
Verifying the Consistency of Remote Untrusted Services with
Commutative Operations

Christian Cachin
IBM Research - Zurich

cca@zurich.ibm.com

Olga Ohrimenko∗

Microsoft Research, Cambridge (UK)
oohrim@microsoft.com

21 October 2014

Abstract

A group of mutually trusting clients outsources a computation service to a remote server, which
they do not fully trust and that may be subject to attacks. The clients do not communicate with
each other and would like to verify the correctness of the remote computation and the consistency
of the server’s responses. This paper first presents the Commutative-Operation verification Protocol
(COP) that ensures linearizability when the server is correct and preserves fork-linearizability in
any other case. All clients that observe each other’s operations are consistent, in the sense that
their own operations and those operations of other clients that they see are linearizable. Second,
this work extends COP through authenticated data structures to Authenticated COP, which allows
consistency verification of outsourced services whose state is kept only remotely, by the server. This
yields the first fork-linearizable consistency verification protocol for generic outsourced services that
(1) relieves clients from storing the state, (2) supports wait-free client operations, and (3) handles
sequences of arbitrary commutative operations.

Keywords: Cloud computing, fork-linearizability, data integrity, verifiable computation, commuta-
tive operations, Byzantine emulation.

1 Introduction

With the advent of cloud computing, most computations run in remote data centers and no longer on
local devices. As a result, users are bound to trust the service provider for the confidentiality and the
correctness of their computations. This work addresses the integrity of outsourced data and compu-
tations and the consistency of the provider’s responses. Consider a group of mutually trusting clients
who want to collaborate on a resource that is provided by a remote partially trusted server. This could
be a wiki containing data of a common project, an archival document repository, or a groupware tool
running in the cloud. A subtle change in the remote computation, whether caused inadvertently by a bug
or deliberately by a malicious adversary, may result in wrong responses to the clients. The clients trust
the provider only partially, hence, they would like to assess the integrity of the computation, to verify
that responses are correct, and to check that they all get consistent responses.

In an asynchronous network model without communication among clients such as considered here,
the server may perform a forking attack and omit the effects of operations by some clients in her re-
sponses to other clients. Not knowing which operations other clients execute, the forked clients cannot
detect such violations. The best achievable consistency guarantee in this setting is captured by fork-lin-
earizability, introduced by Mazières and Shasha [24] for storage systems. Fork-linearizability ensures

1Work done at IBM Research - Zurich and at Brown University.

1

that whenever the server in her responses to a clientC1 has ignored an operation executed by a clientC2,
then C1 can never again observe an operation by C2 afterwards and vice versa. This property ensures
clearly defined service semantics in the face of an attack and allows clients to detect server misbehavior
easily.

Several conceptual [6, 22, 4, 5] and practical advances [32, 11, 21, 28] have recently been made
that improve consistency checking and verification with fork-linearizability and related notions. The
resulting protocols ensure that when the server is correct, the service is linearizable and (ideally) the
algorithm is wait-free, that is, every client’s operations complete independently of other clients. It has
been recognized, however, that read/write conflicts cause such protocols to block; this applies to fork-
linearizable semantics [24, 6] and to other forking consistency notions [4, 5].

In this paper, we go beyond storage services and verify the consistency of remote computation on a
Byzantine server. The Commutative-Operation verification Protocol or COP imposes fork-linearizable
semantics for arbitrary functionalities, exploits commuting operations, and allows clients to operate
concurrently without blocking unless operations conflict. Furthermore, the extension to Authenticated
COP also relieves clients from storing the computation state and from executing all operations. Fork-
linearizability makes it easy to expose Byzantine behavior of the server. For instance, the clients may
exchange a message outside the model over a low-bandwidth channel and thereby verify the correctness
of a service in an end-to-end way.

Efficient handling of wait-free operations is a key feature for collaboration with remote coordination,
as geographically separated clients may operate at different speed. Consequently, previous work has
devoted a lot of attention to identifying and avoiding blocking [24, 6, 19]. For example, read operations
in a storage service commute and do not lead to a conflict. On the other hand, when a client writes a
data item concurrently with another client who reads it, the reader has to wait until the write operation
completes; otherwise, fork-linearizability is not guaranteed [6]. If all operations are to proceed without
blocking, though, it is necessary to weaken the consistency guarantees to weak fork-linearizability [5],
for instance. COP is wait-free and never blocks because it aborts non-commuting operations that cannot
proceed.

The Blind Stone Tablet (BST) protocol [32], the closest predecessor of this work, supports an en-
crypted remote database hosted by an untrusted server that is accessed by multiple clients. Its consis-
tency checking algorithm allows some commuting client operations to proceed concurrently, but only
to a limited extent, as we explain below. Every client has to maintain the complete service state and
to execute all operations, in contrast to this work. Furthermore, the BST protocol guarantees fork-
linearizability only for database state updates, but does not ensure it for all responses output by a client.

SPORC [11] considers a groupware collaboration service whose operations may not commute, but
can be made to commute by applying operational transformations. Through this mechanism, different
execution orders still converge to the same state. All SPORC operations are wait-free but respect only
fork-* linearizability, which is weaker than fork-linearizability.

1.1 Contributions

This paper considers a generic service executed by an untrusted server and provides new protocols
for consistency verification through fork-linearizable semantics. More concretely, it introduces the
Commutative-Operation verification Protocol (COP) and its extension to Authenticated COP (called
ACOP) with the following properties:

1. COP is the first wait-free, abortable consistency verification protocol that emulates an arbitrary
functionality on a Byzantine server with fork-linearizability and exploits commuting operation
sequences.

2

Protocol Wait-free Function Consistency Execution
SUNDR [24, 18] — storage fork-lin. server
FAUST & Venus [5, 28] X storage weak fork-lin. server
BST [32] (X) single comm. op. (fork-lin.) clients
SPORC [11] X generic o.-t. op. (weak fork-lin.) clients
COP (Sec. 3) X generic comm. op. fork-lin. clients
ACOP (Sec. 4) X generic comm. op. fork-lin. server

Table 1: Summary of related protocols. In this table under function, the BST protocol supports only
a single commuting operation and does not achieve wait-freedom (as indicated by the parentheses in
the first column); SPORC is wait-free for generic functions that have operational transforms; COP and
ACOP are wait-free for generic commuting operation sequences. Weak fork-linearizability (or fork-*
consistency) allows the last operation of a client to be inconsistent compared to fork-linearizability;
however, BST and SPORC do not guarantee their consistency notion for client responses, only for state
changes that may occur much later (as indicated by the parentheses). The execution column indicates
whether the clients compute operations and maintain state or whether this is done by the server.

2. ACOP is the first wait-free fork-linearizable consistency verification protocol for services, where
the state is maintained by the server and the clients do not execute every operation.

3. COP comes with a formal analysis that proves fork-linearizable semantics for generic service
execution; previous work did not establish this notion.

COP and ACOP follow the general pattern of most previous fork-linearizable emulation protocols. For
determining when to proceed with concurrent operations, we consider sequences of operations that
jointly commute and the state of the service, in contrast to earlier protocols, which considered only
isolated operations.

For computations supported by suitable authenticated data structures, ACOP enables authenticated
remote computation, where operations are executed by the server and the clients no longer need to
maintain the state of the computation. In contrast to previous work, this enables ACOP to handle services
with large state.

