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Abstract

We consider the problem of efficient key management and @s@cation in cryptographic file
systems that allow shared access to files. A performanagesiffsolution to user revocation in such
systems is lazy revocation, a method that delays the resetien of a file until the next write to
that file. We formalize the notion of key-updating schemeadday revocation, an abstraction to
manage cryptographic keys in file systems with lazy revooai@nd give a security definition for
such schemes. We give two composition methods that combimaecure key-updating schemes
into a new secure scheme that permits a larger number of @gecations. We prove the security
of two slightly modified existing constructions and propaseovel binary tree construction that is
also provably secure in our model. Finally, we give a systenamalysis of the computational and
communication complexity of the three constructions arahstinat the novel construction improves
the previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on higledmedicated storage-area networks (SANS)
stimulates flexible methods for information sharing, bsbalaises new security concerns. As the net-
worked storage devices are subject to attacks, protedtiegonfidentiality of stored data is highly
desirable in such an environment. Several cryptographicsfistems have been designed for this pur-
pose [15, 28, 23, 17], but practical solutions for efficieay knanagement and user revocation still need
to be developed further.

We consider cryptographic file systems that allow sharedsacto stored information and that use
untrusted storage devices. In such systems, we can aggfdgainto sets such that access permissions
and ownership are managed at the level of these sets. Thewhkerhave access to the files in a set
form a group, managed by the owner of the files, orgtmip owner Initially, the same cryptographic
key can be used to encrypt all files in a set, but upon revatatia user from the group, the key needs
to be changed to prevent access of revoked users to the fileggroup owner generates and distributes
this new key to the users in the group. There are two optionkdadling user revocatiomctiveand
lazy revocation, which differ in the way that users are revokexnfra group. With active revocation,
all files in a set are immediately re-encrypted with the neargstion key. The amount of work caused
by a single revocation with this method might, however, b@hfaitive for large sets of files. With the
alternative method of lazy revocation, re-encryption ofl@if delayed until the next write to that file
and, thus, users do not experience disruptions in the opemitthe file system caused by the immediate
re-encryption of all files protected by the same revoked keysystems adopting lazy revocation, the
files in a set might be encrypted with different keys. Stomamgl distributing these keys becomes more
difficult than in systems using active revocation.

In this paper, we address the problem of efficient key managém cryptographic file systems with
lazy revocation. An immediate solution to this problem, @ed by the first cryptographic file systems
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using delayed re-encryption [15], is to store all keys fa tites in a set at the group owner. However,
we are interested in more efficient methods, in which the rermob stored keys is not proportional to
the number of revocations. We formalize the notiorkey-updating schemes for lazy revocatam
give a rigorous security definition. In our modelcanter(e.g., the group owner) initially generates
some state information, which takes the role of the masiees&ey. The center state is updated at
every revocation. We call the period of time between two cations atime interval Upon a user
request, the center uses its current local state to deniserkeyand gives that to the user. From the
user key of some time interval, a user must be able to extnadtey for any previous time interval effi-
ciently. Security for key-updating schemes requires thgt@lynomial-time adversary with access to
the user key for a particular time interval does not obtayiaformation about the keys for future time
intervals. The keys generated by our key-updating schemede used with a symmetric encryption
algorithm to encrypt files for confidentiality or with a megsaauthentication code to authenticate files
for integrity protection. Independently and concurremtlypur work Fu, Kamara, and Kohno [16] have
also formalized key-updating schemes.

We describe two generic composition methods that combionesteure key updating schemes into
a new scheme in which the number of time intervals is eitherstim or the product of the number of
time intervals of the initial schemes. Additionally, we @stigate three constructions of key-updating
schemes. The first scheme uses a chain of pseudorandomtgeapmications and is related to existing
methods using one-way hash chains. It has constant updstdocahe center, but the complexity
of the user-key derivation is linear in the total number aidiintervals. The second scheme can be
based on arbitrary trapdoor permutations and generalimm&dy rotation construction of the Plutus
file system [23]. It has constant update and user-key darivdimes, but the update algorithm uses a
relatively expensive public-key operation. These two twtsions require that the total numbérof
time intervals is polynomial in the security parameter. @ird scheme uses a novel construction. It
relies on a tree to derive the keys at the leaves from the mkayeat the root. The tree can be seen
as resulting from the iterative application of the additheenposition method and supports a practically
unbounded number of time intervals. The binary-tree caostn balances the tradeoff between the
center-state update and user-key derivation algorithimih (@f them have logarithmic complexity if),
at the expense of increasing the sizes of the user key anerctate by a logarithmic factor ifi.

The rest of the paper is organized as follows. In Section 2 we tipe definition of security for
key-updating schemes. In Section 3, we introduce the additnd multiplicative composition methods
for secure key-updating schemes. The three constructimhgm@ofs for their security are presented in
Section 4. A systematic analysis of the computational amghgconication complexities of the three con-
structions is given in Section 5, and an experimental etialuas presented in Section 6. We compare
our scheme to related work in Section 7.

