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Abstract

This paper presents a formal model for asynchronous distributed systems with parties that
exhibit Byzantine faults or that crash and subsequently recover. Motivated by practical
considerations, it represents an intermediate step between crash-recovery models for dis-
tributed computing and proactive security methods for tolerating arbitrary faults. The
model is computational and based on complexity-theoretic techniques from modern cryp-
tography, which allows for reasoning about cryptographic protocols in a formal way. One of
the most important problems in fault-tolerant distributed computing, reliable broadcast, is
then investigated in this hybrid model. A definition of reliable broadcast is presented and
an implementation is given based on the protocol of Bracha (PODC ’84).

1 Introduction

Fault-tolerant protocols are important for networked distributed systems that must cope with
unreliable components. A fundamental primitive for synchronization among a group of parties
is reliable broadcast, where a distinguished party broadcasts a value m to the other parties; if
the sender is correct, then all non-faulty parties should accept m, and if the sender is faulty,
all non-faulty parties should decide for the same value or not terminate the protocol at all.
In asynchronous networks, which are the focus of this paper, no assumptions are made about
network delays and the relative execution speed of the parties.

There is a considerable literature devoted to the specification and implementation of reliable
broadcast in environments where parties may fail by crashing silently [14, 19, 13] or by executing
arbitrary operations [3, 4, 24, 22]. Faults of the latter type are usually called Byzantine [23]
and strictly generalize crash failures. In all those works, faults are assumed to be permanent in
the sense that faulty parties never recover.

Recently, a more general and more realistic approach has been suggested by a number of
authors, where crashed parties may subsequently recover and crash again, perhaps repeating
this cycle arbitrarily often [16, 1, 20, 2]; several protocols for reliable broadcast and consensus
have been formulated in these models. This approach allows for an appropriate treatment of
real-world systems that operate over an extended period of time.



Concurrently, interest in practical asynchronous systems that tolerate Byzantine faults has
been rising as well [11, 8], prompted by the growing number of malicious attacks on the Internet.
However, recovery in a model with Byzantine faults is much harder because cryptographic keys
may have been exposed, resulting in a loss of confidentiality. This problem has been addressed
by so-called proactive security techniques [9, 10, 12], which periodically refresh the cryptographic
keys in the system. But these methods are rather expensive and, with the exception of [6, 25],
restricted to synchronous systems.

In this paper, we address an intermediate case that is relevant in practice. We introduce an
asynchronous model where some parties may crash and recover again, without otherwise devi-
ating from their specified behavior, and where other parties may exhibit permanent Byzantine
faults. Our approach leads to practical protocols that recover gracefully from transient system
outages and also tolerate some malicious attacks, without incurring the cost of full proactive
recovery operations.

The model is based on the computational model of Cachin et al. [7, 5], which presents
a complexity-theoretic formal approach to distributed protocols in the tradition of modern
cryptography [18]. This model places polynomial-time computational restrictions on all sys-
tem components and does not allow for infinite runs as is otherwise customary in models of
distributed systems; this is necessary for treating cryptographic protocols with computational
assumptions appropriately. Termination of protocols is guaranteed by restricting the amount
of “work” that they generate independently of the network scheduler (or the adversary, more
generally).

The crash-recovery models cited above generally distinguish between parties that are always
up, parties that are always down, and others. Most models, however, cannot rely on parties
that crash and recover indefinitely, which are called unstable. In contrast, our approach allows
all non-Byzantine parties to crash and recover repeatedly, as long as no more than a fraction of
them is crashed at any particular point in time and the total number of crashes is polynomially
bounded.

We remark that hybrid models treating Byzantine faults and crashes separately have been
investigated before, starting with [17]; a recent example of a hybrid protocol tolerating Byzan-
tine faults is [15]. However, the combination of (permanent) Byzantine faults and crashes with
subsequent recovery has not been addressed so far.