1.2 Related work

Storage protocols. Fork-linearizability has been introduced (under the name of fork consistency) to-
gether with the SUNDR storage system [24, 18]. Conceptually SUNDR operates on storage objects with
simple read/write semantics. Subsequent work of Cachin et al. [6] improves the efficiency of untrusted
storage protocols. A lock-free storage protocol with abortable operations, which lets all operations
complete in the absence of step contention, has been proposed by Majuntke et al. [22].

FAUST [5] and Venus [28] go beyond the fork-linearizable consistency guarantee and model occa-
sional message exchanges among the clients. This allows FAUST and Venus to obtain stronger seman-
tics, in the sense that they eventually reach consistency (i.e., linearizability) or detect server misbehav-
ior. In the model considered here, fork-linearizability is the best possible guarantee [24]. The relation
of these protocols and others to COP is summarized in Table 1.

Blind Stone Tablet (BST). The BST protocol [32] considers transactions on a database, coordinated
by the remote server. A client first simulates a transaction on its own copy, potentially generating
local output, then coordinates with the server for ordering the transaction. From the server’s response
it determines if a transaction commutes with other, pending transactions invoked by different clients

3

that were reported by the server. If they conflict, the client undoes the transaction and basically aborts;
otherwise, he commits the transaction and relays it via the server to other clients. When a client receives
such a relayed transaction, the client applies the transaction to its database copy.

BST has several limitations: First, because a client applies his own transactions only when all pend-
ing transactions by other clients have been applied to his own state, updates induced by his transactions
are delayed in dependence on other clients. Thus, he cannot always execute his next transaction from the
modified state and produce the correct output. This implies the client is blocked and the protocol is not
“wait-free” as claimed [32]. Second, the notion of “trace consistency” in the analysis of BST considers
only transactions that have been applied to the local state, not the responses as required to satisfy fork-
linearizability. However, a transaction may be applied long after its response was output, hence, client
operations might not be fork-linearizable. In contrast, the analysis of COP shows it is fork-linearizable
for all responses output by clients. Finally, every client in BST maintains a copy of the database and
replays all operations locally, which is not necessary in ACOP.

COP extends BST and allows one client to execute multiple operations independently of the other
clients, as long as his sequence of operations jointly commutes with the sequence of pending operations
by other clients, considering the current service state. BST considers only the commutativity of individ-
ual operations. Note that two operations o1 and o2 may independently commute with an operation o3
from a particular starting state, but their concatenation, o1 ◦ o2, may not commute with o3. Operation
sequences and state-based commutativity have recently been exploited for building scalable services on
multicore systems [8].

Non-blocking protocols. SPORC [11] is a group collaboration system where operations do not need
to be executed in the same order at every client by virtue of employing operational transforms. The
latter concept allows for shifting operations to a different position in an execution by transforming them
according to properties of the skipped operations. Differently ordered and transformed variants of a
common sequence converge to the same end state. SPORC is claimed to provide fork-* linearizabil-
ity [19], which is almost the same as weak fork-linearizability [5]; both notions are strict relaxations of
fork-linearizability that permit concurrent operations to proceed without blocking, such that protocols
become wait-free. The increased concurrency is traded for weaker consistency, as up to one diverging
operation may exist between two clients. Moreover, there is no formal analysis for SPORC. As in BST,
SPORC addresses only the updates of client states and does not consider local outputs; however, for
showing linearizability, one has to consider the respones of operations.

FAUST [5], mentioned before, never blocks clients and enjoys eventual consistency, but guarantees
only weak fork-linearizability. Abortable operations have been introduced in this context by Majuntke
et al. [22] for data storage.

In contrast to SPORC and FAUST, COP ensures the stronger fork-linearizability condition, where
every operation is consistent as soon as it completes. In terms of expressiveness, SPORC is neither
weaker nor stronger than COP: On one hand, SPORC seems more general as it never blocks clients even
for operations that do not appear to commute; on the other hand, SPORC is limited to functions with
transformable operations and does not address conflicting operations (which exist in some functions [6]);
COP, however, works for arbitrary functions.

In BST and SPORC, all clients execute all operations. ACOP eliminates this drawback and shifts
the state and the computation to the server by exploiting the notion of authenticated data structures, as
suggested by Cachin [3] in a more restricted setting. In storage protocols (SUNDR and FAUST), clients
do not “execute” each other’s operations due to the limited functionality.

Last but not least, the protocol of Cachin [3] provides also fork-linearizable execution for generic
services like COP. However, the protocol is inherently blocking.

4

1.3 Organization of the paper

The paper continues by introducing the notation and basic concepts in Section 2. The subsequent section
presents COP and discusses its properties. The extension to ACOP for remote authenticated computation
is described in Section 4.

2 Definitions

System model. We consider an asynchronous distributed system with n clients, C1, . . . , Cn and a
server S, modeled as processes. Each client is connected to the server through an asynchronous, reliable
communication channel that respects FIFO order. A protocol specifies the operations of the processes.
All clients are correct and follow the protocol, whereas S operates in one of two modes: either she is
correct and follows the protocol or she is Byzantine and may deviate arbitrarily from the specification.

Functionality. We consider a deterministic functionality F (also called a type) defined over a set of
states S and a set of operations O. F takes as arguments a state s ∈ S and an operation o ∈ O and
returns a tuple (s′, r), where s′ ∈ S is a state that reflects any changes that o caused to s and r ∈ R is a
response to o

(s′, r)← F (s, o).

This is also called the sequential specification of F .
We extend this notation for executing a sequence of operations 〈o1, . . . , ok〉, starting from an initial

state s0, and write
(s′, r) = F (s0, 〈o1, . . . , ok〉)

for (si, ri) = F (si−1, oi) with i = 1, . . . , k and (s′, r) = (sk, rk). Note that an operation in O may
represent a batch of multiple application-level operations.

Commutative Operations. Commutative operations of F play a role in protocols that may execute
multiple operations concurrently. Two operations o1, o2 ∈ O are said to commute in a state s if and only
if these operations, when applied in different orders starting from s, yield the same respective states and
responses. Formally, if

(s′, r1) ← F (s, o1), (s′′, r2) ← F (s′, o2); and

(t′, q2) ← F (s, o2), (t′′, q1) ← F (t′, o1)

then
r1 = q1, r2 = q2, s

′′ = t′′.

Furthermore, we say two operations o1, o2 ∈ O commute when they commute in any state of S.
Also sequences of operations can commute. Suppose two sequences ρ1 and ρ2 consisting of opera-

tions inO are mixed together into one sequence π such that the partial order among the operations from
ρ1 and from ρ2 is retained in π, respectively. If executing π starting from a state s gives the same respec-
tive responses and the same final state as for every other such mixed sequence, in particular for ρ1 ◦ ρ2
and for ρ2 ◦ ρ1, where ◦ denotes concatenation, we say that ρ1 and ρ2 commute in state s. Analogously,
we say that ρ1 and ρ2 commute if they commute in any state.

Operations that do not commute are said to conflict. Commuting operations are well-known from
the study of concurrency control [30, 31]. They can be defined alternatively by considering only the
responses of future operations and ignoring the state, but when allowing arbitrary functionalities F , this

5

notion is equivalent to ours, as F might contain an operation that returns the complete state. We define
a Boolean predicate commuteF (s, ρ1, ρ2) that is true if and only if ρ1 and ρ2 commute in s according
to F . W.l.o.g. we assume all operations of F and commuteF are efficiently computable.

Abortable services. When operations of F conflict, a protocol may either decide to block or to abort.
Aborting and giving the client a chance to retry the operation at his own rate often has advantages
compared to blocking, which might delay an application in unexpected ways.

