
Integrity and Consistency for Untrusted Services
(Extended Abstract)

Christian Cachin

IBM Research - Zurich
CH-8803 Rüschlikon, Switzerland

cca@zurich.ibm.com

4 November 2010

Abstract

A group of mutually trusting clients outsources an arbitrary computation service to a remote provider,
which they do not fully trust and that may be subject to attacks. The clients do not communicate
with each other and would like to verify the integrity of the stored data, the correctness of the remote
computation process, and the consistency of the provider’s responses.

We present a novel protocol that guarantees atomic operations to all clients when the provider is
correct and fork-linearizable semantics when it is faulty; this means that all clients which observe
each other’s operations are consistent, in the sense that their own operations, plus those operations
whose effects they see, have occurred atomically in same sequence. This protocol generalizes pre-
vious approaches that provided such guarantees only for outsourced storage services.

Keywords: cloud computing, fork-linearizability, data integrity, computation integrity, authenti-
cated data structure, Byzantine emulation.

1 Introduction

Today many users outsource generic computing services to large-scale remote service providers and no
longer run them locally. Commonly called the cloud computing model, this approach carries inherent
risks concerning data security and service integrity.

Whereas data can be stored confidentially by encrypting it, ensuring the integrity of remote data and
outsourced computations is a much harder problem. A subtle change in the remote computation, whether
caused inadvertently by a bug or deliberately by a malicious adversary, may result in wrong responses
to the clients. Such deviations from a correct specification can be very difficult to spot manually.

Suppose a group of clients, whose members trust each other, relies on an untrusted remote server
for a collaboration task. For instance, the group stores its project data on a cloud service and accesses
it for coordination and document exchange. Although the server is usually correct and responds prop-
erly, it might become corrupted some day and respond wrongly. This work aims at discovering such
misbehavior, in order for the clients to take some compensation action.

When the service provides data storage (read and write operations only), some well-known methods
guarantee data integrity. With only one client, a memory checker [1] ensures that a read operation always
returns the most recently written value. If multiple clients access the remote storage, they can combine
a memory checker with an external trusted infrastructure (like a directory service or a key manager in a
cryptographic file system), and achieve the same guarantees for many clients.

1

But in the asynchronous network model without client-to-client communication considered here,
nothing prevents the server from mounting a forking attack, whereby it simply omits the operations of
one client in its responses to other clients. Mazières and Shasha [15] put forward the notion of fork-
linearizability, which captures the optimal achievable consistency guarantee in this setting. It ensures
that whenever the server’s responses to a client A have ignored a write operation executed by a client B,
then A can never again read a value written by B afterwards and vice versa. With this notion, the clients
detect server misbehavior from a single inconsistent operation — this is much easier than comparing the
effects of all past operations one-by-one.

This paper makes the first step toward ensuring integrity and consistency for arbitrary computing
services running on an untrusted server. It does so by extending untrusted storage protocols providing
fork-linearizability to a generic service protocol with fork-linearizable semantics. Previous work in this
model only addressed integrity for a storage service, but could not check the consistency of more general
computations by the server.

Similar to the case of a storage service, the server can readily mount a forking attack by split-
ting the group of clients into subgroups and responding consistently within each subgroup, but not
making operations from one subgroup visible to others. Because the protocol presented here ensures
fork-linearizability, however, such violations become easy to discover. The method therefore protects
the integrity of arbitrary services in an end-to-end way, as opposed to existing techniques that aim at
ensuring the integrity of a computing platform (e.g., the trusted computing paradigm).

Our approach requires that (at least part of) the service implementation is known to the clients,
because they need to double-check crucial steps of an algorithm locally. In this sense, the notion of
fork-linearizable service integrity, as considered here, means that the clients have collaboratively verified
every single operation of the service. This strictly generalizes the established notion of fork-linearizable
storage integrity. A related notion for databases is ensured by the Blind Stone Tablet protocol [20].