Outline. The paper consists of two main parts. In the first part (Section 2), the hybrid
model for Byzantine faults and crashes with recovery is introduced. As mentioned before, the
hybrid model extends [7], so the main part of this section merely recalls their approach and
presents the differences for including crashes and recoveries. In this work, only deterministic
protocols are considered, but extension to the notion of probabilistic termination [7] can be
achieved analogously. The second part (Section 3) focuses on the application of the hybrid
model to reliable broadcast. A formal definition of reliable broadcast in the hybrid model is
given and a protocol that implements it is presented. The protocol is a generalization of Bracha’s
reliable broadcast protocol for Byzantine faults [3]. This protocol may serve as a starting point
for adapting more complex protocols to the hybrid model, such as Byzantine agreement and
atomic broadcast. Implementation aspects are covered in Section 4, and Section 5 concludes
the paper.



2 Model

2.1 Formal System Model

We assume a collection of n parties (or servers) Py, ... , P,, of which the adversary can corrupt
up to t, and a trusted dealer. We adopt the static corruption model, wherein the adversary has
to decide for the set of corrupted parties before the actual beginning of the attack. W.l.o.g.
we assume that every adversary corrupts precisely ¢ parties, otherwise we can construct an
adversary which extends a corruption of ¢ < ¢ parties to t parties leaving the behavior of the
remaining ¢ — ¢’ parties unchanged. Corrupted parties are not regarded as system components
and are absorbed into the adversary. Uncorrupted parties are called honest.

We assume that the adversary may crash parties such that no more than f are crashed
at any point in time. A crashed party will stop reading its inputs, i.e., discard all incoming
messages. A rigorous definition is given later on. The adversary can also allow a party to recover
so that it may participate in the protocol again. However, since the recovering party does not
know which messages it has missed during the time it was crashed, it will generally perform
some action determined by the protocol after recovering, such as asking the other parties to
re-send certain messages. We call an honest party finally-up if it is not crashed at the end
of the protocol run, i.e., when the adversary halts; otherwise, we call it finally-down. This
yields a partition on the set of honest parties. Trivially, at most f parties are finally-down, and
at least n —t — f are finally-up. In previous crash-recovery models, there is usually a third
possibility called unstable, which denotes parties that crash and recover arbitrarily often; no
statements about their behavior can be made. In our model, honest parties may crash and
recover arbitrarily often within a general polynomial bound, and unstable behavior is not an
issue.

In order to reason about complexity-theoretic aspects of protocols, we assume that ev-
ery party P; and the adversary are implemented as probabilistic interactive Turing machines.
Complexity is measured in the size of the initial content of the input tape: a common security
parameter k given in unary representation (or more generally, an arbitrary k-bit string, which
might include information about the initial states, see below). In particular, polynomial time is
defined in this sense. Now, the set of negligible functions contains those functions that decrease
asymptotically faster than the inverse of any polynomial, measured in the security parameter k.
Formally, a function €(k) is called negligible if for all ¢ > 0 there exists a ko such that e(k) < %
for all k& > kg.

There is also an initialization algorithm, which is run by an external trusted party called
the dealer; on input k, n, t, and f, it generates the state information that is used to initialize
each party. W.l.o.g. we assume that this initial state information can be encoded in the already
mentioned k-bit string. We leave it to the adversary to choose n, t, and f, but a specific protocol
might impose its own restrictions (e.g., n > 3t + 2f). The adversary receives the initial state
of the corrupted parties as produced by the dealer.

After initialization, the adversary may repeatedly activate a party P; with some input
message. P; will carry out some computation, update its state, possibly generate some output
messages, and wait for the next activation. The output messages are given to the adversary,
and we assume that every output message includes both its origin and its destination.

In principle, the network is insecure and the adversary may choose to deliver or to drop any
message it wants. Liveness conditions in this model, however, are conditional on the adversary
delivering all messages among honest parties. For simplicity, we assume that the adversary
cannot modify messages or forge a message’s origin. This can be implemented easily in the



given model by using a message authentication code with one symmetric key distributed by the
dealer for every pair of servers. Similarly, the adversary may not duplicate messages; this is
reasonable since it can easily be achieved by using message counters.

The interaction of the adversary with the honest parties defines a sequence of events, which
we view as logical time. This justifies notations like “at one particular point in time”, “after P;
has crashed” and so on.

In our model, protocols are invoked by the adversary. For compatibility with [7], a protocol
instance is identified by a unique string ID, also called the tag, which is chosen by the adversary
when it invokes the instance.

