not deterministic, a sequence of operations no longer uniquely determines the resulting state
and response value. Whenever the abortable G is used in a protocol, one has to explicitly require that if
G is accessed only sequentially, then G should never abort, i.e., it should always behave like F .

In the sequel, when we refer to a generic functionality Λ, this may represent the deterministic F or
its abortable extension G.

Abortable functionalities are related to obstruction-free objects [1, 14] in shared-memory systems
subject to concurrent operations; such objects also guarantee that every client operation completes as-
suming the client eventually runs in isolation.

6

2.5 Operations and histories

The clients interact with a functionality Λ through operations provided by Λ. As operations take time,
they are represented by two events occurring at the client, an invocation and a response. A history of an
execution σ consists of the sequence of invocations and responses of Λ occurring in σ. An operation is
complete in a history if it has a matching response.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o
completes before o′ is invoked in σ. A sequence of events π preserves the real-time order of a history σ if
for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are concurrent if neither
one of them precedes the other. A sequence of events is sequential if it does not contain concurrent
operations. For a sequence of events σ, the subsequence of σ consisting only of events occurring at
client Ci is denoted by σ|Ci (we use the symbol | as a projection operator). For some operation o, the
prefix of σ that ends with the last event of o is denoted by σ|o.

An operation o is said to be contained in a sequence of events σ, denoted o ∈ σ, whenever at least
one event of o is in σ. We often simplify the terminology by exploiting that every sequential sequence
of events corresponds naturally to a sequence of operations, and that analogously every sequence of
operations corresponds to a sequential sequence of events.

An execution is well-formed if the events at each client are alternating invocations and matching
responses, starting with an invocation. An execution is fair, informally, if it does not halt prematurely
when there are still steps to be taken or messages to be delivered (see the standard literature for a formal
definition [19]). We are interested in a protocol where the clients never block, though some operations
may be aborted and thus will not complete regularly. We call a protocol wait-free if in every history
where the server is correct, every operation by any client completes [13].

2.6 Consistency properties

We use the standard notion of linearizability [16], which requires that the operations of all clients ap-
pear to execute atomically in one sequence. Fork-linearizability [22, 9] relaxes the condition of one
sequence and extends it to permit multiple “forks” of an execution. Under fork-linearizability, every
client observes a linearizable history and when an operation is observed by multiple clients, the oper-
ation sequence occurring before that operation is the same. In other words, the history of operations
forms a tree whose branches are the forks, and the operations on the path from the root to every leaf are
linearizable, and every client observes exactly the operations on the path to one leaf. For simplicity we
leave out incomplete operations in (fork-)linearizability; although they could readily be included as in
other works, we feel this would overly complicate the analysis of the protocol.

Definition 1 (View). A sequence of events π is called a view of a history σ at a client Ci w.r.t. a func-
tionality Λ if:

1. π is a sequential permutation of some subsequence of complete operations in σ;
2. all complete operations executed by Ci appear in π; and
3. π satisfies the sequential specification of Λ.

Definition 2 (Linearizability [16]). A history σ is linearizable w.r.t. a functionality Λ if there exists a
sequence of events π such that:

1. π is a view of σ at all clients w.r.t. Λ; and
2. π preserves the real-time order of σ.

Definition 3 (Fork-linearizability [22]). A history σ is fork-linearizable w.r.t. a functionality Λ if for
each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. Λ;
2. πi preserves real-time order of σ; and

7

3. for every client Cj and every operation o ∈ πi ∩ πj it holds that πi|o = πj |o.

Finally, we recall the concept of a fork-linearizable Byzantine emulation [9]. It summarizes the
requirements put on our protocols, which runs between the clients and an untrusted server. This notion
means that when the server is correct, the service should guarantee the standard notion of linearizability;
otherwise, it should ensure fork-linearizability.

Definition 4 (Fork-linearizable Byzantine emulation [9]). We say that a protocol P for a set of clients
emulates a functionality Λ on a Byzantine server S with fork-linearizability if:

1. in every fair and well-formed execution of P , the sequence of events observed by the clients is
fork-linearizable with respect to Λ; and

2. if S is correct, then the execution is linearizable w.r.t. Λ.

2.7 Cryptographic primitives

As the focus of this work is on concurrency and correctness and not on cryptography, we model hash
functions and digital signature schemes as ideal, deterministic functionalities implemented by a dis-
tributed oracle.

A hash function maps a bit string of arbitrary length to a short, unique representation. The function-
ality provides only a single operation hash ; its invocation takes a bit string x as parameter and returns
an integer h with the response. The implementation maintains a list L of all x that have been queried so
far. When the invocation contains x ∈ L, then hash responds with the index of x in L; otherwise, hash
appends x to L and returns its index. This ideal implementation models only collision resistance but no
other properties of real hash functions.

The functionality of the digital signature scheme provides two operations, signi and verifyi. The
invocation of signi specifies the index i of a client and takes a bit string m ∈ {0, 1}∗ as input and returns
a signature σ ∈ {0, 1}∗ with the response. Only Ci may invoke signi. The operation verifyi takes a
putative signature σ and a bit string m as parameters and returns a Boolean value with the response. Its
implementation satisfies that verifyi(σ,m) returns TRUE for any i ∈ {1, . . . , n} and m ∈ {0, 1}∗ if and
only if Ci has executed signi(m) and obtained σ before; otherwise, verifyi(σ,m) returns FALSE. Every
client as well as S may invoke verify. The signature scheme may be implemented analogously to the
hash function.

3 The conflict-free operation verification protocol

3.1 Protocol description

Notation. The function length(L) for a list L denotes the number of elements in L and ‖ stands for the
concatenation of strings. Several variables are dynamic arrays or maps, which associate keys to values.
A value v is stored in a map H by assigning it to a key k, denoted H[k] ← v; if no value has been
assigned to a key, the map returns ⊥. For simplicity, ⊥ also stands for the empty bit string. Recall that
G is the abortable extension of functionality F .

Overview. The pseudocode of COP for the clients and the server is presented in Algorithms 1–2. We
assume that the execution of each client is well-formed and fair.

COP adopts the structure of previous protocols that guarantee fork-linearizable semantics [22, 31, 5].
It aims at obtaining a globally consistent order for the operations of all clients, as determined by the
server. Every client maintains a copy of the service state and executes all operations locally.

When a client Ci invokes an operation o, he sends an INVOKE message to the server S (L7–L10). He
expects to receive a REPLY message from S telling him about the position of o in the global sequence
of operations. The message contains the operations that are pending for o, that is, operations which go
beyond the prefix of the history that Ci has already verified for consistency. These pending operations

8

are ordered before o by a correct S, but Ci may not yet know about some of them. (A Byzantine S
may introduce consistency violations here.) We distinguish between pending-other operations invoked
by other clients and pending-self operations, which are operations executed by Ci up to o.