As in previous work that permitted aborts [1, 22], we allow operations to abort and augment F to
an abortable functionality F ′ accordingly. F ′ is defined over the same set of states S and operations O
as F , but returns a tuple defined over S andR∪ {⊥}. F ′ may return the same output as F , but F ′ may
also return ⊥ and leave the state unchanged, denoting that a client is not able to execute F . Hence, F ′

is a non-deterministic relation and satisfies

F ′(s, o) =
{

(s,⊥), F (s, o)
}
.

Since F ′ is not deterministic, a sequence of operations no longer uniquely determines the resulting state
and response value.

Abortable functionalities may be seen as obstruction-free objects [1, 15] and vice versa; such objects
guarantee that every client operation completes assuming the client eventually runs in isolation.

Operations and histories. The clients interact with F through operations provided by F . As opera-
tions take time, they are represented by two events occurring at the client, an invocation and a response.
A history of an execution σ consists of the sequence of invocations and responses of F occurring in σ.
An operation is complete in a history if it has a matching response.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o
completes before o′ is invoked in σ. A sequence of events π preserves the real-time order of a history σ if
for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are concurrent if neither
one of them precedes the other. A sequence of events is sequential if it does not contain concurrent
operations. For a sequence of events σ, the subsequence of σ consisting only of events occurring at
client Ci is denoted by σ|Ci (we use the symbol | as a projection operator). For some operation o, the
prefix of σ that ends with the last event of o is denoted by σ|o.

An operation o is said to be contained in a sequence of events σ, denoted o ∈ σ, whenever at least
one event of o is in σ. We often simplify the terminology by exploiting that every sequential sequence
of events corresponds naturally to a sequence of operations, and that analogously every sequence of
operations corresponds to a sequential sequence of events.

An execution is well-formed if the events at each client are alternating invocations and matching
responses, starting with an invocation. An execution is fair, informally, if it does not halt prematurely
when there are still steps to be taken or messages to be delivered (see the standard literature for a formal
definition [20]). We are interested in a protocol where the clients never block, though some operations
may be aborted and thus will not complete regularly. We call a protocol wait-free if in every history
where the server is correct, every operation by any client completes [14].

Consistency properties. We use the standard notion of linearizability [16], which requires that the op-
erations of all clients appear to execute atomically in one sequence and its extension to fork-linearizability [24,
6], which relaxes the condition of one sequence to permit multiple “forks” of an execution. Under fork-
linearizability, every client observes a linearizable history and when an operation is observed by multiple
clients, the history of events occurring before the operation is the same.

6

Definition 1 (View). A sequence of events π is called a view of a history σ at a client Ci w.r.t. a
functionality F if:

1. π is a sequential permutation of some subsequence of complete operations in σ;
2. all complete operations executed by Ci appear in π; and
3. π satisfies the sequential specification of F .

Definition 2 (Linearizability [16]). A history σ is linearizable w.r.t. a functionality F if there exists a
sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and
2. π preserves the real-time order of σ.

Definition 3 (Fork-linearizability [24]). A history σ is fork-linearizable w.r.t. a functionality F if for
each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi preserves real-time order of σ; and
3. for every client Cj and every operation o ∈ πi ∩ πj it holds that πi|o = πj |o.

Finally, we recall the concept of a fork-linearizable Byzantine emulation [6]. It summarizes the
requirements put on our protocol, which runs between the clients and an untrusted server. This notion
means that when the server is correct, the service should guarantee the standard notion of linearizability;
otherwise, it should ensure fork-linearizability.

Definition 4 (Fork-linearizable Byzantine emulation [6]). We say that a protocol P for a set of clients
emulates a functionality F on a Byzantine server S with fork-linearizability if and only if in every fair
and well-formed execution of P , the sequence of events observed by the clients is fork-linearizable with
respect to F , and moreover, if S is correct, then the execution is linearizable w.r.t. F .

Cryptographic primitives. As the focus of this work is on concurrency and correctness and not on
cryptography, we model hash functions and digital signature schemes as ideal, deterministic function-
alities implemented by a distributed oracle.

A hash function maps a bit string of arbitrary length to a short, unique representation. The function-
ality provides only a single operation hash ; its invocation takes a bit string x as parameter and returns
an integer h with the response. The implementation maintains a list L of all x that have been queried so
far. When the invocation contains x ∈ L, then hash responds with the index of x in L; otherwise, hash
appends x to L and returns its index. This ideal implementation models only collision resistance but no
other properties of real hash functions.

The functionality of the digital signature scheme provides two operations, signi and verifyi. The
invocation of signi specifies the index i of a client and takes a bit string m as input and returns a
signature σ ∈ {0, 1}∗ with the response. Only Ci may invoke signi. The operation verifyi takes a
putative signature σ and a bit string m as parameters and returns a Boolean value with the response. Its
implementation satisfies that verifyi(σ,m) returns TRUE for any i ∈ {1, . . . , n} and m ∈ {0, 1}∗ if and
only if Ci has executed signi(m) and obtained σ before; otherwise, verifyi(σ,m) returns FALSE. Every
client as well as S may invoke verify. The signature scheme may be implemented analogously to the
hash function.

7

3 The commutative-operation verification protocol

The pseudocode of COP for the clients and the server is presented in Algorithms 1–3. We assume that
the execution of each client is well-formed and fair.

Notation. The function length(a) for a list a denotes the number of elements in a and ‖ denotes
concatenation of strings. Several variables are dynamic arrays or maps, which associate keys to values.
A value is stored in a map H by assigning it to a key, denoted H[k]← v; if no value has been assigned
to a key, the map returns ⊥. Recall that F ′ is the abortable extension of functionality F .

Overview. COP adopts the structure of previous protocols that guarantee fork-linearizable seman-
tics [24, 32, 3]. It aims at obtaining a globally consistent order for the operations of all clients, as
determined by the server.

When a clientCi invokes an operation o, he sends an INVOKE message to the server S. He expects to
receive a REPLY message from S telling him about the position of o in the global sequence of operations.
The message contains the operations that are pending for o, that is, operations that Ci may not yet know
and that are ordered before o by a correct S. (A Byzantine S may introduce consistency violations here.)
We distinguish between pending-other operations invoked by other clients and pending-self operations,
which are operations executed by Ci up to o.

Client Ci then verifies that the data from the server is consistent. If this or any other verification
step fails, the formal protocol simply halts; in practice, the clients would then recover the service state,
abandon the faulty S, and switch to another provider. In order to ensure fork-linearizability for the
response values, the client first simulates the pending-self operations and tests if o commutes with the
pending-other operations. If the test succeeds, he declares o to be successful, executes o, and computes
the response r according to F ; otherwise, O is aborted and the response is r = ⊥. According to this,
the status of o is a value in Z = {SUCCESS, ABORT}. Through these steps the client commits o. Then
he sends a corresponding COMMIT message to S and outputs r.

The (correct) server records the committed operation and relays it to all clients via a BROADCAST

message. When the client receives such a broadcast operation, he verifies that it is consistent with
everything the server told him so far. If this verification succeeds, we say that the client confirms the
operation. If the operation’s status was SUCCESS, then the client executes it and applies it to his local
state.