After introducing the behavior of the adversary and the actual protocol execution, we now
focus on the computation of the system components, i.e., on the honest parties. Recall that
each party is always activated with an input message; this message is added to an internal input
buffer upon activation. We distinguish two types of messages that protocols can process and
generate: The first type contains input actions, which represent a local activation and carry
input to a protocol, and output actions, which signal termination and potentially carry output
of a protocol; such messages are called local events. The second message type is an ordinary
point-to-point network message, which is to be delivered to the peer protocol instance running
on another party; such messages are also called protocol messages.

All messages are denoted by a tuple (ID,...); the tag ID denotes the protocol instance to
which this message is associated. Input actions are of the form (ID, in, type, ... ), and output
actions are of the form (ID,out, type,...), with type defined by the protocol specification. All
other messages of the form (ID, type,...) are protocol messages, where type is defined by the
protocol implementation.

2.2 Crashes and Recoveries

In order to include crashes in our model, we assume that every party maintains a binary flag
crashed initialized to 0. Moreover, we consider a special input action crash, represented by

(ID,in, crash),

which causes the receiving party to crash. A crashed party sets crashed to 1 and discards
incoming inputs as long as crashed = 1.
A crashed party can be recovered by an input action recover, represented by

(ID,in, recover).

Upon receiving this input, the party first checks if crashed = 0, doing nothing in this case.
Otherwise, it sets crashed to 0 and continues with its recovery transition as specified by the
protocol implementation.

Note that honest parties crash in the form of an atomic transition and that all transitions
of honest parties are therefore atomic. Hence, honest parties recover from a well-defined state.

This convention is merely for syntactic convenience, since our protocol works without change
if we adopt the following, perhaps more realistic model. Recall that parties are modeled as
interactive Turing machines. Every input message of a party may be augmented by a special
“crash” field that specifies where the party crashes during the activation. A crash may occur
immediately after every operation in which the party updates its state (that is, after it writes
some variable(s) to its work tape) or writes a message to its outgoing communication interface
(i.e., its communication tape). At this point, crashed is set to 1 and control returns to the



adversary. In this way, it is possible to model a crash that occurs somewhere in a compound
operation like sending a message to all other parties. The atomicity of the state updates and
the messages transmissions can be guaranteed using standard techniques.

Furthermore, we may partition the state of every party into persistent memory, which
remains unchanged at a crash and can be reused after recovery, and into wolatile memory,
which is changed in an arbitrary way or lost entirely. In practice, volatile memory is usually
re-initialized after a crash, so we may assume it to be empty after a crash.

Formally, we assume that any party has an additional tape, called the persistent tape, apart
from its usual work tape. If a party crashes, the content of its work tape is erased, i.e., the
work tape is replaced with an empty tape and the persistent tape remains unchanged.

2.3 Termination

Since our model considers only computationally bounded components, the standard notion of
“eventual” termination cannot be used; a system run as a whole must be polynomially bounded,
so definitions based on infinite runs do not apply. We measure the efficiency of a protocol by
quantifying the amount of work that an honest party performs on behalf of the protocol. In
combination with a liveness property such as “validity”, restricting the amount of work implies
termination in the conventional sense.

We measure the amount of work of the honest parties in terms of the message complezity
of a protocol, defined as the number of associated messages generated by honest parties. It
is a random variable that depends on the adversary and on k. Similarly, the communication
complexity of a protocol is defined as the bit length of all associated messages (generated by
honest parties). It is also a random variable that depends on the adversary and on k.

Recall that the adversary’s running time is polynomially bounded in k. For simplicity,
we assume n < k and let the length of each message in the protocol be bounded by a fixed
polynomial @) in the security parameter k, thus, larger messages are ignored or cut off after
Q(k) bits.

Formally, the work performed by honest parties is measured by a protocol statistic X, which
is a family of real-valued, non-negative random variables { X 4(k)}, parameterized by adversary
A and security parameter k, where each X 4(k) is a random variable induced by running the
system with A. Message and communication complexity are examples of such statistics. We
restrict ourselves to those protocol statistics that are bounded by a polynomial in the adversary’s
running time, which we call bounded protocol statistics.

The key idea to defining efficient termination is to wuniformly bound the statistic, i.e., to
bound it by a fixed polynomial, which only depends on the actual implementation of the con-
sidered protocol — independent of the adversary.