2 Formalizing Key-Updating Schemes

2.1 Definition of Key-Updating Schemes

In our model, we divide time into intervals, not necessaofyfixed length, and each time interval is
associated with a new key that can be used in a symmetricHg@ographic algorithm. In a key-
updating scheme, the center generates initial state isfitomthat is updated at each time interval, and
from which the center can derive a user key. The user key fenialt¢ permits a user to derive the keys
of previous time intervalsk{ for ¢ < t), but it should not give any information about keys of futtinee
intervals §; for ¢ > t).

We formalize key-updating schemes using the approach oemocryptography and denote the
security parameter by. For simplicity, we assume that all the keys are bit strinfjeigth <. The
number of time intervals and the security parameter arengaganput to the initialization algorithm.

1A preliminary version of this paper appears as [6].



Definition 1 (Key-Updating Schemes)A key-updating scheme consists of four deterministic polyn
mial time algorithmsKU = (Init, Update, Derive, Extract) with the following properties:

- The initialization algorithm Init, takes as input theecurity parameted”, the number of time
intervals 7 and arandom seed € {0,1}!(%) for a polynomiall(x), and outputs a bit stringj,
called the initial centestate

- The key update algorithm/pdate, takes as input the curretime interval0 < t < T — 1, the
current centestate.S;, and outputs the centetateS; ., ; for the next time interval.

- The user key derivation algorithnjerive, is given as input dime intervall < ¢t < T and the
centerstate Sy, and outputs theiser keyM;. The user key can be used to derive all k&éy$or
1 <1<t

- The key extraction algorithmExtract, is executed by the user and takes as inptiin@ inter-
val 1 <t < T, theuser keyM,; for interval t as received from the center, andaaget time
interval s with 1 < ¢ < ¢t. The algorithm outputs thieeyk; for intervali.

W.l.o.g., we assume that thépdate algorithm is run at least once after thet algorithm, before
any user keys can be derived. The first timeltlpelate algorithm is run, it is given as input time interval
t = 0. User keys and keys are associated with the time intervaleslea 1 and’".

2.2 Applications to Cryptographic File Systems

In a cryptographic file system adopting lazy revocation,réhencryption of a file after a revocation is
delayed until the next write to that file. Similarly to the Risi file system, files can be divided into sets
based on their access permissions, such that all files in lzasetthe same permissions. Initially, all
files in a set can be encrypted with the same key. We assumél¢hatvners are responsible for the
generation and distribution of keys to the authorized yserdile owners take the role of the center in
our model of key-updating schemes.

When a user is revoked from the group of users having accele 8et of files, the file owner runs
the Update algorithm generating a new state and advancing the timevaiteThe file owner then runs
Derive and the new user key is distributed to all the users that heweaccess permissions to the files. A
user writing a file uses the encryption key for the latest timerval, which can be efficiently extracted
from the latest user key. To decrypt a file, a user needs to khewersion of the key that was used to
encrypt it, and extract the appropriate encryption key ftbmuser key. The key version with which
each file is encrypted might, for example, be stored in tha-filede on the file server.

Assuming that the integrity of files is protected with a meggsauthentication code (MAC), key-
updating schemes can also be used to manage symmetric keystiientication. To guarantee inde-
pendence of the keys used for confidentiality and integtifferent instances of key-updating schemes
have to be used for encryption and authentication.

2.3 Security of Key-Updating Schemes

The definition of security for key-updating schemes requiteat a polynomial-time adversary with
access to the user key for a time intert/ed not able to derive any information about the keys for the ne
time interval. The definition we give here is related to théniton of forward-secure pseudorandom
generators given by Bellare and Yee [8]. Formally, consa&probabilistic polynomial-time adversary
A = (Ay, Ag) that participates in the following experiment:

Initialization: The initial center state is generated with tha algorithm.

Key updating: The adversary adaptively picks a time intervauch thatd < ¢ < T — 1 as follows.
Starting witht = 0,1,..., algorithm A4;, is given the user keyd/, for all consecutive time
intervals until 4;, decides to outpustop or ¢ becomes equal t& — 1. We require that4,,,



ExpEs (17, 7)

So — Init(1%,T)

t—0

(d,z) — Au(t, L, 1)

while(d # stop) and (t < T — 1)
t—t+1
St < Update(t — 1, .5¢—1)
My — Derive(t, St)
(d, z) «— Au(t, My, z)

St+1 — Update(t7 St)

Mt+1 — Derive(t + 1, St+1)

Expfﬁj(l", T)

So — Init(l",T)

t—0

(d,z) — Au(t, L, 1)

while(d # stop) and (t < T — 1)
t—t+1
St < Update(t — 1, S:—1)
M «— Derive(t, St)
(d,z) «— Au(t, M, z)

k’tJr1 “—R {0, 1}“

b Ag(kt+1,2)

kt+1 — Extract(
b Ag(kit1,2)
return b

t+ 1, Mepq,t+1) return b

Figure 1:Experiments defining the security of key-updating schemes.

a probabilistic polynomial-time algorithm, outpuisop at least once before halting4;, also
outputs some additional informatiane {0, 1}* that is given as input to algorithtdg.