Data structures. Every client locally maintains a set of variables during the protocol. The state s ∈ S
is the result of applying all successful operations, received in BROADCAST messages, to the initial
state s0. Variable c stores the sequence number of the last operation that the client has confirmed. H
is a map containing a hash chain computed over the global operation sequence as announced by S.
The contents of H are indexed by the sequence number of the operations. Entry H[l] is computed
as hash(H[l − 1]‖o‖l‖i), with H[0] = NULL, and represents an operation o with sequence number l
executed by Ci. (The notation ‖ stands for concatenating values as bit strings.) A variable u is set to o
whenever the client has invoked an operation o but not yet completed it; otherwise u is ⊥. Variable Z
maps the sequence number of every operation that the client has executed himself to the status of the
operation. The client only needs the entries in Z with index greater than c.

The (correct) server also keeps several variables locally. She stores the invoked operations in a map I
and the completed operations in a map O, both indexed by sequence number. Variable t determines the
global sequence number for the invoked operations. Finally, variable b is the sequence number of the
last broadcast operation and ensures that S disseminates operations to clients in the global order.

8

Algorithm 1 Commutative-operation verification protocol (client Ci)
State

u ∈ O ∪ {⊥}: the operation being executed currently or ⊥ if no operation runs, initially ⊥
c ∈ N0: sequence number of the last operation that has been confirmed, initially 0
H : N0 → {0, 1}∗: hash chain (see text), initially containing only H[0] = NULL
Z : N0 → Z: status map (see text), initially empty
s ∈ S: current state, after applying operations, initially s0

upon invocation o do
u← o
τ ← signi(INVOKE‖o‖i)
send message [INVOKE, o, c, τ] to S

upon receiving message [REPLY, ω] from S do
γ ← 〈〉 // list of pending-other operations
µ← 〈〉 // list of successful pending-self operations
k ← 1
while k ≤ length(ω) do

(o, j, τ)← ω[k]
l← c+ k // promised sequence number of o
if not verifyj(τ, INVOKE‖o‖j) then

halt
if H[l] = ⊥ then

H[l]← hash(H[l − 1]‖o‖l‖j) // extend hash chain
else if H[l] 6= hash(H[l − 1]‖o‖l‖j) then // server replies are inconsistent

halt
if j = i ∧ Z[l] = SUCCESS ∧ k < length(ω) then

µ← µ ◦ 〈o〉
else if j 6= i then

γ ← γ ◦ 〈o〉
k ← k + 1

if k = 1 ∨ o 6= u ∨ j 6= i then // variables o, j, and l = c+ length(ω) keep their values
halt // last pending operation must equal the current operation

(a, r)← F (s, µ) // compute temporary state with successful pending-self operations
if commuteF (a, 〈u〉, γ) then // u = o is the current operation

(a, r)← F (a, u) // compute response to u
Z[l]← SUCCESS

else
r ← ⊥
Z[l]← ABORT

φ← signi
(

COMMIT‖u‖l‖H[l]‖Z[l]
)

send message [COMMIT, u, l,H[l], Z[l], φ] to S
u← ⊥
return r

9

Algorithm 2 Commutative-operation verification protocol (client Ci, continued)
upon receiving message [BROADCAST, o, q, h, z, φ, j] from S do

if not
(
q = c+ 1 and verifyj(φ, COMMIT‖o‖q‖h‖z)

)
then // server replies are not consistent

halt
if H[q] = ⊥ then // operation has not been pending at client

H[q]← hash(H[q − 1]‖o‖q‖j)
if h 6= H[q] then

halt // server replies are not consistent
if z = SUCCESS then // at this point, the operation is confirmed

(s, r)← F (s, o) // apply the operation and ignore response
c← c+ 1

Algorithm 3 Commutative-operation verification protocol (server S)
State

t ∈ N0: sequence number of the last invoked operation, initially 0
b ∈ N0: sequence number of the last broadcast operation, initially 0
I : N→ O× N0 × {0, 1}∗: invoked operations (see text), initially empty
O : N→ O× {0, 1}∗ ×Z × {0, 1}∗ × N: committed operations (see text), initially empty

upon receiving message [INVOKE, o, c, τ] from Ci do
t← t+ 1
I[t]← (o, i, τ)
ω ← 〈I[b+ 1], . . . , I[t]〉 // include non-committed operations and o
send message [REPLY, ω] to Ci

upon receiving message [COMMIT, o, q, h, z, φ] from Ci do
O[q]← (o, h, z, φ, i)
while O[b+ 1] 6= ⊥ do // broadcast operations ordered by their sequence number

b← b+ 1
(o′, h′, z′, φ′, j)← O[b]
send message [BROADCAST, o′, b, h′, z′, φ′, j] to all clients

Protocol. When client Ci invokes an operation o, he stores it in u and sends an INVOKE message to
S containing o, c, and τ , a digital signature computed over o and i. In turn, a correct S sends a REPLY

message with the list ω of pending operations; they have a sequence number greater than c. Upon
receiving a REPLY message, the client checks that ω is consistent with any previously sent operations
and uses ω to assemble the successful pending-self operations µ and the pending-other operations γ. He
then determines whether o can be executed or has to be aborted.

In particular, during the loop in Algorithm 1, for every operation o in ω, Ci determines its sequence
number l and verifies from the digital signature that o was indeed invoked by Cj . He computes the entry
of o in the hash chain from o, l, j, and H[l − 1]. If H[l] = ⊥, then Ci stores the hash value there.
Otherwise, H[l] has already been set and Ci verifies that the hash values are equal; this means that o is
consistent with the pending operation(s) that S has sent previously with indices up to l.

If operation o is his own and its saved status in Z[l] was SUCCESS, then he appends it to µ. The
client remembers the status of his own operations in Z, since commuteF depends on the state and that
could have changed if he applied operations after committing o.

Finally, when Ci reaches the end of ω (i.e., when Ci considers o = u), he checks that ω is not empty
and that it contains u at the last position. He then creates a temporary state a by applying µ to the current

10

state s, and tests whether u commutes with the pending-other operations γ in a. If they do, he records
the status of u as SUCCESS in Z[l] and computes the response r by executing u on state a. If u does not
commute with γ, he sets status of u to ABORT and r ← ⊥. Then Ci signs u together with its sequence
number, status, and hash chain entry H[l] and includes all values in the COMMIT message sent to S.

Upon receiving a COMMIT message for an operation o with sequence number q, the (correct) server
records its content as O[q] in the map of committed operations. Then she is supposed to send a BROAD-
CAST message containing O[q] to the clients. She waits with this until she has received COMMIT mes-
sages for all operations with sequence number less than q and broadcast them. This ensures that com-
pleted operations are disseminated in the global order to all clients. Waiting here leads to blocking in
BST, as mentioned in the Introduction. In COP, this does not forbid clients from progressing with their
own operations as we explain below.

In a BROADCAST message received by client Ci, the committed operation is represented by a tuple
(o, q, h, z, φ, j). The client conducts several verification steps; if successful, we say o is confirmed.
Subsequently he applies o to his state s. In more detail, the client first verifies that the sequence number q
is the next operation according to c; hence, o follows the global order and the server did not omit any
operations. Second, he uses the digital signature φ on the message to verify that Cj indeed committed o.
Lastly, Ci computes his own hash-chain entry H[q] for o and confirms that it is equal to the hash-chain
value h from the message. This ensures that Ci and Cj have received consistent operations from S up
to o. Once the verification succeeds, the client applies o to his state s only if its status z was SUCCESS,
that is, when Cj has not aborted o.