1.1 Contributions

We present the first precise model for a group of mutually trusting clients to execute an arbitrary service
on an untrusted server S, with the following characteristics. It guarantees atomic operations to all clients
when S is correct and fork-linearizability when S is faulty; this means that all clients which observe each
other’s operations are consistent, in the sense that their own operations, plus those operations whose
effects they see, have occurred atomically in same sequence.

Furthermore, we generalize the concept of authenticated data structures [16] toward executing ar-
bitrary services in an authenticated manner with multiple clients. We present a protocol for consistent
service execution on an untrusted server, which adds O(n) communication overhead for a group of
n clients; it generalizes existing protocols that have addressed only the special case of storage on an
untrusted server.

1.2 Related work

Ensuring integrity and consistency for services outsourced to third parties is a very important problem,
particularly regarding security in cloud computing [8].

A common approach for tolerating faults, including adversarial actions by malicious, so-called
Byzantine servers, relies on replication [5]. All such methods, however, break down as soon as a major-
ity of servers becomes faulty. We are interested in consistency for only one server, which is potentially
Byzantine.

Our approach directly builds on authenticated data structures [16, 14, 19]; they generalize Merkle
hash trees for memory checking [1] to arbitrary search structures on general data sets. Authenticated

2

data structures consist of communication-efficient methods for authenticating database queries answered
by an untrusted provider. In contrast to our setting, the two- and three-party models of authenticated
data structures allow only one client as a writer to modify the content. Our model allows any client to
issue arbitrary operations, including updates.

Previous work on untrusted storage has addressed the multi-writer model. Mazières and Shasha [15]
introduce untrusted storage protocols and the notion of fork-linearizability (under the name of fork
consistency), and demonstrate them with the SUNDR storage system [12]. Subsequent work of Cachin
et al. [4] improves the efficiency of untrusted storage protocols. A related work demonstrates how the
operations of a revision control system can be mapped to an untrusted storage primitive, such that the
resulting system protects integrity and consistency for revision control [2].

FAUST [3] and Venus [18] extend the model beyond the one considered here and let the clients
occasionally exchange messages among themselves. This allows FAUST and Venus to obtain stronger
semantics, in the sense that they eventually reach consistency (in the sense of linearizability) or detect
server misbehavior. In our model without client-to-client communication, fork-linearizability, or one of
the related “forking” consistency notions [3], is the best that can be achieved [15].

Several recent cloud-security mechanisms aim at a similar level of service consistency as guaranteed
by our protocol. They include the Blind Stone Tablet [20] for consistent and private database execution
using untrusted servers, the SPORC framework [9] for securing group collaboration tasks executed by
untrusted servers, and the Depot [13] storage system.

Orthogonal approaches impose correct behavior on a remote service indirectly, for instance through
accountability in a storage service [21] or distributed systems [10]. Yet other work relies on trusted
hardware modules at all parties [6, 7].

1.3 Organization

Section 2 describes the model and recalls fork-linearizability and other consistency notions. In Section 3
the notion of authenticated service execution is introduced, which plays the main role for formalizing
arbitrary services so that their responses can be verified. Section 4 presents the fork-linearizable service
execution protocol. The detailed analysis and generalizations are omitted from this extended abstract.

2 System model

System. We consider an asynchronous distributed system consisting of n clients C1, . . . , Cn and a
server S. Every client is connected to S through an asynchronous reliable channel that delivers messages
in first-in/first-out (FIFO) order. The clients and the server together are called parties. A protocol P
specifies the behaviors of all parties. An execution of P is a sequence of alternating states and state
transitions, called events, which occur according to the specification of the system components.

All clients follow the protocol; in particular, they do not crash. Every client has some small local
trusted memory, which serves to store keys and authentication values. The server might be faulty and
deviate arbitrarily from the protocol; such behavior is also called Byzantine. A party that does not fail
in an execution is correct.

Functionality. We consider a deterministic state machine, which is modeled by a functionality F as
follows. It maintains a state s ∈ S, repeatedly takes some operation o ∈ O as input (o may contain
arguments), and outputs a response r ∈ R and a new state s′. The initial state is denoted by sF0.
Formally, a step of F is written as

(s′, r) ← F (s, o).