Challenge: A challenge for the adversary is generated, which is eitterkey for time intervat + 1
generated with th&pdate, Derive andExtract algorithms, or a random bit string of length

Guess: Ag takes the challenge andas inputs and outputs a Ibit

The key-updating scheme is secure if the advantage of trersaty of distinguishing between the
properly generated key for time intervat- 1 and the random key is only negligibly larger th%mMore
formally, the definition of a secure key-updating schemaésfollowing:

Definition 2 (Security of Key-Updating Schemes)et KU = (Init, Update, Derive, Extract) be a
key-updating scheme and a polynomial-time adversary algorithm that participate®me of the two
experiments defined in Figure 1. The advantage of the adyersa- (A, Ag) for KU is defined as

AV (A) = | Pr[Expil A (1%, 7) = 1] - Pr[Expfly (17, 7) = 1] |

Without loss of generality, we can relate the success pitityabf adversary.A of distinguishing
between the two experiments and its advantage as

Pr[A succeeds= % [Pr[Exp;ij — 0]+ Pr[Expiy T} = ]] - % [1 + AdvszJ(A)]. )

The maximum advantage of all probabilistic polynomialiadversaries is denoted

AdVES = mjx{AdvﬁkJ(A)}.

The key-updating schemi€U is secureif there exists a negligible functioasuch thatAdvit" =

e(k).

Remark. The security notion we have defined is equivalent to a sedyngtigpnger security definition,
in which the adversary can choose the challenge time irtérwveith the restriction that* is greater than
the time interval at which the adversary outpsttsp and that* is polynomial in the security parameter.
This second security definition guarantees, intuitivélgt the adversary is not gaining any information
about the keys of any future time intervals after it outptits.



Init(1%, 7T, s) Derive(t, (St, S7))

S§ + Inity (17,71, G1(s)) ift <Th
52 — Inita (1%, T, Ga2(s)) M} «— Derivey (t, St)
return (S5, S3) M — L

else
M} «— Derivey (T3, S})
M} « Derivea(t — T1, S7)
return(M;, M)

Update(t, (S7, S7)) Extract(t, (M, M?),1)

ift<Th if i > 11
S{.1 « Update, (t, S¢) k; < Extracta(t — 11, M?,i — 1)
SE .« S7 else

else ift <Th
Sii1 «— St k; « Extract; (¢, M, 1)
SZ. 1 « Update,(t — T4, S7) else

return (S 1, S51) ki « Extracty (T1, M}, 1)

return k;

Figure 2:The additive composition dfU; andKU-.

3 Composition of Key-Updating Schemes

Let KU; = (Inity, Update;, Derivey, Extract;) and KUy = (Inite, Update,, Derivey, Extracts) be
two secure key-updating schemes using the same securdynpterx with 77 and75 time intervals,
respectively. In this section, we show how to combine the $slbemes into a secure key-updating
schemeKU = (Init, Update, Derive, Extract), which is either the additive or multiplicative compositio
of the two schemes witii’ = T} + T, andT’ = T} - T, time intervals, respectively. Similar generic
composition methods have been given previously for forveaclre signature schemes [26].

For simplicity, we assume the length of the random seed itnilh@lgorithm of the schemKU to
be r for both composition methods. L&t : {0,1}% — {0,1}1(®)+=(%) pe a pseudorandom generator;
it can be used to expand a random seed of lergitito two random bit strings of length(x) andis(k),
respectively, as needed forit; andInite. We write G(s) = G1(s)||Ga(s) with |G1(s)| = l1(k) and
|Ga(s)| = la(k) for s € {0, 1}".

3.1 Additive Composition

The additive composition of two key-updating schemes use&éeys generated by the first scheme for
the first’ly time intervals and the keys generated by the second schanikefeubsequerit, time
intervals. The user key for the firg} intervals inKU is the same as that of sched&); for the same
interval. For an intervat greater thari, the user key includes both the user key for intetval T of
schemeKU,, and the user key for intervdl, of schemeKU;. The details of the additive composition
method are described in Figure 2. The security of the cortippperation is analyzed in the following
theorem, whose proof is given in Appendix A.

Theorem 1. Suppose thakKU; = (Inity, Update,, Derivey, Extract;) and KUs = (Inite, Update,,
Deriveq, Extracty) are two secure key-updating schemes Witland 7, time intervals, respectively, and
that G is a pseudorandom generator as above. THé&h= (Init, Update, Derive, Extract) described
in Figure 2 denoted a&KU; ® KU- is a secure key-updating scheme wiith+ 75 time intervals.

Extended Additive Composition. It is immediate to extend the additive composition to cardta

new scheme witll; + 15 + 1 time intervals. The idea is to use the first scheme for the &éttse first

Ty intervals, the second scheme for the keys of the figxhtervals, and the seedas the key for the
(Ty + T, + 1)-th interval. By revealing the seedas the user key at intervdl, + 75 + 1, all previous

keys ofKU; andKU, can be derived. This idea will be useful in our later congtamcof a binary tree
key-updating scheme. We call this composition metexignded additive composition
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3.2 Multiplicative Composition

The idea behind the multiplicative composition operati®toi use every key of the first scheme to seed
an instance of the second scheme. Thus, for each one @f thme intervals of the first scheme, we
generate an instance of the second schemedyitime intervals.