WhenCi receives the REPLY message with o, he verifies whether the data from the server is consistent
and, if everything is valid, he commits o. COP uses assert statements for verification. If any of these
steps fail, the formal protocol simply halts; in practice, the clients would then recover the service state,
abandon the faulty S, and switch to another provider. In order to ensure fork-linearizability for the
response values, the client first executes o by simulating the pending-self operations and o according to
F (that is, without updating the locally held state). If the pending-other operations do not conflict with the
pending-self operations and o, then he declares o to be successful and outputs the response r according
to F , as resulting from the simulated operations. Otherwise, the client aborts o and the response is r = ⊥.
According to this, the status of o is a value in Z = {SUCCESS, ABORT}. Through these steps the client
commits o. Then he sends a corresponding COMMIT message to S and outputs r.

The (correct) server records the committed operation and relays it to all clients via a BROADCAST

message (L106–L110). When the client receives such a broadcast operation, he verifies that it is con-
sistent with everything the server told him so far. If this verification succeeds, we say that the client
confirms the operation. If the operation’s status was SUCCESS, then the client executes it and applies it
to his local state (L40–L47).

Data structures. Every client locally maintains a set of variables during the protocol (L1–L6). The
state s ∈ S is the result of applying all confirmed and successful operations, received in BROADCAST

messages, to the initial state s0. Variable c stores the sequence number of the last operation that the client
has confirmed. H is a map containing a hash chain computed over the operation sequence as announced
by S to Ci. The contents of H are indexed by the sequence number of the operations. Entry H[l] is
computed as hash(H[l − 1]‖o‖l‖i), with H[0] = NULL, and represents an operation o with sequence
number l executed byCi. The hash chain allows for fast comparisons between the histories of two clients:
if they obtain the same hash-chain value, then both have confirmed the same sequence of operations.

The client sets a variable ō to o whenever it has invoked an operation o but not yet completed it; at
other times ō is ⊥. Variable Z maps the sequence number of every operation that the client has executed
himself to its status. The client only needs the entries in Z with indices greater than c.

The (correct) server also keeps several variables locally (L101–L105). Variable t determines the
global sequence number for the invoked operations and b denotes the sequence number of the last broad-
cast operation. The latter ensures that S disseminates operations to clients in the global order. Fur-
thermore, she stores the invoked operations in a map I and the completed operations in a map O, both
indexed by sequence number.

Protocol. When client Ci invokes an operation o (L7–L10), he stores it in ō and sends an INVOKE

message to S containing o and τ , a digital signature computed over o and i. In turn, a correct S sends
a REPLY message with the list Pend of pending operations (L106–L110); the operations have sequence
numbers c + 1, c + 2, Upon receiving a REPLY message, the client checks that Pend is consistent
with any previously sent operations and uses Pend to assemble the pending-other operations Pend-other
and the successful pending-self operations Pend-self. He then determines whether o can be executed or
has to be aborted (L11–L39).

In particular, during the loop in Algorithm 1 (L15–L27), for every operation o in Pend, client Ci
determines its sequence number l and verifies from the INVOKE signature that o was indeed invoked by
Cj (L17–L18). He computes the entry of o in the hash chain from o, l, j, and H[l − 1]. If H[l] = ⊥,
then Ci stores the hash value there. Otherwise, H[l] has already been set and Ci verifies that the hash
values are equal; this means that o is consistent with the pending operation(s) that S has sent previously
with indices up to l (L19–L22).

If operation o is his own and its saved status in Z[l] was SUCCESS, then he appends it to Pend-self
(L23–L24). The client remembers the status of his own operations in Z, since conflictF depends on the

9

Algorithm 1 Conflict-free operation verification protocol (client Ci)
1: State
2: ō ∈ O ∪ {⊥}: the operation being executed currently or ⊥ if no operation runs, initially ⊥
3: c ∈ N0: sequence number of the last operation that has been confirmed, initially 0
4: H : N0 → {0, 1}∗: hash chain (see text), initially containing only H[0] = NULL
5: Z : N0 → Z ∪ {⊥}: status map (see text), initially empty
6: s ∈ S: current state, after applying operations, initially s0

7: upon invocation o do // invoke operation o
8: ō← o
9: τ ← signi(INVOKE‖o‖i)
10: send message [INVOKE, o, τ] to S

11: upon receiving message [REPLY,Pend] from S do // the last operation in Pend should be ō
12: Pend-other← 〈〉 // list of pending-other operations
13: Pend-self← 〈〉 // list of successful pending-self operations
14: k ← 1
15: while k ≤ length(Pend) do
16: (o, j, τ)← Pend[k]
17: l← c+ k // promised sequence number of o
18: assert verifyj(τ, INVOKE‖o‖j)
19: if H[l] = ⊥ then
20: H[l]← hash(H[l − 1]‖o‖l‖j) // extend hash chain
21: else
22: assert H[l] = hash(H[l − 1]‖o‖l‖j) // server replies must be consistent
23: if j = i ∧ k < length(Pend) ∧ Z[l] = SUCCESS then
24: Pend-self← Pend-self ◦ 〈o〉
25: else if j 6= i then
26: Pend-other← Pend-other ◦ 〈o〉
27: k ← k + 1
28: // variables o, j, and l = c+ length(Pend) keep their values
29: assert k > 1 ∧ o = ō ∧ j = i // last pending operation must equal the current operation
30: if not conflictF (s,Pend-other,Pend-self ◦ 〈o〉) then // o = ō is the current operation
31: (s′, r)← F (s,Pend-self ◦ 〈o〉) // compute response to o and ignore resulting state
32: Z[l]← SUCCESS
33: else
34: r ← ⊥
35: Z[l]← ABORT

36: φ← signi

(
COMMIT‖o‖l‖H[l]‖Z[l]

)
// commit operation ō

37: send message [COMMIT, o, l,H[l], Z[l], φ] to S
38: ō← ⊥
39: return r // complete operation ō

40: upon receiving message [BROADCAST, o, l, h, z, φ, j] from S do
41: assert l = c+ 1 ∧ verifyj(φ, COMMIT‖o‖l‖h‖z) // start to confirm operation o
42: if H[l] = ⊥ then // operation o has never been pending at Ci

43: H[l]← hash(H[l − 1]‖o‖l‖j)
44: assert h = H[l] // if this holds, then o is confirmed
45: if z = SUCCESS then // apply o only if successful
46: (s, r′)← F (s, o) // apply operation o and ignore response
47: c← c+ 1