We say that a protocol statistic X is uniformly bounded if there exists a fixed polynomial
T in k such that for all adversaries A, there is a negligible function €4, such that for all £ > 0,

Pr[Xa(k) > T (k)] < ea(k).

This is the notion used to define termination in the model with purely Byzantine corruptions
and no recoveries [7].

However, this notion is not sufficient for defining termination in our hybrid model. Imagine
an adversary that crashes certain honest parties again and again. Obviously, in order to ensure
functional correctness of the considered protocol, these parties have to execute their recovery
procedure again and again, and w.l.o.g. send some message, which increases the message com-



plexity in dependence of the adversary. Hence, the message complexity protocol statistic is no
longer uniformly bounded.

In order to avoid this problem, we assume that every run of the system in the hybrid model
is parameterized by a function d: N — N such that d(k) denotes the maximum number of
crashes that an adversary is allowed to perform in the considered protocol.

Based on this function, we now introduce our notion of a d-uniformly bounded statistic.

Definition 1 (d-uniformly bounded statistics). Let X be a bounded protocol statistic.
We say that X is d-uniformly bounded (by Ty and Ty ) for a function d: N — N if there exist two
fixed polynomials 77 and 75 such that for all adversaries A, there exists a negligible function
ea(k) such that for all £ > 0,

Pr[Xa(k) > d(k) - Ty(k) + To(k)] < ea(k).

We will later apply this definition to the communication complexity of a protocol. Roughly,
the definition states that the complexity of the protocol is uniformly bounded if no crash
occurs (which is ensured by T3), and the computational overhead caused by one crash is also
uniformly bounded (ensured by 77). Now a typical efficiency condition might require that the
communication complexity of a protocol is d-uniformly bounded for some d.

We mention that our approach can be extended to the definition of probabilistically uni-
formly bounded protocol statistics, which is the way to ensure termination for probabilistic
protocols such as randomized Byzantine agreement and atomic broadcast [7]. These definitions
may be modified analogously for our hybrid model.

3 Reliable Broadcast

In this section, we focus on reliable broadcast in our hybrid model. Reliable broadcast provides
a way for a party to send a message to all other parties. When used multiple times, it requires
that all honest parties deliver the same set of messages and that this set includes all messages
broadcast by honest parties, without guaranteeing anything about the order in which messages
are delivered. In the context of arbitrary faults, reliable broadcast is also known as the Byzantine
generals problem [21].

3.1 Review of Reliable Broadcast in the Standard Model

In the standard model with Byzantine faults and no recoveries, reliable broadcast (with a
tag ID) ensures the following four properties for all polynomial-time adversaries, except with
negligible probability.!

Validity: If an honest sender broadcasts a message m then all honest parties will deliver this
message, provided the adversary delivers all associated messages.

Consistency: If an honest party delivers a message m and another honest party delivers a
message m’, then m = m’.

Totality: If some honest party delivers a message, then all honest parties deliver a message,
provided the adversary delivers all associated messages.

Note that the standard agreement property is split into consistency and totality [7].



Authenticity: Every honest party delivers at most one message and, if the sender is honest,
this message has been broadcast by this sender before.

Additionally, it must satisfy the following efficiency condition.
Efficiency: The communication complexity of the protocol instance is uniformly bounded.

The provision that the “adversary delivers all associated messages” is the quantitative coun-
terpart to the traditional “eventual” delivery assumption. It can be ensured for an arbitrary
adversary as follows. Suppose the adversary halts and there are yet undelivered protocol mes-
sages among honest parties (these can be inferred from a transcript of the adversary’s interac-
tions). Then using a “benign” scheduler delivering all the undelivered messages and the newly
generated ones, the protocol is run until no more undelivered protocol messages exist, whereby
termination in polynomial time is guaranteed by efficiency and validity.

It is easy to see that the above definition of reliable broadcast is not adequate for the hybrid
model. Obviously, we cannot make any statements about all honest parties in general (such as
in validity) since they might crash and never recover, but only about those which are finally-up.

However, transposing these properties to the hybrid model can be done in various ways.
One possibility is to restrict all properties to those honest parties that never crash; another
would be to concentrate on those honest parties that are finally-up.