3

Because operations are executed one after another, this gives the sequential specification of F . We
discuss the concurrent invocation of multiple operations later.

We extend this notation for executing multiple operations o1, . . . , om in sequence, starting from an
initial state s0, and write

(s′, r) = F (s0, [o1, . . . , om])

for (si, ri) = F (si−1, oi) with i = 1, . . . ,m and (s′, r) = (sm, rm).
We define the space complexity of F , denoted by SPACEF , to be the number of bits required to store

the largest of its states, i.e.,
SPACEF = max

s∈S
|s|.

The space complexity determines the amount of local storage necessary to execute F .

Operations and histories. Our goal is to emulate F to the clients with the help of server S. The
clients invoke the operations of F ; every operation is represented by two events occurring at the client,
an invocation and a response. A history of an execution σ consists of the sequence of invocations and
responses of F occurring in σ. An operation is complete in a history if it has a matching response.
For a sequence of events σ, complete(σ) is the maximal subsequence of σ consisting only of complete
operations.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o
completes before o′ is invoked in σ. A sequence of events π preserves the real-time order of a history σ if
for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are concurrent if neither
one of them precedes the other. A sequence of events is sequential if it does not contain concurrent
operations. For a sequence of events σ, the subsequence of σ consisting only of events occurring at
client Ci is denoted by σ|Ci (we use the symbol | as a projection operator). For some operation o, the
prefix of σ that ends with the last event of o is denoted by σ|o.

An execution is well-formed if the sequence of events at each client consists of alternating invoca-
tions and matching responses, starting with an invocation. An execution is fair, informally, if it does not
halt prematurely when there are still steps to be taken or messages to be delivered.

Consistency conditions. We now describe the formal consistency notions required from an untrusted
service, formulated in terms of the possible views of a client. A sequence of events π is called a view
of a history σ at a client Ci w.r.t. a functionality F if σ can be extended (by appending zero or more
responses) to a history σ′ such that:

1. π is a sequential permutation of some subsequence of complete(σ′);
2. π|Ci = complete(σ′)|Ci ; and
3. π satisfies the sequential specification of F .

Intuitively, a view π of σ atCi contains at least all those operations that either occur atCi or are apparent
from to Ci from its interaction with F .

One of the most important consistency conditions for concurrent operations is linearizability, which
guarantees that all operations occur atomically.

Definition 1 (Linearizability [11]). A history σ is linearizable w.r.t. a functionality F if there exists a
sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and
2. π preserves the real-time order of σ.

4

The notion of fork-linearizability [15] (originally called fork consistency) requires that when an
operation is observed by multiple clients, the history of events occurring before the operation is the
same. For instance, when a client reads a value written by another client from a storage service, the
reader is assured to be consistent with the writer up to the write operation.

Definition 2 (Fork-linearizability). A history σ is fork-linearizable w.r.t. a functionality F if for each
client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi preserves the real-time order of σ;
3. (No-join) For every client Cj and every operation o ∈ πi ∩ πj , it holds that πi|o = πj |o.

We now recall the concept of a fork-linearizable Byzantine emulation [4]. It summarizes the require-
ments put on our service emulation protocol, which runs between the clients and an untrusted server.
This notion means that when the server is correct, the service should guarantee the standard notion of
linearizability; otherwise, it should ensure fork-linearizability.

Definition 3 (Fork-linearizable Byzantine emulation). A protocol P emulates a functionality F on a
Byzantine server S with fork-linearizability whenever the following conditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is linearizable w.r.t. F ;
and

2. The history of every fair and well-formed execution of P is fork-linearizable w.r.t. F .

Cryptographic primitives. Our implementation uses hash functions, digital signatures, and symmetric-
key encryption. We model them as ideal functionalities here. But all notions can be made formal in the
model of modern cryptography.

A hash function H maps a bit string x of arbitrary length to a short, unique representation of fixed
length. It is assumed to be collision-free, that is, no party can produce two different inputs x and x′ such
that H(x) = H(x′).