Commuting operation sequences. Consider the following example F of a counter restricted to non-
negative values: Its state consists of an integer s; an add(x) operation adds x to s and returns TRUE; a
dec(x) operation subtracts x from s and returns TRUE if x ≤ s, but does nothing and returns FALSE if
x > s. Suppose the current state s at Ci is 7 and Ci executes dec(4) and subsequently dec(6). During
both operations of Ci, the server announces that add(2) by another client is pending. Note that Ci
executes dec(4) successfully but aborts dec(6) because dec(6) does not commute with add(2) from 3,
the temporary state (a in Algorithm 1) computed by Ci after the pending-self operation. However, the
latter two operations, add(2) and dec(6), do commute in the current state 7. This shows why the client
executes the pending-self operations before testing the current operation for a conflict.

Suppose now the current state s is again 7 and Ci executes dec(4). The server reports the pending
sequence 〈dec(2), dec(3)〉. Thus, Ci aborts dec(4). Even though dec(4) commutes with dec(2) and
with dec(3) individually in state 7, it does not commute with their sequence. This illustrates why COP
checks for a conflict with the sequence of pending operations.

Memory requirements. For saving storage space, the client may garbage-collect entries of H and Z
with sequence numbers smaller than c. The server can also save space by removing the entries in I and
O for the operations that she has broadcast. However, if new clients are allowed to enter the protocol,
the server should keep all operations in O and broadcast them to new clients upon their arrival.

With the above optimizations the client has to keep only pending operations in H and pending-self
operations in Z. The same holds for the server: the maximum number of entries stored in I and O is
proportional to the number of pending operations at any client.

Communication. Every operation executed by a client requires him to perform one roundtrip to the
server: send an INVOKE message and receive a REPLY. For every executed operation the server simply
sends a BROADCAST message. Clients do not communicate with each other in the protocol. However,

11

as soon as they do, they benefit from fork-linearizability and can easily discover a forking attack by
comparing their hash chains.

Messages INVOKE, COMMIT, and BROADCAST are independent of the number of clients and contain
only a description of one operation, while the REPLY message contains the list of pending operations ω.
If even one client is slow, then the length of ω for all other clients grows proportionally to the number of
further operations they are executing. To reduce the size of REPLY messages, the client can remember
all pending operations received from S, and S can send every pending operation only once.

Aborts and wait-freedom. Every client executing COP can proceed with an operation o for F as long
as it does not conflict with pending operations of other clients. Observe that the state used by the client
for executing o reflects all of his own operations executed so far, even if he has not yet confirmed or
applied them to his state because operations of other clients have not yet completed. After successfully
executing o, the client outputs the response immediately after receiving the REPLY message from S. A
conflict arises when o does not commute with the pending operations of other clients. In this case, the
client aborts o and outputs ⊥, according to F ′.

Hence, for F where all operations and operation sequences commute, COP is wait-free. For arbi-
trary F , however, no fork-linearizable Byzantine emulation can be wait-free [6]. COP avoids blocking
via the augmented functionality F ′. Clients complete every operation in the sense of F ′, which includes
aborts; therefore, COP is wait-free for F ′. In other words, regardless of whether an operation aborts or
not, the client may proceed executing further operations.

To mitigate the risk of conflicts, the clients may employ a synchronization mechanism such as a
contention manager, scheduler, or a simple random waiting strategy. Such synchronization is common
for services with strong consistency demands. If one considers also clients that may crash (outside our
formal model), then the client group has to be adjusted dynamically or a single crashed client might
hold up progress of other clients forever. Previous work on the topic has explored how a group manager
or a peer-to-peer protocol may control a group membership protocol [18, 28]; these methods apply also
to COP.

Analysis. COP emulates the abortable functionality F ′ on a Byzantine server with fork-linearizability.
Furthermore, all histories of COP where the clients execute operations sequentially are fork-linearizable
w.r.t. F (no operations abort), and if, additionally, the server is correct, then all such histories are also
linearizable w.r.t. F . Here we give only a brief summary of this result; the details appear in Appendix A.

There are two points to consider. First, with a correct S, we show that the output of every client
satisfies F ′ also in the presence of many pending-self operations. The check for commutativity, applied
after simulating the client’s pending-self operations, ensures that the client’s response is the same as if
the pending-other operations would have been executed before the operation itself.

The second main innovation lies in the construction of a view for every client that includes all op-
erations that he has executed or applied, together with those of his operations that some other clients
have confirmed. Since these operations may have changed the state at other clients, they must be con-
sidered. More precisely, some Ck may have confirmed an operation o executed by Ci that Ci has not yet
confirmed or applied. In order to be fork-linearizable, the view of Ci must include o as well, including
all operations that were “promised” to Ci by S in the sense that they were announced by S as pending
for o. It follows from the properties of the hash chain that the view of Ck up to o is the same as Ci’s view
including the promised operations. The view of Ci further includes all operations that Ci has executed
after o. Taken together this demonstrates that every execution of COP is fork-linearizable w.r.t. F ′.

12

4 Authenticated computation

As introduced above, the COP server merely coordinates client-side operations but does not compute any
responses nor relieve the clients from storing, in principle, the complete state of the service. Although
BST and related systems [32, 13, 11] use this model, outsourcing operations and state has large benefits.

In this section, we introduce Authenticated COP or ACOP, which shifts state maintenance and ser-
vice execution to the server and lets clients only perform verification. ACOP extends COP with an
authenticated data structure [25] for the service functionality. It enables authenticated remote compu-
tation for many realistic services with complex interfaces[10, 26, 7, 17], such as indexed databases,
search trees, document processing services, and generic storage schemes; typically their operations
permit queries and updates. Recent advances in cryptographic tools for verifying remote computation
suggest that it may even become feasible to construct authenticators for generic computations while
preserving the privacy of the inputs [12, 2].

4.1 Authenticated COP

We consider a server that stores shared state and executes operations of the functionality F invoked
by clients. When F supports an authenticated data structure [25], the clients may verify the integrity
of a response to an operation from a cryptographic proof in the form of an authenticator for the re-
sponse. ACOP results from integrating the authenticated data structure into COP and ensures the fork-
linearizability of the service, retaining all other benefits of COP.

More formally, suppose S maintains the state of F in variable x, called the server’s state; when S
receives an operation o from a client, she should update the state by executing (x′, r) ← F (x, o) and
send the response r to the client. For adding authentication, the server’s state is extended to include
authentication data, and an authenticator α is computed with the response as

(x′, α, r)← authexecF (x, o).

The server sends r together with α to the client. The client maintains a digest d between operations,
which authenticates the (potentially large) state of F maintained by S. For checking the correctness of
the response, the client computes

(d′, r′)← verifyF (d, α, o, r),

whereby r′ = ⊥ indicates that the verification failed, and otherwise, r′ = r is the correct response. The
authexecF and verifyF operations encapsulate the authenticated data structure; more information can be
found in the rich literature on the subject [29, 23]. For practical authentication techniques such as hash
trees and authenticated dictionaries, α is usually much smaller than the full state.

We now describe how to extend COP from the client-centric approach in Algorithms 1–3 to the
model where the server maintains the state.

4.2 Server

We start with the changes for S. As part of her state, S additionally maintains a state map X : N0 →
{0, 1}∗ indexed by operations, where X[0] = s0 is the initial state. Entry X[b] is assigned when the
server broadcasts an operation with sequence number b such that X[b] contains the result of executing
the operations with sequence numbers from 1, . . . , b.