10

Algorithm 2 Conflict-free operation verification protocol (server S)
101:State
102: t ∈ N0: sequence number of the last invoked operation, initially 0
103: b ∈ N0: sequence number of the last broadcast operation, initially 0
104: I : N→ O× N0 × {0, 1}∗: invoked operations (see text), initially empty
105: O : N→ O× {0, 1}∗ ×Z × {0, 1}∗ × N: committed operations (see text), initially empty

106:upon receiving message [INVOKE, o, τ] from Ci do
107: t← t+ 1
108: I[t]← (o, i, τ)
109: Pend← 〈I[b+ 1], . . . , I[t]〉 // include non-committed operations and o
110: send message [REPLY,Pend] to Ci

111:upon receiving message [COMMIT, o, l, h, z, φ] from Ci do
112: O[l]← (o, h, z, φ, i)
113: while O[b+ 1] 6= ⊥ do // broadcast operations ordered by their sequence number
114: b← b+ 1
115: (o′, h′, z′, φ′, j)← O[b]
116: send message [BROADCAST, o′, b, h′, z′, φ′, j] to all clients

state and that could have changed if he applied operations after committing o. Operations of other clients
from Pend are added to Pend-other (L26).

Finally, when Ci reaches the end of Pend, he checks that Pend is not empty and that it contains
o = ō at the last position (L29). He then tests whether the pending-other operations Pend-other do not
conflict with Pend-self ◦ 〈o〉 in state s, his state resulting from the confirmed operations (L30). If there
is no conflict, he records the status of o as SUCCESS in Z[l] and computes the response r by executing
Pend-self◦〈o〉 starting from s (L31–L32). Otherwise, if Pend-other conflicts with o, he records the status
of o as Z[l] ← ABORT and sets r ← ⊥ (L33–L35). Then Ci signs o together with its sequence number,
status, and hash chain entry H[l], includes all values in the COMMIT message sent to S, and returns r
(L36–L39). Through these steps Ci commits o.

Upon receiving a COMMIT message for an operation o with sequence number l, the (correct) server
records its content as O[l] in the map of committed operations (L112). Then she is supposed to send a
BROADCAST message containing O[l] to the clients. She waits with this until she has received COMMIT

messages for all operations with sequence number less than l and has also broadcast them (L113–L116).
This ensures that completed operations are disseminated in the global order to all clients, exploiting the
FIFO channels between the correct S and the clients.

In a BROADCAST message received by client Ci (L40), the committed operation is represented by a
tuple (o, l, h, z, φ, j). Client Ci conducts several verification steps. If successful, we say o is confirmed.
If o did not abort, then Ci subsequently applies o to his state s. In more detail, the client first verifies that
the sequence number l is the next operation according to c (L41); hence, o follows the global order and
the server did not omit any operations. Second, he uses the COMMIT signature φ in the message to verify
that Cj indeed committed o (L41). Lastly, Ci computes his own hash-chain entry H[l] for o and asserts
that it is equal to the hash-chain value h from the message (L42–L44). This ensures that Ci and Cj have
received consistent operations from S up to o. Once the verification succeeds, the client applies o to his
state s only if its status z was SUCCESS, that is, when Cj has not aborted o (L45–L46).

Observe thatCi must output the response of a successful operation after receiving the REPLY message
(L39). To satisfy fork-linearizability for the output, the view of Ci must contain at least its pending-self
operations and the output value must not change even if a faulty server would cause the other clients to
commit the pending-other operations differently than announced to Ci. The state (s′ in L31) computed
by Ci is ignored though, as it is computed with the pending-other operations skipped (hence, it may not
reflect all operations in Ci’s view).

11

3.2 Features of COP

Conflicts in operation sequences. Consider the following example F of a counter restricted to non-
negative values: Its state consists of an integer s; an add(x) operation adds x to s and returns TRUE; a
dec(x) operation subtracts x from s and returns TRUE if x ≤ s, but does nothing and returns FALSE if
x > s.

We use this to illustrate three properties of COP, where S is always correct in the examples. Assume
all client operations have completed and that the state (after applying all operations) at Ci is s = 7.

1. Suppose Ci executes add(3) and the REPLY message contains a pending operation dec(10). The
operation of Ci succeeds and is executed because no add or dec operation conflicts with add(3),
as its response is always TRUE. However, the operations add(3) and dec(10) do not commute in
state 7 because the response from dec(10) differs in the two possible orderings (the resulting states
also differ, but this is not relevant for our notion of a conflict). This shows that testing for conflict-
free operations permits more executions to succeed than checking only commuting operations.
Hence, COP aborts fewer executions than protocols aborting all non-commuting operations.

2. Client Ci executes dec(5) and subsequently dec(4), while add(3) by another client is pending at
both times. Note that Ci executes dec(5) successfully but aborts dec(4) because add(3) conflicts
with 〈dec(5), dec(4)〉 in state 7.
However, considering Ci’s operations individually, add(3) does not conflict with dec(5) nor with
dec(4) in state 7 because their return values are the same when add(3) is omitted (although the
resulting states differ). This shows why the client considers the sequence of all successful pending-
self operations when testing for a conflict with the current operation.

3. Suppose that Ci executes dec(5) and S reports the pending sequence 〈dec(2), dec(1)〉. Thus, Ci
aborts dec(5). Although, when considered individually from state 7, dec(2) does not conflict with
dec(5) and dec(1) neither conflicts with dec(5), their concatenation conflicts with dec(5) and thus
Ci aborts. This illustrates why COP checks for a conflict between the sequence of pending-other
operations and the target operation.

Neither of these three properties is present in previous protocols (as also discussed in Section 3.3).

Memory requirements. For saving space, the client may garbage-collect entries of H and Z with
sequence numbers smaller than c. The server can also save space by removing the entries in I and O
for the operations that she has broadcast. However, if new clients are allowed to enter the protocol, the
server should keep all operations in O and broadcast them to new clients upon their arrival.

With the above optimizations the client has to keep in memory only the last applied operation and
the pending operations in H and the pending-self operations in Z. The same holds for the server: the
maximum number of entries stored in I and O is proportional to the number of pending operations at
any client.

Complexity. In terms of communication cost, every operation executed by a client requires him to
perform one roundtrip to the server: send an INVOKE message and receive a REPLY. For every executed
operation the server sends a BROADCAST message to all clients. Thus, when ` operations are executed
overall, the protocol basically takes O(`n) messages, although subsequent broadcasts to the same client
could be batched until the client invokes the next message [2]. Clients do not communicate with each
other in the protocol. However, as soon as they do, they benefit from fork-linearizability and can easily
discover a forking attack by comparing their hash chains.