A digital signature scheme provides two operations, sign and verify. The invocation of sign takes an
index i ∈ {1, . . . , n} and a bit string m as parameters and returns a signature φ with the response. The
verify operation takes the index i of a client, a string m, and a putative signature φ as parameters and
returns a Boolean value b ∈ {FALSE, TRUE} with the response. It satisfies that verify(i,m, φ) = TRUE

for all i and m if and only if Ci has executed sign(i,m) = φ before. Only Ci may invoke sign(i, ·) and
S cannot invoke sign. Every party may invoke verify.

A symmetric encryption scheme consists of a key generation algorithm, an encryption algorithm en-
crypt and a decryption algorithm decrypt. Initially a trusted entity runs the key generator and obtains a
key k ∈ K. Algorithm encrypt takes k and a message m as inputs and returns a ciphertext c. Algorithm
decrypt takes k and a ciphertext c as inputs and returns a message m. For any k and m, it is required
that decrypt(k, encrypt(k,m)) = m. Furthermore, any party that obtains c = encrypt(k,m) but has no
access to k obtains no useful information about m.

3 Service execution and authentication

This section first introduces a model for executing the service F on server S such that operations are
invoked by the clients. The primary task of S is to maintain the global state s of F ; we intend this

5

model for coordination services, shared collaboration spaces, light-weight databases, storage applica-
tions and so on, with small computational expense for every operation, but high demand on maintaining
a consistent state.

Given this setting, the clients could simply send their operations to S and, since F is deterministic, S
could execute them and return the responses. But we are interested in a model where the clients execute
the bulk of every operation, so as to reduce the load on S. This assumption also helps preparing the
ground for authenticating the responses of S.

In the second part of this section, we introduce a model for authenticating the execution of a se-
quence of operations issued by a single client (imagine for a moment there is only one client; we extend
this to multiple clients later). The client uses its local trusted memory to maintain some authentication
data, from which it verifies the responses of F sent by S. This model closely resembles the established
concept of authenticated data structures.

Separated execution. We model the execution of operations of F in a separated way, such that the
clients do most of the work. Not all functionalities encountered require that every operation accesses the
complete state s. An operation o can be executed in a separated way when it uses only a part so of the
global state s of the functionality; this part may depend on the operation. If o modifies the global state,
then the separated execution will also generate an updated state s′o, which must be reconciled with s to
maintain the correct semantics of F .

More formally, we say a functionality F allows separated execution when there exist three deter-
ministic algorithms extractF , execF , and reconcileF as follows. Algorithm extractF produces a partial
state so from a global state s and an operation o,

so ← extractF (s, o);

algorithm execF executes o on the partial state so to produce a response r and a partial updated state s′o,

(s′o, r) ← execF (so, o);

finally, algorithm reconcileF takes s′o and o, together with the old global state s and outputs the new
global state

s ← reconcileF (s, s′o, o).

The algorithms satisfy that for any s ∈ S and o ∈ O, and for any s′, r with (s′, r) = F (s, o), there
exists a partial state so = extractF (s, o) and a partial updated state s′o such that

(s′o, r) = execF (so, o) ∧ s′ = reconcileF (s, s′o, o)

and
|so| � |s| ∧ |s′o| � |s′|.

In other words, the algorithms for the separated execution of F produce the same response and new state
as the original F , but there exist intermediate states for the operation (so and s′o), which are much smaller
than the full state(s). The latter requirement should be understood qualitatively and is not quantified; but
it is crucial for enabling efficient separated execution between a client and a server.

The communication complexity of some F with separated execution measures the size of the mes-
sages that must be communicated for separated execution. It is denoted by COMMF and defined as
the number of bits required to store the largest partial state so, partial updated state s′o, together with a
description of the operation o itself, for executing any operation on any state. That is,

COMMF = max
{
|so|+ |s′o|+ |o|

∣∣ s ∈ S, o ∈ O, so = extractF (s, o), (s′o, r) = execF (so, o)
}
.