We now give our definition of reliable broadcast in a hybrid model, which we believe to
be the most general definition possible. This claim is explained in the remarks following the
definition.

3.2 Definition of Reliable Broadcast in the Hybrid Model

Broadcast instances are parameterized by a tag ID, and since the sender is a distinguished
party and known to all others, we augment the tag w.l.o.g. by the identity j of the sender.
Then, we restrict the adversary to submit a request for reliable broadcast tagged with ID.j to
P; only if ¢ = j.
A reliable broadcast protocol is activated when the adversary delivers an input action to P;
of the form
(ID.j,in,r-broadcast,m),

with m € {0, I}Q(k). When this occurs, we say P; reliably broadcasts m tagged with ID.j, or
simply P; r-broadcasts m. Note that only P; is activated like this, but the other parties must
be ready to participate in the protocol as well; we assume that they are activated once with
a special initialization input action. A party terminates a reliable broadcast with tag ID.j by
generating an output action of the form

(ID.j,out,r-deliver,m).

In this case, we say P; reliably delivers m tagged with ID.j (or r-delivers m for brevity).

Recall that all protocol messages generated by honest parties with prefix ID.j are associated
to an instance with tag ID.j; this defines also the messages contributing to the communication
complexity of the instance.

Definition 2 (Reliable broadcast in the hybrid model). Given a function d: N — N, a
protocol for reliable broadcast in the hybrid model satisfies the following conditions except with
negligible probability:



Validity: If a finally-up party r-broadcasts m tagged with ID.j, then all finally-up parties r-
deliver m tagged with ID.j, provided all honest parties have been activated on ID.j and
the adversary delivers all associated messages.

Consistency: If some honest party r-delivers m tagged with ID.j and another honest party
r-delivers m’ tagged with ID.j, then m = m/.

Totality: If some honest party r-delivers a message tagged with ID.j, then all finally-up parties
r-deliver some message tagged with ID.j, provided all honest parties have been activated
on ID.j and the adversary delivers all associated messages.

Authenticity: For all ID and all senders j, every honest party r-delivers at most one mes-
sage m tagged with ID.j. Moreover, if P; is honest, then m was previously r-broadcast
by P;.

Efficiency: For all ID and senders j, the communication complexity of instance ID.j is d-
uniformly bounded.

Remarks.

1. Validity ensures liveness of a protocol, and rules out trivial protocols that do not generate
any messages. In contrast to the definition in the model without crashes, we restrict
validity to senders and delivering parties that are finally-up. This restriction is essential
for achieving validity. Obviously, we cannot guarantee that every honest party r-delivers
a message since some of these parties might be crashed at the very start of the protocol
run and never be recovered.

Similarly, if we consider a finally-down sender, then the adversary might permanently
crash it right after its r-send transition, i.e., after it has r-broadcast the message. Recall
that the whole transition is atomic, i.e., the sender is able to send r-send messages to
all parties. Now, the adversary crashes the first honest party and delivers this r-send
message (which will be discarded). After that, it recovers this party and applies the same
procedure iteratively to all honest parties. Note that this behavior is valid, since at most
one party (besides the sender) is crashed at every particular point in time, but no party
will ever record the value of the r-send message, and the sender will not be able to answer
any message from a recovering party since it is permanently crashed. Thus, one cannot
state any validity for parties that are finally-down.

2. One can apply similar reasoning for demonstrating the optimality of the totality property.
Evidently, parties which are finally-down cannot be forced to deliver a message. However,
it is unnecessary to force the first delivering party to be finally-up in our definition of
totality, or the sender to be finally-up in our definition of authenticity. These conditions
turn out to be unnecessary for functional correctness, which will become clear when we
present our protocol for reliable broadcast in the next section.

3. The consistency condition can be adopted directly from the standard model. Roughly,
consistency does not have to be restricted to finally-up parties, because the considered
parties deliver messages by assumption and it does not matter if they crash afterwards.

4. As mentioned above, we define efficiency in our hybrid model by using our new definition
of d-uniformly bounded communication complexity where d corresponds to the protocol
parameter bounding the number of crashes.



Summarizing the above remarks, we believe that our definition of reliable broadcast in
hybrid models is the most general possible.