Messages INVOKE, COMMIT, and BROADCAST are independent of the number of clients and contain
only a description of one operation, while the REPLY message contains the list Pend of pending opera-
tions. If even one client is slow, then the length of Pend for all other clients grows proportionally to the
number of further operations they are executing. To reduce the size of REPLY messages, the client can
remember all pending operations received from S, and S can send every pending operation only once.

12

The total computational cost, on the other hand, is O(`n) for executing ` operations of F , and this
cannot be reduced as easily. The reason lies in the maintenance of the hash chain at all clients, which
must be updated for every operation. Moreover, if a large number of pending operations are present
during an operation, the verification cost of the client increases proportionally.

Aborts and wait-freedom. Every client executing COP may proceed with an operation o for F as long
as no pending operations of other clients conflict with o. Observe that the response to o obtained by the
client reflects all of his own operations executed so far, even if he has not yet confirmed or applied them
to his state because operations of other clients have not yet completed. After successfully executing o,
the client outputs the response directly while processing the REPLY message from S. However, when the
pending operations of other clients conflict with o, the response would differ. Thus, the client aborts o
and outputs ⊥ according to G.

Hence, for F where no operations or operation sequences conflict COP is wait-free; in particular, this
holds when all of them commute. For arbitrary F , however, no fork-linearizable Byzantine emulation
can be wait-free [9]. COP avoids blocking via the augmented functionality G. Clients complete every
operation in the sense of G, which includes aborts; therefore, COP is wait-free for G. In other words,
regardless of whether an operation aborts or not, the client may proceed executing further operations.

To mitigate the risk of conflicts, the clients may employ a synchronization mechanism such as a
contention manager, scheduler, or a simple random waiting strategy. Such synchronization is common
for services with strong consistency demands. If one considers also clients that may crash (outside our
formal model), then the client group has to be adjusted dynamically or a single crashed client might hold
up progress of other clients forever. Previous work on the topic has explored how a group manager or
a peer-to-peer protocol may control a group membership protocol [17, 26]; these methods apply also
to COP.

3.3 Comparison to Blind Stone Tablet (BST)

The BST protocol [31] is a direct predecessor of COP but has several shortcomings and does not achieve
all claimed properties, as explained now.

BST considers transactions on a database, coordinated by the remote server. A client first simulates
a transaction using his own copy, potentially generating local output, then undoes this transaction on
his copy, and coordinates with the server for committing the transaction. From the server’s response
he determines if a transaction individually commutes with every other, pending transaction that was
reported by the server as invoked by different clients. If there is a conflict, the client “rolls back the
external effects” of the transaction and basically aborts; otherwise, he “commits” the transaction (but
without changing his database copy) and relays it via the server to other clients. When a client receives
such a relayed transaction, he applies the transaction to his database copy. At this high level BST is
similar to COP.

However, when considering the details, several limitations of BST become apparent: First, a client
applies his own transactions only after all pending transactions by other clients have been applied to his
own database copy. This means that when the client executes a transaction TB , updates induced by an
earlier transaction TA of his may not yet be reflected in the database copy because they may be held back
by earlier transactions of other clients, which were pending during the execution of TA, but have not yet
been applied. Thus, the client might execute TB (in the simulation step) from a wrong state, and this
may yield incorrect output for a linearizable execution. Checking for the absence of conflicts between
TB and other transactions may also use such a faulty state. Alternatively, the protocol should block until
the changes from TA are applied to the database copy, but then the protocol is no longer “wait-free” as
stated [31].

Second, the BST client checks conflicts between his current transaction and the incoming (pending)
ones individually, considering each one alone but not as the intended execution sequence. Like the
first limitation, this implies that the client could violate consistency. In particular, the second and third

13

example executions above, used for illustrating the conflicts in Section 3.2, will fail and produce wrong
outputs in BST.

Third, the notion of “trace consistency” in the analysis of BST considers only the database state and
the transactions that have been executed on the local state [31]. However to satisfy fork-linearizability
one must consider the responses output by the client. The formal notion of linearizability does not even
consider the state of a functionality, only the views of the clients are relevant. A transaction may be
applied long after the client received the response and acted on it. Hence, proof sketch available for
BST [31, Sec. 5.2] does not establish fork-linearizability.

COP extends BST and allows one client to execute multiple operations without waiting, i.e., inde-
pendently of the speed of other clients, as long as the sequence of pending operations by other clients
jointly does not conflict with the client’s operations, considering the current service state. Moreover, the
analysis of COP shows it is fork-linearizable for all responses output by clients.

4 Analysis

This section establishes the key properties of conflict-free operation verification protocol (COP) in Al-
gorithms 1–2.

The first theorem addresses executions with a correct server and its proof appears in the next section.
For stating the this result, we define the following notion of overlapping operations. It is a refinement
of a sequential execution that additionally takes into account the event that a client applies one of its
own operations (L40–L47); we introduce the term that the operation is self-applied to denote the event
that this occurs. We say that two operations o and o′ in a history σ overlap whenever the invocation of
o occurs after o′ is invoked and before o′ is self-applied in σ, or vice versa, the invocation of o′ occurs
after the invocation of o is invoked and before o is self-applied. An execution σ without overlaps is one
in which no two operations overlap.

Theorem 1. If the server is correct, then the history of every execution of COP is linearizable w.r.t. the
abortable functionality G. Furthermore, if the clients execute all operations without overlaps, then all
histories of COP are linearizable w.r.t. F and no operations abort.

The second theorem addresses executions with a Byzantine server and captures the key goal of COP.

Theorem 2. In every well-formed execution of COP, the history of events observed by the clients is
fork-linearizability w.r.t. the abortable functionality G.

Together these results imply our main result. Recall that a Byzantine emulation implies that the
execution is linearizable when S is correct and that it is fork-linearizability otherwise.

Corollary 3. COP emulates the abortable functionalityG on a Byzantine server with fork-linearizability.

In the analysis we use the following terminology. When a client issues a COMMIT signature for some
operation o, we say that he commits o. The client’s sequence number included in the signature thus
becomes the sequence number of o; note that with a faulty S, two different operations may be committed
with the same sequence number by separate clients.

4.1 Operating with a correct server

This section contains a proof for Theorem 1, which assumes S is correct. In particular, we show that
the output of every client satisfies G also in executions with concurrent or overlapping operations. The
check for conflicts, applied after simulating the client’s pending-self operations, ensures that the client’s
response remains unchanged regardless of whether the pending-other operations execute before the op-
eration itself or not.

Lemma 4. If the server is correct, then every history σ is linearizable w.r.t. G.