We denote a time intervalfor 1 < t < T3 - T, of scheme<U as a pairt = <i, j>, wherei andj
are such that = (i — 1)75 4+ j for 1 < i < Tj andl < j < T,. TheUpdate algorithm is run initially
for time intervalt = 0, which will be expressed as0,0>. The user key for a time interval= <i, j>
includes both the user key for time interval 1 of schemeKU; and the user key for time intervalof
schemeKU,. A user receivingl/; j~ can extract the key for any time intervalmn, n> < <i, j> by
first extracting the keyx for time intervalm of KU, (this step needs to be performed onlyif < 7),
then usingK to derive the initial state of the:-th instance of the schent€J,, and finally, deriving the
key k<m.n>. The details of the multiplicative composition method areven in Figure 3.

Init(1%, T, 5) Derive(<i, 5>, (S{_1,S;,57))
S& — |nit1(1K,T1,G1(S)) ifi>1
St « Update, (0, S3) M}, « Derive1(i — 1, S;_4)
ki « Extract; (1, Derive; (1, S7),1) else
SZ — Init2(1%, T, G2(k1)) M, — 1
return (L, Sg, S8) Mf «— Derivez (7, SJQ)
return (M}, Mf)
Update(<i, j>, (Si_1,5;,57)) Extract(<i, j>, (M1, M7), <m,n>)
ifj=T» ifi=m
Si.1 < Update, (4, S7) k<m.n> < Extracta(j, M7, m)
kl i « Extract:(i + 1, else
Derive1 (i + 1,87 1),i + 1) K « Extract; (i — 1, M} 1, m)
S Inita(1%, T, G2 (kiy1)) SZ — Inita(1%, Tz, G2 (K))
57 « Update, (0, S8) E<mn> « Extracta(T2, SZ,n)
return (S, Sty 1, S3) return k<m,n>
else
S341 < Update, (j, S7)
return (S} 1, S}, 57,,)

Figure 3:The multiplicative composition dkU; andKUs.

The security of the multiplicative composition method islgzed in the following theorem, whose
proof is given in Appendix A.

Theorem 2. Suppose thakKU; = (Inity, Update,, Derivey, Extract;) and KUs = (Inite, Update,,
Deriveq, Extracts) are two secure key-updating schemes Witland 7, time intervals, respectively, and
that G is a pseudorandom generator as above. THé&h= (Init, Update, Derive, Extract) described
in Figure 3 denoted aKU; ® KUs is a secure key-updating scheme wiith- 75 time intervals.

4 Constructions

In this section, we describe three constructions of keyatipd schemes with different complexity and

communication tradeoffs. The first two constructions argedeon previously proposed methods. We
give cryptographic proofs that demonstrate the securitthefexisting constructions after some sub-
tle modifications. Additionally, we propose a third constron that is more efficient than the known

schemes. It uses a binary tree to derive the user keys arsbip@vably secure in our model.

4.1 Chaining Construction (CKU)

In this construction, the center generates an initial ramdeed of length: and applies a pseudorandom
generator iteratively times to obtain the key for time interval—¢, for 1 < i < T'—1. This construction



is inspired by a folklore method using a hash chain for deguvhe keys. A construction based on a
hash chain can be proven secure only if the hash funétimmmodeled as a random oracle. To obtain
a provably secure scheme in the standard model, we repladeagh function with a pseudorandom
generator.

LetG : {0,1}* — {0,1}?F be a pseudorandom generator. We wéites) = G1(s)|/G2(s) with
|G1(s)| = |G2(s)| = k for s € {0,1}*. The algorithms of the chaining construction, callédU, are:

- Init(1%, T, s) generates a random seggof lengthx from s and outputsSy = s,.
- Update(t, S;) copies the stats; into Sy .
- Derive(t, S;) andExtract(t, M;, i) are given in Figure 4.

Derive(t, St) Extract(¢, My, 1)
Briy — S (B¢, kt) «— M,
for i =T downto ¢ for j =t —1downto ¢
(Bi, ki) — G(Bit1) (Bj, kj) — G(Bj+1)
return (Bs, kt) return k;

Figure 4:TheDerive(t, S;) andExtract(t, My, i) algorithms of the chaining construction.

This construction has constant center-state size and loosafor the user-key derivation algorithm.
An alternative construction with linear center-state simel constant user-key derivation is to precom-
pute all the keys:; and user keys\/;, for 1 < i < T in the Init algorithm and store all of them in
the initial center staté&,. The security of the chaining construction is given be thiedong theorem,
whose proof is in Appendix B.

Theorem 3. Given a pseudorandom generai@r CKU is a secure key-updating scheme.

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial randontesthaat is updated at each time interval by
applying the inverse of a trapdoor permutation. The trapd®&nown only to the center, but a user,
given the state at a certain moment, can apply the permntiiatively to generate all previous states.
The key for a time interval is generated by applying a hasletfan, modeled as a random oracle, to
the current state. This idea underlies the key rotation rm@sim of the Plutus file system [23], with the
difference that Plutus uses the output of an RSA trapdoanpetion directly for the encryption key.
We could not prove the security of this scheme in our modekéyrupdating schemes, even when the
trapdoor permutation is not arbitrary, but instantiatethwhie RSA permutation.