The only previous definition of reliable broadcast with crashes and recoveries has been given
by Boichat and Guerraoui [2]. We argue now that our definition generalizes the strongest one
of their notions to Byzantine faults.

Boichat and Guerraoui propose three modifications of the standard properties, depending on
how the set of parties under consideration should be restricted. The first one, called standard,
restricts a property to parties that never crash. The second one, called uniform, involves
a restriction to parties that are finally-up. Finally, the third one, called strongly uniform,
considers arbitrary parties. Strongly uniform totality (i.e., agreement) considers an arbitrary
sender, but restricts to finally-up receivers.

As observed by Boichat and Guerraoui [2], strongly uniform validity is not a useful notion
since it cannot be achieved by any algorithm (cf. the first remark). Thus, the strongest mean-
ingful definition is to consider uniform validity and strongly uniform consistency, totality and
authenticity properties. (The termination condition maps directly to efficiency in our model.)
The resulting notion was called strongly uniform reliable broadcast.

Restricting our definition of reliable broadcast to honest parties corresponds precisely to
strongly uniform reliable broadcast. Hence, Definition 2 generalizes the strongest definition of
reliable broadcast in the crash-recovery model to Byzantine faults. Moreover, our definition is
achievable as shown by the algorithm in the next section.

3.3 A Protocol for Reliable Broadcast

Throughout the following description, we assume that only persistent memory is used for storing
data. In the subsequent section, we will investigate to what extent the use of persistent state
can be reduced.

We demand that each party P; stores all outgoing messages in a set B together with the
intended recipient. Moreover, we assume that every message is stored at most once in B for
every recipient. Let B; C B contain the messages of 95 intended for party Fj.

Protocol d-RBC for reliable broadcast is given in Figure 1. The pseudo-code notation used
in the description lists the transitions taken by the party in dependence of the given input.
If any of the conditions given in the clauses of the form upon condition block matches, the
corresponding block is executed. We specify a condition in the form of receiving messages for
protocol messages or events for input actions.

The protocol results from extending Bracha’s reliable broadcast protocol [3] by a recovery
mechanism that works as follows. Whenever a party recovers, it sends a help message to all
parties (such messages are not stored in B). When P; receives such a message from P}, it re-
sends all messages in B; to P;, but P; also keeps track of the number of received help messages
and answers at most d(k) times to every P;.

Before proving that Protocol d-RBC implements reliable broadcast, we establish the follow-
ing lemmas.

Lemma 1. Let P; be a finally-up party. Then every distinct message sent to P; by another
finally-up party P, will be received by P; in a non-crashed state, provided all associated messages
are delivered.

Proof. Assume that P, sends a message m* to P;. Since P, is permanently up after a particular
point in time, it will send this message again at its last recovery. We now have to distinguish
between two cases. If P; is permanently up after this point in time, the message will be delivered



Protocol d-RBC for party P, and tag ID.j

upon initialization:
em — 057, — 0 (m € {0,1}2%k)
c 0 (le{l,...,n})

upon (ID.j,in, r-broadcast,m):
send (ID.j,r-send, m) to all parties

upon receiving message (ID.j, r-send, m) from P, for the first time:
if j =1 then
send (ID.j,r-echo,m) to all parties

upon receiwing message (ID.j, r-echo,m) from P, for the first time:
em — em+1
if e, = (%’5“] and r,, <t then
send (ID.j,r-ready, m) to all parties

upon receiving message (ID.j, r-ready, m) from P, for the first time:
Tm — Tm + 1
if 7, =t +1 and e, < [2tHL] then
send (ID.j,r-ready, m) to all parties
else if r,,, =2t + f + 1 then
output (ID.j, out,r-deliver,m)

upon (ID.j,in,recover):
send (ID.j,help) to all parties
send all messages in B

upon receiving message (ID.j, help) from P:
if ¢; < d(k) then
c+—c—+1
send all messages of B;