14

Proof. Recall that σ consists of invocation and response events. We now explain how to construct a
sequential permutation π of σ. We often rely on the correspondence between the pair of invocation and
response events of one operation in σ and the operation itself; hence, we sometimes treat π as a sequence
of operations to simplify the terminology.

For the construction of π, note that a client sends an INVOKE message with his operation o to the
server (L10), the server assigns a sequence number to o, and sends it back (L106–L110). Since S is
correct, this is also the sequence number of o. The client then computes the response and sends a signed
COMMIT message to S, containing the operation and its sequence number, and also outputs the response
(L11–L39). Let π consist of all events in σ, ordered first by the sequence number of the corresponding
operation and including the invocation before the response with the same sequence number.

As the server is correct, she processes INVOKE messages in the order they are received and assigns
sequence numbers accordingly. This implies that if an operation o′ is invoked after an operation o com-
pletes, then the sequence number of o′ is higher than o’s. Hence, π preserves the real-time order of σ,
which is the second property of linearizability.

We now show the first property of linearizability, i.e., that π is also a view of σ for all clients w.r.t.
G. The sequence π is a view of σ at a client Ci if it satisfies three conditions (Definition 1). The first
conditions holds because π is constructed as a permutation of σ. Since each executed operation appears
in σ in terms of its invocation and response events, π contains all operations of all clients. This implies
the second condition of a view. It remains to show that π satisfies the sequential specification of G.

For reasoning aboutG, we introduce additional notation to capture the fact that it is not deterministic.
For a sequence ω of operations of G occurring in an actual execution, we write successful(ω) for the
subsequence whose status was SUCCESS, determined for each operation by the client that executed the
operation. Restricted to successful operations, G is deterministic and reduces to F .

In particular, consider some operation o ∈ π, executed by clientCi and fix a schedule that determines
which operations are successful. We want to show the following claim:

For any client Cj (including Cj = Ci), the tuple (s, r′) ← F (s, o) computed when Cj
applies o in L46 satisfies:

1. (s, r′) = F (s0, successful(π|o));
2. If o ∈ successful(π|o), i.e., if o is successful, then r′ is equal to the response r that Ci

has output when it completed o (L39); otherwise, Ci has responded with ⊥

We use induction on the operations sequence π to show this.
Consider the base case where o is the first operation in π and recall that every client initializes its

local state variable s to s0. Note that S has not reported any pending operations to Ci because o is the
first operation. Thus, Ci determines that the status of o is SUCCESS, computes (s′, r) ← F (s0, o) and
outputs r. When Cj later receives o in the BROADCAST message from S with sequence number 1, he
applies o because he learns status of o in z. Then Cj updates the state s as (s, r′) ← F (s0, o). Since F
is deterministic, (s, r′) = (s′, r) and the claim follows.

Now consider the case when o is not the first operation in π and assume that the induction assumption
holds for the operation that appears in π before o. If the status of o is ABORT, then o is filtered out by the
successful() operator in the claim; similarly,Cj leaves the state s unchanged upon applying o (L45–L46).
In addition, Ci has responded with ⊥ since o was aborted (L30–L35). The claim follows.

Otherwise, if o succeeds, we need to show that the state s at client Cj after applying o satisfies (s, r)
= F (s0, successful(π|o)) and that the response of Ci is r 6= ⊥. Since S is correct, she assigns unique
sequence numbers to the operations in the order in which she receives them in INVOKE messages (L106–
L110). According to the code for confirming and applying operations, Ci therefore processes (via L41)
a sequence of operations that is a prefix of π, takes into account the status of each operation, and filters
out those that abort (L45–L46). This ensures the first property of the claim.

Let ρ be the sequence of operations that Ci has confirmed before he received the REPLY containing o;
this sequence is in the order of the sequence numbers assigned by S and in the order in which Ci
confirmed these operations. It follows from the construction of π that ρ = π|o∗ , where o∗ is the last

15

operation in ρ. The induction assumption implies that variable s at Ci after applying o∗ is equal to s∗,
defined by

(s∗, ·) = F (s0, successful(π|o∗)) = F (s0, successful(ρ)). (1)

Thus, Ci starts processing the REPLY message for o containing the list Pend from state s = s∗ (L11–
L39). Ci constructs implicitly a permutation Pend-self◦〈o〉◦Pend-other of Pend. Recall that we consider
the case where operation o succeeds and Pend-other does not conflict with Pend-self ◦ 〈o〉 in state s∗,
as ensured in L30. Thus, Ci outputs response r given by (·, r) ← F (s∗,Pend-self ◦ 〈o〉) in L39. The
definition of non-conflicting operation sequences implies that r is also equal to the response r̄ from

(·, r̄) = F (s∗,Pend-other ◦ Pend-self ◦ 〈o〉)

because this is a mixed operation sequence from Pend-other and Pend-self ◦ 〈o〉, which preserves the
partial order of operations from the subsequences.

It follows first from the construction of Pend-other and Pend-self, which contain all operations of
Pend except for o and the aborted pending-self operations of Ci, second, from their conflict-freedom,
and, third, from recalling that Pend-self does not contain aborted pending-self operations that also the
response r̃ from

(·, r̃) = F (s∗, successful(Pend)) (2)

satisfies r = r̄ = r̃.
The definition of F on operation sequences implies, furthermore, that

F (s∗, successful(Pend)) = F (s0, successful(π|o) (3)

because o is the last operation in Pend and according to the definition of s∗ in (1).
To show that r = r′, where r′ is computed byCj when he applies o (L46), note thatCj has applied all

successful operations in π up to o at this time and computed (s, r′) = F (s0, successful(π|o). Combining
this with (3) and (2) now shows that r′ = r and the third property of a view follows.

Note that the claim holds for any client Cj , therefore, σ is linearizable w.r.t. G.

Lemma 5. If the clients execute all operations without overlaps, then all histories of COP are lineariz-
able w.r.t. F and no operations abort.

Proof. Consider an operation o that a client Ci has invoked and suppose towards a contradiction that it
aborts. According to the protocol, this occurs only if Pend in the REPLY message with o to Ci contains
some pending-other operation, say, o′ executed by Cj . This implies that o′ has not been applied yet
by Ci, even though Cj has applied it according to the assumption that the execution does not have any
overlapping operations.

However, because Cj has applied o′ and S is correct, it follows that S has also sent the BROADCAST

message containing o′ to Cj earlier, before Cj has applied o′. Note that messages between the correct
server and one client are delivered in FIFO order. Hence, Ci receives the BROADCAST message corre-
sponding to o′ and has applied o′ before processing the REPLY message containing o. This implies that
o′ 6∈ Pending according to server’s operation (L106–L110). Hence, Ci does not abort, which contradicts
the assumption.