This construction has the advantage that knowledge of tta mamber of time intervals is not
needed in advance; on the other hand, its security can onpydsed in the random oracle model. Let
a family of trapdoor permutations be given such that the domsize of the permutations with security
parameters is [(x), for some polynomial. Leth : {0,1}*(*) — {0,1}* be a hash function modeled
as a random oracle. The detailed construction of the trappeonutation scheme, calleSlDKU, is
presented below:

- Init(1%, T, s) generates a randosy —r {0, 1}!(*) and a trapdoor permutatigh: {0,1}/(*) —
{0, 1}1(“> with trapdoorr from seeds using a pseudorandom generator. Then it outpygts=
(807 f7 T)'

- Update(t, Sy) with S; = (s, f, 7) computess; 1 = f~!(s;) and outputsS; 1 = (s¢11, f, 7).

- Derive(t, S;) outputsM; < (sq, f).

- Extract(t, M;, 1) applies the permutation iteratively— i times to generate state = f!~*(M,)
and then outputa(s;).

The security of this construction is given be the followihgarem, whose proof is in Appendix B.

Theorem 4. Given a family of trapdoor permutations and a hash functigrT DKU is a secure key-
updating scheme in the random oracle model.



4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algoritdpuate, Derive and Extract has worst-case
complexity linear in the total number of time intervals. Wegent a tree construction based on ideas of
Canetti, Halevi and Katz [10] with constant complexity foeDerive algorithm and logarithmic worst-
case complexity in the number of time intervals for thedate andExtract algorithms. Moreover, the
amortized complexity of thélpdate algorithm is constant. In this construction, the user keg $§
increased by at most a logarithmic factorfincompared to the user key size of the two constructions
described above.

Our tree-based key-updating scheme, callestKU, generates keys using a complete binary tree
with 7' nodes, assuming th#t = 2¢ — 1 for somed € Z. Each node in the tree is associated with a time
interval between 1 and, a unique label i{0, 1}*, atree-keyin {0, 1}* and arexternal keyin {0, 1}"
such that:

1. Time intervals are assigned to tree nodes using post-tradetraversal, i.e., a node corresponds to
intervali if it is the i-th node in the post-order traversal of the tree. We refdrd¢oibde associated
with intervalt as node.

2. We define a functiotabel that maps node with 1 < ¢ < T to its label in{0, 1}* as follows.
The root of the tree is labeled by the empty stringnd the left and right children of a node with
label ¢ are labeled by||0 and by/||1, respectively. The parent of a node with labés denoted
by parent(?), thusparent(¢||0) = parent(¢||1) = ¢. We denote the length of a labéby |/|.

3. The tree-key for the root node is chosen at random. Thekige for the two children of an
internal node in the tree are derived from the tree-key ofpirent node using a pseudorandom
generatorGG : {0,1}* — {0,1}2%. For an inputs € {0,1}", we write G(s) = G1(s)||G2(s)
with |G1(s)| = |G2(s)| = . If the tree-key for the internal node with labls denoted.,, then
the tree-keys for its left and right children aig, = G1(u¢) anduy; = Ga(ug), respectively.
This implies that once the tree-key for a node is revealeat) the tree-keys of its children can be
computed, but knowing the tree-keys of both children of aendoes not reveal any information
about the tree-key of the node.

4. The external key of a nodeis the keyk; output by the scheme to the application for interval
t. For a node with tree-keyuj,pel(), the external keyk, is obtained by computingy,,,,,, ., (1),
whereF, (b) = F(u,b) andF : {0,1}" x {0,1} — {0, 1}" is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updaicheme:

- Init(1%, T, s) generates the tree-key for the root node randomy,—r {0,1}", using seed,
and outputsSy = ({(g,ur)}, 0).

- Update(t, Sy) updates the stat8, = (P;, L;) to the next center stat§,,; = (P41, Li+1). The
center state for interval consists of two setsP; that contains pairs of (label, tree-key) for all
nodes on the path from the root to nadéncluding nodet), and L; that contains label/tree-key
pairs for all left siblings of the nodes iR; that are not inP;.

We use several functions in the description of thedate algorithm. For a label and a setA

of label/tree-key pairs, we define a functisgarchkey (¢, A) that outputs a tree-key for which
(¢,u) € A, if the label exists in the set, and otherwise. Given a labéland a set of label/tree-
key pairsA, functionrightsib(¢, A) returns the label and the tree-key of the right sibling of the
node with labell, and, similarly, functiorleftsib(¢, A) returns the label and the tree-key of the
left sibling of the node with label (assuming the labels and tree-keys of the siblings ar&)in
The functionleftkeys is given as input a label/tree-key pair of a node and retuttebel/tree-key
pairs of the left-most nodes in the subtree rooted at thet inpde, including label and tree-key of
the input node.