6

Authenticated separated execution. When only a single client engages in separated execution of op-
erations on the server, well-known methods allow the client to verify the correctness of the responses.
These methods protect the client from a faulty server that tries to forge wrong responses. Known gen-
erally as authenticated data structures [16, 14], they apply to a broad class of information retrieval
services, such as reading an item from a memory, hash tables, or search queries to a structured data
type. Such service authentication schemes rely on a small authenticator value maintained by the client
in its local trusted memory. The client can verify the response of an operation o in such a way that
it recognizes when the response differs from the correct response r, resulting from applying o to the
current state s of the service. That is, state s is obtained by applying all past operations of the client to
F in order and the correct response is determined by (s′, r) = F (s, o). We model this concept as an
extension of separated execution.

We say a functionality F allows authenticated separated execution when there exist three deter-
ministic algorithms authextractF , authexecF , and authreconcileF as follows. Algorithm authextractF
produces a partial state so from a global state s and an operation o,

so ← authextractF (s, o).

The client maintains an authenticator denoted by a, which is initialized to a default value aF0. Algo-
rithm authexecF takes a, so, and o as inputs and produces an updated authenticator a′, a partial updated
state s′o, and a response r. In the course of executing o, the algorithm also verifies its inputs with respect
to a and may output the special symbol ⊥ as response, indicating that the verification failed. In other
words,

(a′, s′o, r) ← authexecF (a, so, o),

with r = ⊥ if and only if verification failed. Finally, algorithm authreconcileF takes s′o and o, together
with the old global state s and outputs the new global state

s ← authreconcileF (s, s′o, o).

Its role is exactly the same as in separated execution.
A proper authenticated execution of the operation sequence o1, . . . , om proceeds as follows. Starting

with the initial authenticator a0 = aF0 and state s0 = sF0, it computes

(si, ri) ← F (si−1, oi)
soi ← authextractF (si, o)

(ai, s′oi
, ri) ← authexecF (ai−1, soi , oi),

for i = 1, . . . ,m and outputs the triple (am, sm, rm) containing an authenticator am, state sm, and
response rm.

Consider now the proper authenticated execution of an arbitrary operation sequence and the resulting
authenticator a and state s. The following conditions must hold:

Correctness: For any o ∈ O and (s′, r) = F (s, o), there exist so = authextractF (s, o) and a′, s′o, and
r 6= ⊥ such that

(a′, s′o, r) = authexecF (a, so, o) ∧ s′ = authreconcileF (s, s′o, o).

and
|a′| � |s| ∧ |so| � |s| ∧ |s′o| � |s′|.

7

Security: For any o ∈ O and any adversary that outputs some s̃o, suppose that there exist a′ and s′o
such that (a′, s′o, r̃) = authexecF (a, s̃o, o) with r̃ 6= ⊥; then r̃ = r.

The correctness property is simply reformulated from the unauthenticated scheme for separated
execution. It states that for any authenticator and state s resulting from a proper authenticated execution,
applying separated execution of o yields a response r 6= ⊥ such that verification succeeds and, moreover,
the resulting updated state s′ together with r satisfies (s′, r) = F (s, o).

The security property considers a faulty S as an adversary, which tries to forge some partial state s̃o
that causes the client to produce a wrong response r̃. But in an authenticated separated execution
scheme, algorithm authexecF either outputs the correct response (r̃ = r), or it recognizes the forgery
and the verification fails (r̃ = ⊥).

The communication complexity of some F with authenticated separated execution is defined in the
same way as for separated execution and measures how much data must be communicated between C
and S.

The notion of authenticated data structures [14] differs from a service with authenticated separated
execution in that the former does not contain a partial updated state and the reconciliation step. In fact,
the server could equally well execute the whole operation on the state that it maintains. But in practice,
many algorithms execute update operations more efficiently when the client computes the updated parts
of the state and the server merely stores them in its memory.