When the server receives the INVOKE message from Ci with an operation o, she increments the
index t and considers the pending operations ω with index between b and t. Then S executes the

13

pending-self operations ν of Ci, which include o, to obtain the response and authenticator for o as

(x′, α, r)← authexecF (X[b], ν);

she sends ω and r to Ci together with α. Note that x′ is discarded and that S uses X[b] to compute
the result using the operation sequence ν, which includes o, as Ci has only applied the operations with
sequence numbers 1, . . . , b at the time when he invokes o.

In COP the client checks for commutativity between an invoked operation and the pending oper-
ations by himself. With the above modification, S also needs to abort operations as the client would
determine from commuteF when computing r and α, and S must include additional information that
allows the client to execute commuteF . In practice, the server may store only the latest state X[b] and
the changes induced by the operations with lower sequence numbers. Moreover, once S learns from
INVOKE messages that all clients have received and applied all operations with sequence number q, then
she may discard the state changes for q as well.

4.3 Client

The clients no longer maintain state s and instead store a digest map G : N0 → {0, 1}∗ indexed by
operations, whereG[q] authenticates the state resulting from executing the operations with index up to q,
starting from s0. The client usesG to verify the server’s responses to his operations in a REPLY message.
In particular, for operation o, client Ci runs Algorithm 1, executes its pending-self operations (µ) upon
inputG[c] to obtain a temporary state a and a corresponding digest g, performs the commutativity check,
and, if successful, computes

(d′, r′)← verifyF (g, α, o, r).

The client halts if the original algorithm halts or if r′ = ⊥; otherwise, the response is r ← r′. The client
augments the COMMIT message with α and r′ and signs the entire message. Note that d′ is again used
only temporarily for verifying the pending-self operations and is discarded when the method returns.

Upon receiving a BROADCAST message when the last confirmed operation has index c, the client
verifies the signature from client Cj that invoked the operation and the hash value as before. Then Ci
intends to verify that the response and digest are consistent (between him and Cj) and to compute the
next digestG[c+1]. Note that Ci cannot use α, however, to update the digest, as α authenticates o in the
state where Cj committed it, but this state may differ from the state at index c, which is current for Ci.
We therefore require that S sends an additional authenticator α′ for o in state X[c]. The client verifies
that α′ and r correspond to o by executing

(G[c+ 1], r′)← verifyF (G[c], α′, o, r),

and verifying that r′ 6= ⊥. The client may garbage-collect entries in G in a similar way as for the hash
chain in COP.

5 Conclusion

This paper has introduced COP and ACOP, two variants of the Commutative-Operation verification
Protocol, which allow a group of clients to execute a generic service coordinated by a remote untrusted
server. COP ensures fork-linearizability and allows clients to easily verify the consistency and integrity
of the service responses. In contrast to previous work, COP is wait-free and supports commuting opera-
tion sequences (but may sometimes abort conflicting operations); ACOP extends COP by shifting state
and operation execution from the clients to the server.

14

Given the popularity of outsourced computation and cloud computing, the problem of checking the
results of remote computations cryptographically has received a lot of attention recently [9, 27, 12, 2].
However, these protocols typically address only a two-party model and, with some exceptions [2], do
not support state changes. An important direction for future work lies in integrating these verifiable
computation protocols into COP and related protocols for guaranteeing cryptographic integrity in the
sense of fork-linearizability for multiple clients.

Acknowledgments

We thank Marcus Brandenburger for interesting discussions and valuable comments.
This work has been supported in part by the European Union’s Seventh Framework Programme

(FP7/2007–2013) under grant agreement number ICT-257243 TCLOUDS.

References

[1] M. K. Aguilera, S. Frølund, V. Hadzilacos, S. L. Horn, and S. Toueg, “Abortable and query-
abortable objects and their efficient implementation,” in Proc. 26th ACM Symposium on Principles
of Distributed Computing (PODC), 2007.

[2] B. Braun, A. J. Feldman, Z. Ren, S. T. V. Setty, A. J. Blumberg, and M. Walfish, “Verifying
computations with state,” in Proc. 24th ACM Symposium on Operating Systems Principles (SOSP),
pp. 341–357, 2013.

[3] C. Cachin, “Integrity and consistency for untrusted services,” in Proc. 37th Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2011), vol. 6543 of Lecture Notes
in Computer Science, pp. 1–14, Springer, 2011.

[4] C. Cachin, I. Keidar, and A. Shraer, “Fork sequential consistency is blocking,” Information Pro-
cessing Letters, vol. 109, pp. 360–364, Mar. 2009.

[5] C. Cachin, I. Keidar, and A. Shraer, “Fail-aware untrusted storage,” SIAM Journal on Computing,
vol. 40, pp. 493–533, Apr. 2011. Preliminary version appears in Proc. DSN 2009.

[6] C. Cachin, A. Shelat, and A. Shraer, “Efficient fork-linearizable access to untrusted shared mem-
ory,” in Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC), pp. 129–
138, 2007.

[7] R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos, “Verifiable set operations over
outsourced databases,” in Proc. 17th International Workshop on Theory and Practice in Public-
Key Cryptography (PKC), vol. 8383 of Lecture Notes in Computer Science, pp. 113–130, Springer,
2014.

[8] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler, “The scalable commu-
tativity rule: Designing scalable software for multicore processors,” in Proc. 24th ACM Symposium
on Operating Systems Principles (SOSP), pp. 1–17, 2013.

[9] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified computation with streaming in-
teractive proofs,” in Proc. 3rd Conference on Innovations in Theoretical Computer Science (ITCS),
pp. 90–112, 2012.

15

[10] S. A. Crosby and D. S. Wallach, “Authenticated dictionaries: Real-world costs and trade-offs,”
ACM Transactions on Information and System Security, vol. 14, no. 2, 2011.

[11] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “SPORC: Group collaboration using
untrusted cloud resources,” in Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[12] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span programs and succinct NIZKs
without PCPs,” in Advances in Cryptology: EUROCRYPT 2013, vol. 7881 of Lecture Notes in
Computer Science, Springer, 2013.

[13] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter, “Zzyzx: Scalable fault tolerance
through Byzantine locking,” in Proc. 40th International Conference on Dependable Systems and
Networks (DSN-DCCS), 2010.

[14] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Languages and Sys-
tems, vol. 11, pp. 124–149, Jan. 1991.

[15] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization: Double-ended queues
as an example,” in Proc. 23rd Intl. Conference on Distributed Computing Systems (ICDCS), 2003.

[16] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent objects,”
ACM Transactions on Programming Languages and Systems, vol. 12, pp. 463–492, July 1990.

[17] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos,
“TRUESET: Nearly practical verifiable set computations,” in Proc. 23rd USENIX Security Sympo-
sium, 2014.

[18] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data repository (SUNDR),” in
Proc. 6th Symp. Operating Systems Design and Implementation (OSDI), pp. 121–136, 2004.

[19] J. Li and D. Mazières, “Beyond one-third faulty replicas in Byzantine fault-tolerant systems,” in
Proc. 4th Symp. Networked Systems Design and Implementation (NSDI), 2007.

[20] N. A. Lynch, Distributed Algorithms. San Francisco: Morgan Kaufmann, 1996.

[21] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish, “Depot: Cloud
storage with minimal trust,” in Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[22] M. Majuntke, D. Dobre, M. Serafini, and N. Suri, “Abortable fork-linearizable storage,” in Proc.
13th Conference on Principles of Distributed Systems (OPODIS), vol. 5923 of Lecture Notes in
Computer Science, pp. 255–269, Springer, 2009.

[23] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine, “A general model
for authenticated data structures,” Algorithmica, vol. 39, pp. 21–41, 2004.