The code for thdUpdate and leftkeys algorithms is given in Figure 5. We omit the details of
functionssearchkey, rightsib andleftsib. TheUpdate algorithm distinguishes three cases:
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Update(t, (P, Lt))
ift=20
Py — leftkeys(e, ur)
Ly 0
else
4y «— label(t)
us <« searchkey(ls, P)
if /; endsinO
(ls,us) « rightsib(l:, P;)
Pt+1 — P \ {(Zt, ut)} U Ieftkeys(és, Us)
L1 — L U{(lr,ue)}
else
(ls,us) < leftsib(ls, L¢)
Py = P\ {(le,ue)}
Liy1 — L \ {(€s, us)}
return (Pt+1, Lt+1)

leftkeys (¢, u)
A—10
while [£] < d
A— AU {(f7 u)}
£+ /]|0
u— Gi1(u)
return A

[* Py contains the label/tree-key pairs of all the left-most reotle
[* the set of left siblings is empty */

[* compute the label of node*/

[* compute the tree-key of node*/

[* t is the left child of its parent */

[* compute the label/tree-key pair of the right siblingtof

[* update the label/tree-key pairs i1 */

[* add the label/tree-key pair @fto set of left siblings fot + 1 */
[* t is the right child of its parent */

[* compute the label/tree-key pair of the left siblingtof/

[* remove label/tree-key pair affrom P41 */

[* remove label/tree-key pair of left sibling offrom L1 */

[* initialize set A with the empty set */

[* advance to the left until we reach a leaf */

[* add the label and tree-key of the current nodedity
/* move to left child of the node with label */

[* compute the tree-key of the left child */

Figure 5:TheUpdate(t, (P, L)) algorithm.

1. If t = 0, the Update algorithm computes the label/tree-key pairs of all leftatnoodes in
the complete tree using functideftkeys and stores them i#;. The setl; is empty in this
case, as nodes iR; do not have left siblings.

2. Iftisthe left child of its parent, the successor of nodepost-order traversal is the left-most
node in the subtree rooted at the right siblingf nodet. P, contains all label/tree-key
pairs in P; except the tuple for node and, in addition, all label/tree-key pairs for the left-
most nodes in the subtree rootedtatwhich are computed bieftkeys. The set of left
siblings L;+1 contains all label/tree-key pairs frofy and, in addition, the label/tree-key

pair for nodet.

3. If tis the right child of its parent, nodet 1 is its parent, s@&;1; contains all label/tree-key
pairs fromP; except the tuple for nodg and,; contains all the label/tree-key pairsin
except the pair for the left sibling of node

- Algorithm Derive(t, (P;, L;)) outputs the user tree-key/;, which is the minimum information
needed to generate the set of tree-kéys: i < t}. Since the tree-key of any node reveals the
tree-keys for all nodes in the subtree rooted at that nédleconsists of the label/tree-key pairs
for the left siblings (if any) of all nodes on the path from tloet to the parent of nodeand the
label/tree-key pair of node This information has already been pre-computed such tietan

setM; «— {(label(t),us)} U Ly.

- Algorithm Extract(t, My, 7) first finds the maximum predecessor of nade post-order traversal
whose label/tree-key pair is included in the user treeskgy Then it computes the tree-keys for
all nodes on the path from that predecessor to nodehe external key; is derived from the
tree-keyu; ask; = F,, (1) using the pseudorandom function. The algorithm is in Figure

i

Analysis of Complexity. The worst-case complexity of the cryptographic operatiosed in the
Update and Extract algorithms is logarithmic in the number of time intervalsidahat ofDerive is
constant. However, it is easy to see that the key for each isoctemputed exactly once If updates



Extract (¢, Mz, 1)

£1...4s « label(4) /* the label ofi has lengths */

V< S

L—ly... by

while v > 0 and searchkey(¢, M) = L. /*find a predecessor afthat is inM; */
ve—ov—1
L—ly... 4

forj=v+1tos /* compute tree-keys of all nodes on path from predecessot/to
Uey..0; — Go;(uey.0;_,)

key.ts — Fuyy o, [* return external key of node*/

return kg, .. o,

Figure 6:TheExtract(t, My, i) algorithm.

are executed. This implies that the total cost of all updaierations isl” pseudorandom-function ap-
plications, so the amortized cost per update is constard.size of the center state and the user key is
proportional to the height of the binary tree, so the woestecspace complexity &(x log, T') bits.

The security of the tree construction is given be the follayvtheorem, whose proof is in Ap-
pendix B.

Theorem 5. Given a pseudorandom generatGrand a pseudorandom functidn, TreeKU is a secure
key-updating scheme.

An incremental tree construction. We can construct an incremental tree scheme using ideas from
the generic forward-secure signature scheme of MalkincMiwio, and Miner [26]. The incremental
scheme does not require the total number of time intervabe tknown in advance.

Let TreeKU(4) be the binary tree construction with— 1 nodes. Then the incremental tree scheme is
obtained by additively composing binary tree schemes withteiasing number of interval$reeKU(1)®
TreeKU(2) @ TreeKU(3) @ .... The keys generated by the tree schémeKU(:) correspond to the
time intervals betwee®’ — i and2*! — i — 2 in the incremental scheme. Once the intervals of the tree
schemeTreeKU (i) are exhausted, an instanceloéeKU (i + 1) is generated, if needed.