Examples. The literature contains many examples of data structures that can be formulated as func-
tionalities with authenticated separated execution. They are interesting because their communication
complexity for separated execution is much smaller their space complexity. For instance, hash trees can
be used to check the correctness of individual entries in a memory with N elements [1] with complexity
O(logN), a generalization of hash trees can authenticate responses produced by any DAG-structured
query evaluation algorithm with logarithmic overhead [14], and cryptographic methods based on accu-
mulators can maintain authenticated hash tables with constant communication for query operations and
sub-linear cost for updates [17].

As a concrete example, consider a functionality MEM whose state consists of N storage locations
denoted by MEM[1], . . . ,MEM[N]. MEM supports two operations: read(j), which returns MEM[j],
and write((j, x)), which assigns MEM[j] ← x and returns nothing. Note that for N = n and when Ci
may only write to MEM[i], we obtain the functionality that was considered in most previous work on
untrusted storage (e.g., [4]).

A standard hash tree computed over MEM[1], . . . ,MEM[N] gives an authenticated separated execu-
tion scheme, where the internal nodes of the tree are also stored in the state of MEM. The authenticator
is the root node of the hash tree, which commits all entries in MEM. Algorithm authextractMEM for an
operation that concerns entry j always returns the internal tree nodes along the path from the root to the
leaf node j and all their siblings, which are needed for recomputing the root hash in order to authenti-
cate leaf node j [1]. Verification succeeds if the recomputed root hash matches the authenticator. For
a write operation, the nodes on the path from MEM[j] to the root are updated and included in the par-
tial updated state s′o. The server extracts them from s′o and stores them in the appropriate place during
authreconcileMEM.

The client must explicitly recompute the path in the hash tree also for write operations, in order to
verify the sibling nodes along the path from the modified leaf node to the root; these nodes originate
from the server and influence the computation of the new root hash. If they are not verified, they might
lead to an invalid authenticator. Because the client computes these values anyway, they are contained in
the partial updated state, and the server only needs to store them.

8

In this way, our notion of authenticated separated execution models closely what happens in practical
hash tree implementations inside cryptographic storage systems; this is not possible with the notion of
an authenticated data structure, where no reconciliation algorithm is foreseen.

4 Fork-linearizable execution protocol

We now introduce a novel untrusted service execution protocol, which emulates an arbitrary F on a
Byzantine server with fork-linearizability. The protocol combines elements from existing untrusted
storage protocols with an authenticated separated execution scheme for F .

The protocol operates in lock-step mode, similar to the bare-bones storage protocol of SUNDR [15].
This means that the server serializes all operations and does not allow them to execute concurrently.
Proceeding in lock-step is for illustration purposes only; extending it to concurrent operations is feasible
and discussed at the end of this paper.

At a high level, the protocol operates like this. A client assigns a local timestamp to every one of its
operations. Every client maintains a timestamp vector T in its trusted memory. At client Ci, entry T [j]
is equal to the timestamp of the most recently executed operation by Cj in some view of Ci. To begin
executing an operation o, client Ci sends a SUBMIT message with o to S. A correct S responds to
this SUBMIT message by invoking the authenticated separated execution scheme, and computes so ←
authextractF (s, o) on the current state s.

In addition to s, the server maintains a timestamp vector V , an authenticator a, and a signature ϕ,
which it received in a so-called COMMIT message from the client Cc that executed the last preceding
operation at S. The signature was issued by Cc on V and a. The server sends a REPLY message to Ci
containing V , a, so, c, and ϕ.

When it receives the REPLY message, the client first checks the content. It verifies the signature ϕ
and makes sure that V ≥ T (using vector comparison) and that V [i] = T [i]. If not, the client aborts the
operation and halts, because this means that S has violated the consistency of the service.

Then Ci verifies the response with respect to a and runs the separated execution by computing
(a′, s′o, r)← authexecF (a, so, o). If the verification fails, the client again halts. Otherwise, Ci proceeds
to copying the received timestamp vector V into its variable T , incrementing T [i], and computing a
signature ϕ′ on T and a′. The value T [i] becomes the timestamp of o. Finally, Ci returns a COMMIT

message to S containing T , a′, s′o, and ϕ′.
It is not hard to see that all checks are satisfied when S is correct because every client only incre-

ments its own entry in a timestamp vector. Therefore, the timestamp vectors sent out by S in REPLY

messages appear in strictly increasing order.
The description so far allows the server to learn the authenticator values, which is not foreseen in

the model of an authenticated separated execution scheme. To prevent any damage that might be caused
by this, all clients know a common secret key k for a symmetric encryption scheme and use it to encrypt
the authenticator before sending it to S.