4.2 The promised view of an operation

In this and the next section, we prove Theorem 2. The proof starts by constructing a view for every client
that includes all operations that he has executed or applied, together with those of his operations that
some other clients have confirmed. Since these operations may have changed the state at other clients,
they must be considered. More precisely, some Ck may have confirmed an operation o executed by
Ci that Ci has not yet confirmed or applied. Then, in order to be fork-linearizable even if Ci will not
confirm o later, the view of Ci must include o as well, including all operations that were “promised” to
Ci by S in the sense that they were announced by S as pending for o. It follows from the properties of

16

the hash chain that the view of Ck up to o is the same as Ci’s view including the promised operations
(Lemma 7). The view of Ci further includes all operations that Ci has executed after o. Taken together
this will demonstrate that every execution of COP is fork-linearizable w.r.t. G (Lemma 12).

Suppose a client Ci executes and thereby commits an operation o. We define the promised view to Ci
of o as the sequence of all operations that Ci has confirmed before committing o, concatenated with the
sequence Pend of pending operations received in the REPLY message during the execution of o, including
o itself (according to the protocol Ci verifies that the last operation in Pend is o).

The protocol constructs a hash chain H over a sequence of (index, operation, client)-triples of the
form (1, o1, i1), . . . , (l, ol, il). Starting fromH[0] = ⊥, we setH[k]← hash(H[k−1]‖ok‖k‖ik) for k =
1, . . . , l. The value h = H[l] at the tip of the hash chain represents the operation sequence 〈o1, . . . , ol〉.
According to the collision-resistance of the hash function, no two different operation sequences are
represented by the same hash value.

Lemma 6. After Cj has confirmed some operation o at index l, his hash-chain value H[l] represents the
sequence of operations that he has confirmed up to o.

Proof. Recall that Cj extends H in two places: when he confirms an operation at some index l (L42–
L43), and when he receives a REPLY message with pending operations (L19–L20). According to the
checks when Cj receives an operation to confirm in a BROADCAST message (L41), the client builds the
hash chain H incrementally, controlled by variable c, in the sequence of the operations that he confirms.
An operation o′ from Pend, at some index l′ higher than c, might also have been inserted into H within
the loop (L15–L27) earlier, when Cj executes an operation of his own. This is also controlled by c
(L17). But when Cj later receives a BROADCAST message with this index l′, any operation o∗, and any
hash-chain tip h, he verifies the COMMIT-signature (L41) and checks that the hash-chain entry H[l′] =
hash(H[l′−1]‖o∗‖l′‖i) computed by himself is equal to the signed h (L44). Since this succeeds, o′ = o∗

and H[l] represents the sequence of operations that Cj has confirmed up to o.

Lemma 7. If Cj has confirmed some operation o that was committed by a client Ci (including Ci = Cj),
then the sequence of operations that Cj has confirmed up to (and including) o is equal to the promised
view to Ci of o. In particular:

1. if clients Cj and Ck have confirmed an operation o committed by Ci, then Cj and Ck have both
confirmed the same sequence of operations up to o;

2. the promised view to Ci of o contains all operations executed by Ci up to o.

Proof. We first investigate the promised view to Ci of o, which by definition consists of the sequence of
operations that Ci has confirmed, followed by the list Pend in the REPLY message, including o. Consider
the time when Ci receives the REPLY message during the execution of o. We first show that when Ci
commits o with sequence number l, the hash-chain entry H[l] represents the promised view to Ci of o.

According to Lemma 6,H[c] represents the sequence of operations confirmed by Ci so far. For every
pending operation p ∈ Pend, client Ci checks if he has already an entry in H at index l, which is the
promised sequence number of p to Ci according to Pend. If there is no such entry, he computes the hash
value H[l] as above. Otherwise, Ci must have received an operation for sequence number l earlier, and
so he verifies that o is the same pending operation as received before and stored in H[l] (L22). Later, Ci
verifies that o itself has also been returned to him as pending (L29). Hence, the new hash value h stored
in H at the sequence number of o (i.e., H[l] at L36) represents the promised view to Ci of o. Then Ci
issues a COMMIT signature φ on o and h and sends φ to the server.

When Cj receives the BROADCAST message from S with the COMMIT-signature φ of Ci and opera-
tion o to be confirmed and applied by Cj with sequence number l, he verifies the COMMIT-signature of
Ci on o, l, and h, and only confirms o if the hash value satisfies h = H[l] (L44). Recall from Lemma 6
that H[l] represents the sequence of operations that Cj has confirmed up to o. Noting that the hash func-
tion has no collisions, h and H[l] represent the same sequence of operations and the main statement of
the lemma follows.

17

The first additional claim follows by applying the lemma twice for o committed by Ci. For showing
the second additional claim, we note that if Ci confirms an operation by himself, then he has previously
executed it. There may be additional operations that Ci has executed but not yet confirmed, but Ci has
verified according to the above argument that these were all contained in Pend from the REPLY message.
Thus, they are also in the promised view of o.

4.3 The view of a client

We construct a sequence πi from σ as follows. Let o be the operation committed by Ci which has the
highest sequence number among those operations of Ci that have been confirmed by some client Ck
(including Ci). Let αi be a sequence of operations constructed as follows. It contains all operations
confirmed by Ck up to and including o; if Ci has confirmed o, then append the operations that Ci has
confirmed after o (if any).

Furthermore, let βi be the sequence of operations committed by Ci with a sequence number higher
than that of o. Then πi is the concatenation of αi and βi.

Observe that by definition, every operation in αi has been confirmed by some client and no client has
confirmed operations from βi.

Lemma 8. The sequence πi is a view of σ at Ci w.r.t. G.

Proof. Note that πi is defined through a sequence of operations that are contained in σ. Hence πi is
sequential by construction.

We now argue that all operations executed by Ci are included in πi. Recall that πi = αi ◦ βi and
consider o, the last operation of Ci in αi. As o has been confirmed by some Ck, Lemma 7 shows that
αi is equal to the promised view to Ci of o and, furthermore, that it contains all operations that Ci has
executed up to o. By construction of πi all other operations executed by Ci are contained in βi, and the
property follows.

The last property of a view requires that πi satisfies the sequential specification of G. Note that G is
not deterministic and some responses might be ⊥. But when we ensure that two operation sequences of
G have responses equal to⊥ in exactly the same positions, then we can conclude that two equal operation
sequences give the same resulting state and responses, from the fact that F is deterministic.