In addition to allowing a practically unbounded number afdiintervals, this construction has the
property that the complexity of thepdate, Derive and Extract algorithms and the size of the center
state and user key depend on the number of past time inte®alew we perform a detailed analysis
of the cost of the scheme for an intervahat belongs tdreeKU (i) with 20 — ¢ <t < 20+ —§ — 2

1. The center state includes all the root keys of the previeukstrees and the center state for nade
in TreeKU(2). In the worst-case, this equdls-1)+ (2i—1) = 3i—2 = 3[log, ()] —2 tree-keys.
Similarly, the user key for intervalincludes the user key of nodeas in schemdreeKU (i) and
the root keys of the previous— 1 trees, intotali — 1) + (i — 1) = 2i — 2 = 2[logy(t)] — 2
tree-keys. It follows that the space complexity of the cestate and the user key for intervak
O(k logy(t)) bits.

2. The cost of botiJpdate and Extract algorithms is at most = [log,(¢)]| applications of the
pseudorandom generator. The cosbefive is constant, as in the tree construction.

5 Performance of the Constructions

In this section we analyze the time complexity of the crypapdic operations and the space complexity
of the center and the user for the three proposed constnsctiBecall that all schemes generate keys
of length . In analyzing the time complexity of the algorithms, we sfyewhat kind of operations
we measure and distinguish public-key operations (PK aphhfpseudorandom generator applications
(PRG op.) because PK operations are typically much morensygethan PRG applications. We omit
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| [ CKU [ TDKU | TreeKU |

Update(¢, S¢) time 0 1 PKop. | O(log,T)PRG op:
Derive(t, St) time T —t PRG op. const. O(log, T)
Extract(t, My, i) time | ¢ —4 PRGop. | t —iPKop. | O(log,T)PRG op.
Center state size K poly(k) O(rlog, T)
User key size K K O(klog, T)

Table 1:Worst-case time and space complexities of the constrigfm¥ time intervals.*Note: the amortized
complexity ofUpdate(¢, S;) in the binary tree scheme is constant.

the time complexity of thénit algorithm, as it involves only the pseudorandom generaiaalf schemes
except for the trapdoor permutation scheme, in whichalso generates the trapdoor permutation. The
space complexities are measured in bits. Table 1 shows taidsder a given number of time intervals.

In the chaining schem€éKU, the Update algorithm takes no work, but thextract and theDerive
algorithms take linear work in the number of time interva®n the other hand, the trapdoor permu-
tation schemel DKU has efficient user-key derivation, which involves only aycoperation, but the
complexity of theUpdate algorithm is one application of the trapdoor permutatiorense and that of
the Extract(t, My, ) algorithm ist — i applications of the trapdoor permutation. The tree-baskdrae
TreeKU balances the tradeoffs between the complexity of the tHoeeidnms, taking logarithmic work
in the number of time intervals for all three algorithms ie thorst-case. ThBerive algorithm involves
only O(log, T') copy operations, antpdate and Extract algorithms involveO(log, T') PRG opera-
tions. This comes at the cost of increasing the center-atataiser-key sizes 10(x log, T'). Note that
the amortized cost of thdpdate algorithm in the binary tree construction is constant.

As the chaining and the trapdoor permutation schemes hakst-a@se complexities linear if for
at least one algorithm, both of them require the number of imtervals to be rather small. In contrast,
the binary tree construction can be used for a practicalbounded number of time intervals.

In an application in which the number of time intervals in kiebwn in advance, the incremental tree
scheme can be used. Its space and time complexities onlpdepehe number of past revocations and
not on the total number of revocations supported. The inergah tree construction is an interesting ex-
ample of an additive composition of tree constructions wifferent number of intervals. Furthermore,
our additive and multiplicative composition methods alltve construction of new schemes starting
from the basic three constructions described in Section 4.

6 Experimental Evaluation

We have implemented the chaining, trapdoor, and tree agtigins for 128-bit keys. We have used the
128-bit AES block cipher to implement the pseudorandom g#oeG asG(s) = AES,(0128)|| AES(1128)
with |s| = 128 for the CKU and TreeKU constructions of Sections 4.1 and 4.3. In construci@KU
from Section 4.2, we have used the RSA permutation with sebijth of 1024 and public exponent 3
and the SHA-1 hash function as the random oracle

We performed the following experiment. For a fixed total nembf revocationd’, the center first
initializes the key-updating scheme. Then, the steps batewepeated far=1,...,T"

e The center runs thbpdate andDerive algorithms to simulate one revocation.

e Given the user key for interval the user runs thExtract algorithm to obtain the ke¥, for the
first time interval.

Note that the time to extract the key for the first intervalaigger than the extraction time for any other
interval between 1 and in all three constructions. Hence, the extraction time f@& tirst interval
represents a worst-case measure.
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We measured the performance using four metrics: the maxiamonaveragé)pdate and Derive
time for the center (over th& revocations), and the maximum and averageract time for clients to
compute the key for the first time interval (from one of thdime intervals). We ran our experiments
on a 2.4 GHz Intel Xeon processor machine, running Linux @6t unoptimized implementation was
written in C++ usinggcc 3.2.1.

The results are presented in Figures 7, 8, and 9, respgctiMed graphs show the measured time as
a function of the total number of revocatiofis which ranges from® to 22° depending on the scheme.
Note that the horizontal axis is logarithmic and that thdival axis differs for the three constructions.