[24] D. Mazières and D. Shasha, “Building secure file systems out of Byzantine storage,” in Proc. 21st
ACM Symposium on Principles of Distributed Computing (PODC), 2002.

[25] M. Naor and K. Nissim, “Certificate revocation and certificate update,” IEEE Journal on Selected
Areas in Communications, vol. 18, pp. 561–570, Apr. 2000.

16

[26] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal verification of operations on dy-
namic sets,” in Advances in Cryptology: CRYPTO 2011, vol. 6841 of Lecture Notes in Computer
Science, pp. 91–110, Springer, 2011.

[27] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish, “Taking proof-based
verified computation a few steps closer to practicality,” in Proc. 21st USENIX Security Symposium,
2012.

[28] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket, “Venus: Verification for
untrusted cloud storage,” in Proc. Cloud Computing Security Workshop (CCSW), ACM, 2010.

[29] R. Tamassia, “Authenticated data structures,” in Proc. 11th European Symposium on Algorithms
(ESA), vol. 2832 of Lecture Notes in Computer Science, pp. 2–5, Springer, 2003.

[30] W. E. Weihl, “Commutativity-based concurrency control for abstract data types,” IEEE Trans.
Computers, vol. 37, pp. 1488–1505, Dec. 1988.

[31] G. Weikum and G. Vossen, Transactional Information Systems. Morgan Kaufmann, 2002.

[32] P. Williams, R. Sion, and D. Shasha, “The blind stone tablet: Outsourcing durability to untrusted
parties,” in Proc. Network and Distributed Systems Security Symposium (NDSS), 2009.

17

A Analysis

Theorem 1. The commutative-operation verification protocol in Algorithms 1–3 emulates functional-
ity F ′ on a Byzantine server with fork-linearizability.

We prove this theorem through the sequence of the following lemmas. We start by introducing
additional notation.

When a client issues a COMMIT signature for some operation o, we say that he commits o. The
client’s sequence number included in the signature thus becomes the sequence number of o; note that
with a faulty S, two different operations may be committed with the same sequence number by separate
clients.

Lemma 2. If the server is correct, then every history σ is linearizable w.r.t. F ′. Moreover, if the clients
execute all operations sequentially, then σ is linearizable w.r.t. F .

Proof. Recall that σ consists of invocation and response events. We construct a sequential permutation π
of σ in terms of the operations associated to the events in σ. Note that a client sends an INVOKE message
with his operation to the server, the server assigns a sequence number to the operation and sends it
back. The client then computes the response and sends a signed COMMIT message to S, containing the
operation and its sequence number. Since each executed operation appears in σ in terms of its invocation
and response events, π contains all operations of all clients.

We order π by the sequence number of the operations. If the server is correct she processes INVOKE

messages in the order they are received and assigns sequence numbers accordingly. This implies that
if an operation o′ is invoked after an operation o completes, then the sequence number of o′ is higher
than o’s. Hence, π preserves the real-time order of σ.

We now use induction on the operations in π to show that π satisfies the sequential specification
of F ′. Note that F ′ requires a bit of care, as it is not deterministic. For a sequence ω of operations
of F ′ in an actual execution, we write successful(ω) for the subsequence whose status was SUCCESS;
restricted to such operations, F ′ is deterministic. In particular, consider some operation o ∈ π, executed
by client Ci. We want to show that Ci computes (s′, r) such that (s′, r) ∈ F ′(s0, successful(π|o)),
whereby it outputs r after committing o and stores s′ in its variable s after applying o.

Consider the base case where o is the first operation in π. Note that S has not reported any pending
operations to Ci because o is the first operation. Thus, Ci determines that the status of o is SUCCESS,
computes (s′, r) ← F (s0, o) and outputs r. Hence, F ′ is satisfied. When Ci later receives o in the
BROADCAST message from S with sequence number 1, the state is also updated correctly.

Now consider the case when o is not the first operation in π and assume that the induction assumption
holds for an operation that appears in π before o. If the status of o is ABORT, then the client does not
invoke F , returns ⊥, and leaves the state unchanged upon applying o. The claim follows.

Otherwise, we need to show that the response r 6= ⊥ and the state s′ after applying o satisfy (s′, r)
= F (s0, successful(π|o)). Since S is correct, she assigns unique sequence numbers to the operations.
We split the operations with a sequence number smaller than that of o in three groups: a sequence ρ
of operations that Ci has confirmed before he committed o, this sequence is in the order in which Ci
confirmed these operations; a sequence δ of operations of other clients that were reported by S as
pending to Ci when executing o, ordered as in the REPLY message; and a sequence ν of operations that
Ci has committed itself before o but not yet confirmed or applied, ordered by their sequence number.

Observe thatCi computes r starting from its own copy of the state s̄ that results after applying all op-
erations in successful(ρ). From the induction assumption, it follows that (s̄, ·) = F (s0, successful(ρ))
because ρ is a prefix of π. From variable ω in the REPLY message, Ci computes the pending-other
operations γ and the successful pending-self operations µ. Note that γ = δ and µ = successful(ν)

18

as the server is correct. The client computes a temporary state (a, ·) = F (s̄, µ). Because o does
not abort, Ci has determined that o commutes with γ in a and computed (·, r) = F (a, o). By the
definition of commuting operation sequences, we have that (s′, r) = F (a, successful(γ) ◦ o) and
(s′, r) = F (s̄, successful(ω)) since the order of operations in µ and γ is preserved in ω. Hence,
(s′, r) = F (s0, successful(π|o)).

The sequence π preserves the real-time order of σ and satisfies the three conditions of a view of σ
at every client Ci w.r.t. F ′, hence, σ is linearizable w.r.t. F ′.

The second part of the lemma claims that if clients execute operations sequentially, then no client
outputs ⊥. Since the sequence of events at every client is well-formed, a client does not invoke an
operation before he has completed the previous one. Moreover, if clients execute operations sequentially
then no client invokes an operation while there is a client who has not completed his operation. Hence,
the server never includes any pending operations in ω of the REPLY message. The check for conflicts is
never positive, and all operations have status SUCCESS. Hence, no client returns ⊥ and σ satisfies the
sequential specification of F .

The promised view of an operation. Suppose a client Ci executes and thereby commits an opera-
tion o. We define the promised view to Ci of o as the sequence of all operations that Ci has confirmed
before committing o, concatenated with the sequence ω of pending operations received in the REPLY

message during the execution of o, including o itself (according to the protocol Ci verifies that the last
operation in ω is o).

Lemma 3. If Cj has confirmed some operation o that was committed by a client Ci, then the sequence
of operations that Cj has confirmed up to (and including) o is equal to the promised view to Ci of o. In
particular,

1. if Ci and Cj have confirmed an operation o, then they have both confirmed the same sequence of
operations up to o; and

2. the promised view to Ci of o contains all operations executed by Ci up to o.

Proof. Note that every client computes a hash chain H in which every defined entry contains a hash
value that represents a sequence of operations. More precisely, if Ci commits o with sequence number l,
then he has set H[l]← hash(H[l − 1]‖o‖l‖i); this step recursively defines the sequence represented by
H[l] as the sequence represented by H[l− 1] followed by o. According to the collision-resistance of the
hash function, no two different operation sequences are represented by the same hash value. Note that
no client ever overwrites an entry of H; moreover, if a client arrives at a point in the protocol where he
might assign some value h to entry H[l] but H[l] 6= ⊥, then he verifies that H[l] = h and aborts if this
fails.