This completes the high-level description of the untrusted service execution protocol; the details are
given in Algorithms 1 and 2.

Intuitively, the algorithm relies on the same properties of vector clocks as previous protocols for
untrusted storage [15, 4]. Note that S can only send a timestamp vector and authenticator in a REPLY

message that have been signed by a client; otherwise, the first verification step in Algorithm 1 fails.
Under this condition, S may violate the protocol only by sending a timestamp vector/authenticator pair
that is properly signed but does not satisfy a global sequential order of the operations.

In other words, a violation by S means that there is one operation o0 whose timestamp vector is
received in a REPLY by at least two different clients C1 and C2, in operations o1 and o2, respectively. If

9

Algorithm 1 Untrusted execution protocol for client Ci
State

k ∈ K // symmetric encryption key
T ∈ N0

n, initially [0]n // current timestamp vector

upon operation runF (o) do
send message [SUBMIT, o] to S
wait for message [REPLY, V, ā, so, c, ϕ]
if

(
V = [0]n ∨ verify(c, COMMIT‖V ‖ā, ϕ)

)
∧ V ≥ T ∧ V [i] = T [i] then

if V = [0]n then
a← aF0

else
a← decrypt(k, ā)

(a′, s′o, r)← authexecF (a, so, o)
if r 6= ⊥ then

T ← V
T [i]← T [i] + 1
ϕ′ ← sign(i, COMMIT‖T‖a′)
ā′ ← encrypt(k, a′)
send message [COMMIT, o, T, ā′, s′o, ϕ

′] to S
return r

halt

Algorithm 2 Untrusted execution protocol for server S
State

s ∈ S, initially sF0 // state of F
c ∈ {1, . . . , n}, initially 1 // index of currently or most recently served client
V ∈ N0

n, initially [0]n // timestamp vector of last committed operation
ā, initially ε // encrypted authenticator of last committed operation
ϕ, initially ε // signature of last committed operation
block ∈ {FALSE, TRUE}, initially FALSE

upon receiving message [SUBMIT, o] from Ci such that block = FALSE do
so ← authextractF (s, o)
send message [REPLY, V, ā, so, c, ϕ] to Ci
c← i
block← TRUE

upon receiving message [COMMIT, o, T, ā′, s′o, ϕ
′] from Ci such that block = TRUE ∧ i = c do

s← authreconcileF (s, s′o, o)
(V, ā, ϕ)← (T, ā′, ϕ′)
block← FALSE

10

all other information is correct, operations o1 and o2 both succeed, but the two clients sign incomparable
timestamp vectors. According to the protocol, one can then show that C1 will not execute any operation
in a view at C1 that includes o2 and, vice versa, any operation in a view at C2 that includes o1 will cause
C2 to abort.

With the functionality MEM from the previous section and n storage locations, this protocol gives
the same guarantees as the bare-bones storage protocol of SUNDR [15] and the lock-step protocol of
Cachin et al. [4]. As in the latter protocol, our algorithm adds a linear (in n) overhead to the communi-
cation complexity of separated execution.

5 Conclusion

This paper has introduced the first precise model for a group of mutually trusting clients to execute an
arbitrary service on an untrusted server S, such that the clients observe atomic operations when S is
correct and the service respects fork-linearizability when S is Byzantine. An implementation of this
notion has been obtained by combining any scheme for authenticated separated execution with elements
from untrusted storage protocols.

The protocol is not particularly efficient because a correct server executes all operations in lock-step
mode. Similar to untrusted storage protocols, the protocol can be improved by letting the clients execute
some operations concurrently, as long as they do not conflict. Some restrictions on the achievable
parallelism have been identified [4]. Clarifying the concept of conflicts for arbitrary functionalities and
extending the protocol to concurrent operations are deferred to the forthcoming full version of this paper.