Figure 1: Protocol d-RBC for authenticated reliable broadcast (or the Byzantine generals
problem) in our hybrid model.
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by assumption and therefore also received in a non-crashed state. If P; crashes again afterwards,
consider now the recovery after its last crash. In this transition, it sends a help message to all
participants, including P;. This message will be delivered and P, will not crash afterwards by
assumption. Note that the check ¢; < d(k) of P, must be successful since the adversary can
crash P; at most d(k) times and it cannot duplicate help messages by assumption, so P, will
re-send m* to P;. Thus, m* will be delivered and P; can no longer be crashed afterwards, which
concludes the proof. O

Lemma 2. Let n,t, f € N be given such that n > 3t +2f. Thenn—t — f > [2HH]

Proof. Consider two numbers a, b € N such that a > g. For odd b, this implies a > bJQF—l = [l”zr—l],
and for even b, this implies a > %—i— 1= [HTQ] = (HTIW Now, n —t — f = W > ntt
from the assumption, and since the the left-hand side of this inequality is in N, it follows
n—t—f> [ O

Lemma 3. Let the sender P; be finally-up. Then every finally-up party P; will receive a message
(ID.j,r-ready,m) for the value m proposed by the sender from at least 2t+ f+1 parties, provided
that n > 3t + 2f and all associated messages are delivered.

Proof. According to Lemma 1, the initial message (ID.j, r-send, m) sent by P; will eventually
be received by every finally-up party, so each of them will output a message (ID.j, r-echo,m)
to all parties. Thus, using Lemma 1, every finally-up party P; will receive this message from all
finally-up parties, i.e., from at least n —t — f parties. Sincen—t— f > (%m} by Lemma 2, it
outputs (or has already output) a message (ID.j, r-ready, m) to all parties, either because of the
above condition on the number of received r—-echo messages, or because it has already received
t+1 r-ready messages. All these r-ready messages will eventually be received by the finally-up
parties according to Lemma 1, so P; will receive at least n—t—f > 3t+2f+1—t—f =2t+ f+1
r-ready messages for the same value m. O

Based on this, we can now formulate our main theorem.

Theorem 4. Protocol RBC provides authenticated reliable broadcast in the hybrid model for
n>3t+2f.

Proof. We have to show validity, consistency, totality, authenticity, and efficiency.

Validity. Assume that a finally-up party has r-broadcast m tagged with ID.j. Now by
Lemma 3, every finally-up party will receive at least 2t + f 4+ 1 r-ready messages for this
value m, so it will r-deliver m by construction of the protocol.

Consistency. Towards a contradiction, assume that two honest parties r-deliver two messages
m and m’. Thus, both parties must have received at least 2t + f + 1 r-ready messages for
m and m/, respectively. An honest party generates an r-ready message for m if and only
if it has received (%t“] r-echo messages or t + 1 r-ready messages already containing m.
Thus, at least one honest party has sent an r-ready message containing m upon receiving
[%t“] r-echo messages; at most ¢ of them are from corrupted parties. Similarly, some honest
party must have received (%’f“} r-echo messages containing m’. Thus, there are at least
2(%”1] > n +t+ 1 r-echo messages with tag ID.j and at least n — ¢ + 1 among them from
honest parties. But no honest party generates more than one distinct r-echo message by the
protocol, yielding the desired contradiction.
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Totality. When an honest party r-delivers a message m, then it has already received the
message (ID.j, r-ready, m) from at least 2¢+ f +1 different parties. Therefore, at least t+ f+1
honest parties have already sent r-ready for m. Among these t 4+ f + 1 parties, at least ¢t + 1
parties are finally-up, so according to Lemma 1, every finally-up party will receive their r-ready
messages provided all associated messages are delivered. Thus, every remaining finally-up party
will also send an r-ready message for m, so every finally-up party will receive n—t—f > 2t+f+1
r-ready messages for this m. Thus, every such party will r-deliver m.

Authenticity. The uniqueness of the r-delivered message is clear from the protocol. If a party
delivers a message m, it must have received 2t + f + 1 r-ready messages, i.e., at least t + f +1
have been sent by honest parties. Since at most ¢ parties might send an r-echo message for
m’ # m, no honest party will generate an r-ready message for m'; thus, the message m must
have been contained in the r-send message of P; and was r-broadcast by P;.