Consider the moment when Ci receives the REPLY message during the execution of o. The view of
o promised to Ci contains the sequence of operations that Ci has confirmed, followed by the list ω in
the REPLY message, including o.

For every pending operation p ∈ ω, client Ci checks if he has already an entry inH at index l, which
is the promised sequence number of p to Ci according to ω. If there is no such entry, he computes the
hash value H[l] as above. Otherwise, Ci must have received an operation for sequence number l earlier,
and so he verifies that o is the same pending operation as received before. Moreover, Ci verifies that o
is also returned to him as pending and adds it to H . Hence, the new hash value h stored in H at the
sequence number of o represents the promised view to Ci of o.

Subsequently, Ci signs o and h together and sends it to the server. Client Cj receives it in a BROAD-
CAST message from S, to be confirmed and applied with sequence number q. Because Cj verifies the
signature of Ci on o, q, and h, the hash value h received by Cj represents the promised view to Ci of

19

o. Before Cj applies o as his q-th operation, according to the protocol he must have already confirmed
q − 1 operations one by one. Client Cj also verifies that he has either already computed the same
H[q] = h or he computes H[q] from his value H[q − 1] and checks H[q] = h. As H[q] represents the
sequence of operations that Cj has confirmed up to o, from the collision resistance of the hash function,
this establishes the main statement of the lemma.

The first additional claim follows simply by noticing that the statement of the lemma holds for i = j.
For showing the second additional claim, we note that if Ci confirms an operation of himself, then he
has previously executed it (successful or not). There may be additional operations that Ci has executed
but not yet confirmed, but Ci has verified according to the above argument that these were all contained
in ω from the REPLY message. Thus they are also in the promised view of o.

The view of a client. We construct a sequence πi from σ as follows. Let o be the operation committed
by Ci which has the highest sequence number among those operations of Ci that have been confirmed
by some client Ck (including Ci). Define αi to be the sequence of operations confirmed by Ck up to
and including o. Furthermore, let βi be the sequence of operations committed by Ci with a sequence
number higher than that of o. Then πi is the concatenation of αi and βi. Observe that by definition, no
client has confirmed operations from βi.

Lemma 4. The sequence πi is a view of σ at Ci w.r.t. F ′.

Proof. Note that πi is defined through a sequence of operations that are contained in σ. Hence πi is
sequential by construction.

We now argue that all operations executed by Ci are included in πi. Recall that πi = αi ◦ βi and
consider o, the last operation in αi. As o has been confirmed by Ck, Lemma 3 shows that αi is equal
to the promised view to Ci of o and, furthermore, that it contains all operations that Ci has executed
up to o. By construction of πi all other operations executed by Ci are contained in βi, and the property
follows.

The last property of a view requires that πi satisfies the sequential specification of F ′. Note that F ′

is not deterministic and some responses might be ⊥. But when we ensure that two operation sequences
of F ′ have responses equal to ⊥ in exactly the same positions, then we can conclude that two equal
operation sequences give the same resulting state and responses from the fact that F is deterministic.

We first address the operations in αi. Consider again o, the last operation in αi, which has been
confirmed by Ck. For the point in time when Ci executes o, define ρ to be the sequence of operations
that Ci has confirmed prior to this and define s̄ as the resulting state from applying the successful
operations in ρ, as stored in variable s; furthermore, let ω be the pending operations contained in the
REPLY message from S. Observe that ω can be partitioned in the pending-other operations γ, the
successful pending-self operations of Ci as stored in µ, the aborted pending-self operations of Ci, and o.
Client Ci computes the response r for o in state a that results from F (s, µ). Before executing o, Ci
verifies that o commutes with γ in a. Note that when Ci committed some operation p ∈ µ he has also
verified that p commuted with the pending-other operations in ω|p. Hence, the response resulting from
executing the operations of µ ◦ o in state s̄ is the same as the one of executing µ ◦ successful(γ) ◦ o in
state s̄, where we have used the notation successful(·) from Lemma 2. Since ω preserves the order of
operations in µ and γ, the response is also the same after the execution of ρ ◦ successful(ω). Moreover,
the state resulting from executing the operations in ρ followed by µ ◦ successful(γ) ◦ o is the same as
that resulting from executing ρ ◦ successful(ω). Since ρ ◦ ω is the promised view to Ci of o, and since
Ck has confirmed o, Lemma 3 now implies that ρ ◦ ω is equal to αi.

To conclude the argument, we only have to show that the abort status for all operations in the
sequences is the same. Then they will produce the same responses and the same final state. Note

20

that when Ci executes some operation o he either computes a response according to F or aborts the
operation, declaring its status to be SUCCESS or ABORT, respectively. For operations in ρ this is clear
from the protocol as the status is included in the BROADCAST message. And whenever Ci later obtains
o again as a pending-self operation in ω at some index l, he verifies that it is the same operation as
previously at index l and applies or skips it as before according to the status remembered in Z[l]. Hence,
the responses of Ci from executing the operations in αi respect the specification of F ′.

The remainder of πi consists of βi, whose operations Ci executes himself using F ′. Hence, πi
satisfies the sequential specification of F ′.

Lemma 5. If some client Ck confirms an operation o1 before an operation o2, then o2 does not precede
o1 in the execution history σ.

Proof. Let δk denote the sequence of operations that Ck has confirmed up to o2. According to the
protocol logic, δk contains o1, and o1 has a smaller sequence number than o2. Lemma 3 shows that δk
is equal to the promised view to Ck of o2, hence, o1 is in the promised view to Ck of o2. Recall that the
promised view contains operations that have been committed or are pending for other clients. Hence, o1
has been invoked before o2 completed.

Lemma 6. The sequence πi preserves the real-time order of σ.

Proof. Recall that πi = αi ◦ βi and consider first those operations of πi that appear in αi, that is, they
have been confirmed by some client Ck. Lemma 5 shows that these operations preserve the real-time
order of σ. Second, the operations in βi are ordered according to their sequence number and they were
committed by Ci. According to the protocol, Ci executes only one operation at a time and always
assigns a sequence number that is higher than the previous one. Hence, βi also preserves the real-time
order of σ.

We are left to show that no operation in βi precedes an operation from αi in σ. Recall that αi is the
promised view to Ci of o (the last operation in αi) and includes the operations that Ci has confirmed or
received as pending from S after Ci invoked o. Since o precedes all operations from βi, it follows that
no operation in αi precedes an operation from βi.

Lemma 7. If o ∈ πi ∩ πj then πi|o = πj |o.

Proof. As πi = αi ◦ βi and πj = αj ◦ βj , we need to consider four cases to analyze all operations that
can appear in πi ∩ πj and the rest are symmetrical.

1. o ∈ αi and o ∈ αj : This case happens when (a) Ci and Cj both confirmed o, or when (b) Ci has
confirmed an operation of Cj or vice versa, or when (c) a client Ck has confirmed operations of
Ci and Cj . For (a) and (b) Lemma 3 shows that αi|o = αj |o. In case (c) neither Ci nor Cj has
confirmed o, but o is in their views because Ck has confirmed pending operations of Ci and Cj .
Hence, πk|o = αi|o and πk|o = αj |o again from Lemma 3.

2. o ∈ βi and o ∈ αj : This case cannot happen, since no client has confirmed operations from βi by
definition.

3. o ∈ αi and o ∈ βj : Analogous to the case above.
4. o ∈ βi and o ∈ βj : This case cannot happen since βi and βj contain only pending-self operations

of Ci and Cj , correspondingly.

21