Acknowledgments

I thank Alexander Shraer, Idit Keidar, Rüdiger Kapitza, and Matthias Schunter for interesting discus-
sions about the ideas leading to this paper.

This work has been supported in part by the European Commission through the ICT programme
under contracts ICT-2007-216676 ECRYPT II and ICT-2009-257243 TCLOUDS.

References

[1] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking the correctness of memo-
ries,” Algorithmica, vol. 12, pp. 225–244, 1994.

[2] C. Cachin and M. Geisler, “Integrity protection for revision control,” in Proc. Applied Cryptog-
raphy and Network Security (ACNS) (M. Abdalla and D. Pointcheval, eds.), vol. 5536 of Lecture
Notes in Computer Science, pp. 382–399, Springer, 2009.

[3] C. Cachin, I. Keidar, and A. Shraer, “Fail-aware untrusted storage,” in Proc. International Confer-
ence on Dependable Systems and Networks (DSN-DCCS), pp. 494–503, 2009.

[4] C. Cachin, A. Shelat, and A. Shraer, “Efficient fork-linearizable access to untrusted shared mem-
ory,” in Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC), pp. 129–
138, 2007.

[5] B. Charron-Bost, F. Pedone, and A. Schiper, eds., Replication: Theory and Practice, vol. 5959 of
Lecture Notes in Computer Science. Springer, 2010.

11

[6] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested append-only memory: Making
adversaries stick to their word,” in Proc. 21st ACM Symposium on Operating System Principles
(SOSP), pp. 189–204, 2007.

[7] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Tiered fault tolerance for long-term
integrity,” in Proc. 7th USENIX Conference on File and Storage Technologies (FAST), 2009.

[8] Cloud Security Alliance (CSA). http://www.cloudsecurityalliance.org/, 2010.

[9] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “SPORC: Group collaboration using
untrusted cloud resources,” in Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[10] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical accountability for dis-
tributed systems,” in Proc. 21st ACM Symposium on Operating System Principles (SOSP), pp. 175–
188, 2007.

[11] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent objects,”
ACM Transactions on Programming Languages and Systems, vol. 12, pp. 463–492, July 1990.

[12] J. Li, M. Krohn, D. Mazires, and D. Shasha, “Secure untrusted data repository (SUNDR),” in Proc.
6th Symp. Operating Systems Design and Implementation (OSDI), pp. 121–136, 2004.

[13] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish, “Depot: Cloud
storage with minimal trust,” in Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[14] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine, “A general model
for authenticated data structures,” Algorithmica, vol. 39, pp. 21–41, 2004.

[15] D. Mazières and D. Shasha, “Building secure file systems out of Byzantine storage,” in Proc. 21st
ACM Symposium on Principles of Distributed Computing (PODC), 2002.

[16] M. Naor and K. Nissim, “Certificate revocation and certificate update,” IEEE Journal on Selected
Areas in Communications, vol. 18, pp. 561–570, Apr. 2000.

[17] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated hash tables,” in Proc. 15th
ACM Conference on Computer and Communications Security (CCS), 2008.

[18] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket, “Venus: Verification for
untrusted cloud storage,” in Proc. Cloud Computing Security Workshop (CCSW), ACM, 2010.

[19] R. Tamassia and N. Triandopoulos, “Computational bounds on hierarchical data processing with
applications to information security,” in Proc. 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP) (L. Caires et al., eds.), vol. 3580 of Lecture Notes in Computer
Science, pp. 153–165, Springer, 2005.

[20] P. Williams, R. Sion, and D. Shasha, “The blind stone tablet: Outsourcing durability to untrusted
parties,” in Proc. Network and Distributed Systems Security Symposium (NDSS), 2009.

[21] A. R. Yumerefendi and J. S. Chase, “Strong accountability for network storage,” ACM Transactions
on Storage, vol. 3, no. 3, 2007.

12