Efficiency. Let d(k) denote the bound on the number of crashes. Then a protocol execution
without any crashes has a message complexity of O(n?). If a recovery occurs, it causes compu-
tational overhead which can be bounded as follows. A recovering party sends at most O(n?)
messages, and the parties receiving the help message produce at most O(n) reply messages
each. Thus, the complexity is O(n?) for one crash and O(dn?) in total. However, there is one
more problem we have to take care of. In contrast to the honest parties which can produce
at most d(k) help messages in total, the corrupted parties are not restricted to this; they are
only bounded by the running time of the adversary. However, only d(k) help messages of every
corrupted party are answered by an honest party (the condition ¢; < d(k) in the last transition
of Figure 1 ensures this). Thus, each corrupted party can cause an additional overhead of at
most d(k)n?. Putting it all together, we obtain a message complexity of O(tdn?). Finally, the
length of each message is bounded by Q(k), so we obtain a uniform polynomial bound on the
communication complexity.

O

4 Implementation Aspects

If we aim at actually implementing Protocol d-RBC, we can significantly speed up the algorithm
by a suitable representation of the set B of every party. At first, note that if a message of the
form (ID.j,-,m) is sent to an arbitrary participant for the first time, and therefore has to be
stored in the set 9B, the message will additionally be output to every remaining participant.
This holds by construction for all transitions except the transition that handles help messages,
which only sends messages to one party. However, these messages are already contained in 8,
so they do not have to be included again. Moreover, each and every honest party will only
send r-echo messages for the same unique m, and the same holds for r-ready messages. Thus,
we could efficiently represent the set 28 in persistent storage by specifying the message m, and
whether an r-echo or an r-ready message has been sent so far.

However, we can do better. Note that the counters e,, and r,, can be used to remember
whether an r-echo or an r-ready message has been sent so far. More precisely, we do not
have to store the set 25 at all, but at executing a command of the form “re-send all messages
of %7, the party simply checks whether it has already received the initial r-send message for
m. In this case, it outputs the r-echo message again to all parties for that m (or to the party
P, in case of a command “re-send B;”). Additionally, it checks if e, > [%HH] or 1y, >t + 1
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for some m. If this is the case, it outputs the corresponding r-ready message for this m. This
implicit representation of 8 reduces the amount of persistent storage space even further. Since
storing is generally slower than recomputing the needed messages, this results in significantly
reduced overall running time.

More formally, each party has to persistently store at most ¢ + 1 different values m together
with e,, and r,, for each m. As both e,, and r,, range over {1,... ,n}, the space complexity
is bounded by 2(t + 1)logn + (t + 1)Q(k). Moreover, the variables ¢; counting the number of
help messages received so far from party P, have to be stored persistently. As the ¢; range over
{1,...,d(k)} for all [, the induced space complexity is nlogd(k). Finally, the implicit counters
for checking the first-time delivery of every message type have to be stored. For each [ we can
implement this by a three-bit vector, which takes 3n bits of persistent storage space.

Altogether, the protocol needs O(nlogd(k) + tlogn + tQ(k)) persistent storage space for
every honest party. When ¢ is a constant fraction of n, this is O(nlog(nd(k)) + nQ(k)).

5 Conclusion

We have presented the first hybrid distributed system model that comprises both Byzantine
faults and accidental crashes with subsequent recovery. The model is asynchronous and compu-
tational, i.e., all parties are constrained to perform only feasible, polynomial-time computations,
which allows for reasoning about cryptography in a meaningful way. From a practitioner’s point
of view, the functionality of our model is both necessary and sufficient to capture a scenario that
involves cryptography, malicious attacks, and processes that crash and recover later. Compared
to the so-called proactive models that tolerate transient Byzantine faults, but require expensive
cryptographic recovery protocols, our model is rich enough to allow for quite practical protocols.

As an illustration of the model, we have shown how to extend the definition of reliable
broadcast to the hybrid model and presented a protocol that satisfies our definition. We have
concluded with some considerations how to further improve the efficiency of the algorithm,
which is important for practical purposes.

For future work, it will be interesting to consider other Byzantine fault-tolerant algorithms
in our hybrid model, in particular randomized ones that guarantee probabilistic termination
only. We already briefly sketched above how the definition of efficiency for randomized protocols
can be formulated in analogy to the deterministic case. Adopting these protocols to the hybrid
model is of high practical relevance.
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