We first address the operations in αi and assume no operation aborts and returns ⊥. Consider any
oj ∈ αi, executed by a client Cj (including Ci = Cj). Lemma 7 implies that αi|oj is a prefix of the
promised view to Ci of o. We want to show that the response rj of oj to Cj satisfies the specification
of G, i.e., that (·, rj) = F (s0, successful(αi|oj)).

For the point in time when Cj executes oj , define ρj to be the sequence of operations that Cj has
confirmed prior to this and define sj to be the state resulting from applying the successful operations
in ρj , as stored in variable s. This implies that (sj , ·) = F (s0, successful(ρj)) according to the protocol
(L40–L47), and using the notation successful(·) from Lemma 4.

We want to show that the response of oj to Cj satisfiesG as well. Let Pend be the pending operations
contained in the REPLY message from S toCj . Observe thatCj partitions Pend into Pend-other (pending-
other operations), Pend-self (successful pending-self operations), and the aborted pending-self operations
of Cj , where oj is also among the pending-self operations.

Client Cj then checks if Pend-other does not conflict with Pend-self ◦ 〈oj〉 in sj (L30), and if this
is the case (L31), Cj computes the response rj for oj from state sj as (·, rj) ← F (sj ,Pend-self ◦
〈oj〉). Since Pend-self and Pend-other preserve the relative order of operations in Pend, the defini-
tion of non-conflicting operations implies that the responses of Cj from F (sj , successful(Pend)) and
F (sj ,Pend-self◦〈o〉) are equal. This demonstrates that (·, rj) =F (sj , successful(Pend)) =F (s0, successful(αi|oj)),
i.e., that oj satisfies the sequential specification of G assuming no aborts. Recall this holds for any oper-
ation oj in αi and that πi = αi ◦ βi.

To conclude the argument, we still have to show that the abort status for every operation oj ∈ αi
is the same for any client Ck (including Ck = Ci) who confirms oj , and Cj (who has committed oj).
Then they will produce the same responses and same state. Note that when Cj executes oj , he either

18

computes a response according to F or aborts the operation, declaring its status to be SUCCESS or ABORT,
respectively (L30–L35). The status z is signed, sent to S in the COMMIT message, and should be received
in the BROADCAST message (L40) by Ck. Since Ck has confirmed oj , he has verified the COMMIT

signature and this implies that the status taken into account by Ck is also equal to z, as used to determine
whether he updates the state with oj (L41–L46).

Furthermore, we need to show that the operations in βi satisfy the specification of G, where βi
consists of operations committed by Ci with a sequence number higher than that of o. According to the
earlier argument about αi and considering that Ci has confirmed o when computing the responses of
operations in βi, when Ci receives the REPLY message for o (L11), its state s results from confirming
and applying all operations in αi. Hence, (s, ·) = F (s0, successful(αi)). For every successful oi ∈ βi
client Ci computes the response ri of oi (L31) as (·, ri) = F (s,Pend-self ◦ 〈oi〉), where it is easy to
see that the variable Pend-self (which does not contain aborted operations) is a prefix of successful(βi).
Since Ci executes and commits the operations of βi in the order of their sequence numbers, it follows
that also (·, ri) = F (s, successful(βi|oi)) and this implies (·, ri) = F (s0, successful(αi ◦ βi|oi)) by the
definition of F . Thus, all operations in βi satisfy the specification G as well.

Lemma 9. If some client Cj confirms an operation o1 before an operation o2, then o2 does not precede
o1 in the execution history σ.

Proof. Let µj denote the sequence of operations that Cj has confirmed up to o2. According to the
protocol logic (L40–L47), µj contains o1, and o1 has a smaller sequence number than o2. Suppose o2
was executed by Ci. Lemma 7 shows that µj is equal to the promised view to Ci of o2, hence, o1 is
contained in the promised view to Ci of o2. If Ci has confirmed o1 earlier, then o2 does not precede o1. If
o1 is pending for o2, then o1 has been invoked by a client before o2, as validated by Ci through verifying
the corresponding INVOKE signature (L9). Since this occurs before o2 completes, o1 has been invoked
before o2 completed.

Lemma 10. The sequence πi preserves the real-time order of σ.

Proof. Recall that πi = αi◦βi and consider first the operations inαi, which have been confirmed by some
client. Lemma 9 shows that these operations preserve the real-time order of σ. Second, the operations
in βi are ordered according to their sequence number and they were committed by Ci. According to the
protocol, Ci executes only one operation at a time and always assigns a sequence number that is higher
than the previous one. Hence, βi also preserves the real-time order of σ.

We are left to show that no operation in βi precedes an operation from αi in σ. Recall that αi consists
of operations that have been confirmed and βi are operations executed and committed by Ci. Let õ be
the last operation of αi and suppose it has sequence number l.

If some Ck 6= Ci has confirmed õ, then õ has been executed by Ci according to the definition of αi,
and õ has already completed before Ci invokes the first operation of βi (which have sequence numbers
larger than l), according to the assumption that σ is well-formed.

Otherwise, Ci has confirmed õ and some Cj 6= Ci has executed õ. Consider the time when Ci
confirms õ: Cj must have already completed õ because Ci verified the COMMIT signature for õ issued by
Cj when õ completed. Since Ci has verified this signature for confirming õ (L41), Ci’s local sequence-
number variable c is at least l at that time. As operations of βi have larger sequence numbers than l by
definition, the protocol for handling REPLY messages (L11–L39) implies that all those operations were
invoked after õ completed.

Lemma 11. If some operation oj ∈ πi executed by Cj has been confirmed by a client Ck (including Ci),
then oj ∈ αi and αi|oj = πi|oj ; furthermore, αi|oj is equal to the promised view to Cj of oj .

Proof. Consider the case that Ck = Ci has confirmed oj . Then oj ∈ αi according to the definition of αi.
The second statement is an immediate consequence of Lemma 7, since Ci has confirmed oj .

Otherwise, someCk 6= Ci has confirmed oj . If Cj = Ci, then oj ∈ αi by definition since oj has been
confirmed. If Cj 6= Ci, then oj ∈ αi because oj ∈ πi but βi = πi \αi contains only operations executed

19

by Ci. The second statement is an immediate consequence of Lemma 7, since Ck has confirmed oj and
αi is defined accordingly.

Lemma 12. If o ∈ πi ∩ πj then πi|o = πj |o.

Proof. As πi = αi ◦ βi and πj = αj ◦ βj , we need to consider four cases to analyze all operations that
can appear in πi ∩ πj and the rest are symmetrical.

1. o ∈ αi and o ∈ αj : This implies that o has been confirmed. Lemma 11 implies that αi|o = αj |o.
2. o ∈ βi and o ∈ αj : This case cannot occur, since no client has confirmed operations from βi by

definition.
3. o ∈ αi and o ∈ βj : Analogous to the case above.
4. o ∈ βi and o ∈ βj : This case cannot occur, since βi and βj contain only pending-self operations

of Ci and Cj , correspondingly.

5 Conclusion

This paper has presented COP, the Conflict-free Operation verification Protocol, which lets a group of
clients execute a generic service coordinated by a remote, but untrusted server. COP ensures fork-line-
arizability and allows clients to easily verify the consistency and integrity of the service responses. In
contrast to previous work, COP is wait-free and supports non-conflicting operation sequences (but may
sometimes abort conflicting operations);

In COP every client executes all operations of the common service and maintains the state, similar
to a replicated state machine [23]. It is possible to improve the efficiency of COP for specific services
that permit efficient authentication of remote state, in order to reduce the work of the clients and to keep
the (potentially large) state only at the server. This goal can typically be achieved for functionalities that
support authenticated data structures [28]. In a successor to this work, Brandenburger et al. [3] show
how apply this method to protect the integrity and consistency of data in a cloud object store.

Efficient authenticated data structures are only available for certain functionalities. Therefore, an
important direction for future work lies in combining generic protocols for cryptographically verifiable
computation [29] with COP, to reduce the client workload for arbitrary computations and to guarantee
integrity and consistency with fork-linearizability semantics to multiple clients.

Acknowledgments

We thank Marcus Brandenburger for interesting discussions and valuable comments. We are grateful to
the anonymous reviewers for important and constructive comments.

This work has been supported in part by the European Union’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement number ICT-257243 TCLOUDS; in part by the European Com-
mission through the Horizon 2020 Framework Programme (H2020-ICT-2014-1) under grant agreements
number 644371 WITDOM and 644579 ESCUDO-CLOUD; and in part by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contracts number 15.0098 and 15.0087.

References

[1] M. K. Aguilera, S. Frølund, V. Hadzilacos, S. L. Horn, and S. Toueg. Abortable and query-abortable
objects and their efficient implementation. In Proc. 26th ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2007.

20

[2] M. Brandenburger, C. Cachin, and N. Knežević. Don’t trust the cloud, verify: Integrity and con-
sistency for cloud object stores. In D. Naor, G. Heiser, and I. Keidar, editors, Proc. 8th ACM
International Systems and Storage Conference (SYSTOR), May 2015.

[3] M. Brandenburger, C. Cachin, and N. Knežević. Don’t trust the cloud, verify: Integrity and con-
sistency for cloud object stores. ACM Transactions on Privacy and Security, 20(3):8:1–8:30, Aug.
2017.

[4] E. Brewer. Towards robust distributed systems (invited talk). In Proc. 19th ACM Symposium on
Principles of Distributed Computing (PODC), 2000.

[5] C. Cachin. Integrity and consistency for untrusted services. In I. Cerná et al., editors, Proc. 37th
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2011), vol-
ume 6543 of Lecture Notes in Computer Science, pages 1–14. Springer, 2011.

[6] C. Cachin, I. Keidar, and A. Shraer. Fork sequential consistency is blocking. Information Process-
ing Letters, 109(7):360–364, Mar. 2009.

[7] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage. SIAM Journal on Computing,
40(2):493–533, Apr. 2011. Preliminary version appears in Proc. DSN 2009.

[8] C. Cachin and O. Ohrimenko. Verifying the consistency of remote untrusted services with commu-
tative operations. In M. K. Aguilera, L. Querzoni, and M. Shapiro, editors, Proc. 18th Conference
on Principles of Distributed Systems (OPODIS), volume 8878 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer, 2014.

[9] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted shared memory.
In Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC), pages 129–138,
2007.

[10] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten. Social networking with Frien-
tegrity: Privacy and integrity with an untrusted provider. In Proc. 21st USENIX Security Sympo-
sium, 2012.

[11] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group collaboration
using untrusted cloud resources. In Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[12] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter. Zzyzx: Scalable fault tolerance
through Byzantine locking. In Proc. 40th International Conference on Dependable Systems and
Networks (DSN-DCCS), 2010.

[13] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Sys-
tems, 11(1):124–149, Jan. 1991.

[14] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues
as an example. In Proc. 23rd Intl. Conference on Distributed Computing Systems (ICDCS), 2003.

[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[16] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[17] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository (SUNDR). In Proc.
6th Symp. Operating Systems Design and Implementation (OSDI), pages 121–136, 2004.

[18] J. Li and D. Mazières. Beyond one-third faulty replicas in Byzantine fault-tolerant systems. In
Proc. 4th Symp. Networked Systems Design and Implementation (NSDI), 2007.

21

[19] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[20] P. Mahajan, S. T. V. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish. Depot: Cloud
storage with minimal trust. ACM Trans. Comput. Syst., 29(4), 2011.

[21] M. Majuntke, D. Dobre, M. Serafini, and N. Suri. Abortable fork-linearizable storage. In T. F.
Abdelzaher, M. Raynal, and N. Santoro, editors, Proc. 13th Conference on Principles of Distributed
Systems (OPODIS), volume 5923 of Lecture Notes in Computer Science, pages 255–269. Springer,
2009.

[22] D. Mazières and D. Shasha. Building secure file systems out of Byzantine storage. In Proc. 21st
ACM Symposium on Principles of Distributed Computing (PODC), 2002.

[23] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[24] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data types.
In X. Défago, F. Petit, and V. Villain, editors, Proc. 13th Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), volume 6976 of Lecture Notes in Computer Science, pages
386–400, 2011.

[25] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Convergent and commutative replicated
data types. Bulletin of the EATCS, 104:67–88, 2011.

[26] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket. Venus: Verification for
untrusted cloud storage. In Proc. Cloud Computing Security Workshop (CCSW). ACM, 2010.

[27] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-replicated systems.
In Proc. 23rd ACM Symposium on Operating Systems Principles (SOSP), 2011.

[28] R. Tamassia. Authenticated data structures. In G. Di Battista and U. Zwick, editors, Proc. 11th
European Symposium on Algorithms (ESA), volume 2832 of Lecture Notes in Computer Science,
pages 2–5. Springer, 2003.

[29] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them. Commun. ACM,
58(2), Feb. 2015.

[30] G. Weikum and G. Vossen. Transactional Information Systems. Morgan Kaufmann, 2002.

[31] P. Williams, R. Sion, and D. Shasha. The blind stone tablet: Outsourcing durability to untrusted
parties. In Proc. Network and Distributed Systems Security Symposium (NDSS), 2009.

22