Evaluation of the Chaining Construction Evaluation of the Trapdoor Construction

T T T T T T
Maximum update and derive time m— Maximum update and derive time m—
300 - Average update and derive time &= 600 |- Average update and derive time &>=ca
Maximum extract time —=—— Maximum extract time —=——

Average extract time =——3 Average extract time =3

250 > 1 500 -
200 |

150

Time (in ms)
Time (in ms)

300 [ Bl

50 [

—_ o - | e ceil
2410} 2012 214} 216} 28 2710} 2N12)
Number of Revocations Number of Revocations

zqia)

Figure 7:Evaluation of the chaining construction. Figure 8:Evaluation of the trapdoor construction.

Evaluation of the Tree Construction

T T T
Maximum update and derive time m—
Average update and derive time Ex=a
Maximum extract time ==——

03} Average extract time == _|

Time (in ms)

2016} 2019} 2822} 2725}
Number of Revocations

2710} 2713}

Figure 9:Evaluation of the tree construction.

In the chaining construction, the cost of both the center @distht computation increases linearly
with the total number of revocations, as expected. In thedwar permutation construction, the center
time is always constant, but the extraction time grows lilyeaith the total number of revocations. In
the tree construction, all four metrics have a logarithnmepehdence on the total number of revoca-
tions. We observe that the tree construction performs atweders of magnitude better than the other
schemes.

Table 2 gives a direct comparison of the constructions inxgeiment with 1024 revocations as
above. It contains also the timing measurements for thelfif84 revocations in the tree construction
where the upper bound@ on number of revocations was set to a much larger value. Thiemit
possible to relate the tree construction to the trapdoamptation scheme, which has no fixed upper
bound on the number of revocations. It is evident that the seheme performs much better than the
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Scheme | T Maximum Time Average Time Maximum Time | Average Time
Update+Derive (ms) Update+Derive (ms) Extract (ms) Extract (ms)
Chaining | 1024 2.57 1.28 25 1.24
Trapdoor | 1024 25.07 15.36 32.96 15.25
Tree 1024 0.079 0.015 0.025 0.006
Tree 210 0.142 0.015 0.018 0.0076
Tree 2% 0.199 0.015 0.02 0.01

Table 2:Evaluation of the three constructions for 1024 revocations

other schemes, even with a bound on the number of revocati@isallows a practically unlimited
number of them.

The space usage f@r = 1024 is as follows. The center state is 16 bytes for the chainimstrac-
tion, 384 bytes for the trapdoor construction, and at mo8tt82es for the tree scheme. The size of the
user key is 32 bytes for the chaining construction, 128 bigiethe trapdoor construction, and at most
172 bytes for the tree scheme. In general, for the tree schgtheepthd, the center state takes at most
(2d — 1)(16 + d/8) bytes, containin@d — 1 key value/key label pairs, assuming 16-byte keys @it
labels. The user key size is at mddtey/label pairs, which také(16 + d/8) bytes.

In summary, we note that the performance of the tree schesupésior to the others. The chaining
construction has the smallest space requirements, butritputation cost becomes prohibitive for large
T. The trapdoor construction has sligthly smaller spaceirements than the tree scheme, but these
savings are very small compared to the additional compuurtatioverhead.

7 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely cklatéor-
ward- and backward-secure cryptographic primitives. étl@ secure key-updating scheme is forward-
secure as defined originally by Anderson [4], in the sensgtthaaintains security in the time intervals
following a key exposure. However, this is the opposite ef filrward security notion formalized by
Bellare and Miner [7] and used in subsequent work. Here weheséerm forward security to refer to
the latter notion.

Time-evolving cryptography protects a cryptographic ptiva against key exposure by dividing the
time into intervals and using a different secret key for gwéne interval. Forward-secure primitives
protect past uses of the secret key: if a device holding ai k& compromised, the attacker can not
have access to past keys. In the case of forward-securetigigeathe attacker can not generate past
signatures on behalf of the user, and in the case of forwecdre encryption, the attacker can not
decrypt old ciphertexts. There exist many efficient corgtons of forward-secure signatures [7, 2, 21]
and several generic constructions [24, 26]. Bellare and [8g@nalyze forward-secure private-key
cryptographic primitives (forward-secure pseudorand@megators, message authentication codes and
symmetric encryption) and Canetti, Halevi and Katz [10]stouct the first forward-secure public-key
encryption scheme.

Forward security has been combined with backward securitpadels that protect both the past
and future time intervals, called key-insulated [13, 14 amtrusion-resilient models [22, 12]. In both
models, there is a center that interacts with the user indfjjeipdate protocol. The basic key insulation
model assumes that the center is trusted and the user is @onspd in at most time intervals and
guarantees that the adversary does not gain informatiouat e keys for the intervals the user is not
compromised. A variant of this model, called strong key lason, allows the compromise of the
center as well. Intrusion-resilience tolerates arbiyariany break-ins into both the center and the user,
as long as the break-ins do not occur in the same time intella relation between forward-secure,
key-insulated and intrusion-resilient signatures has lzgmlyzed by Malkin, Obana and Yung [27]. A
survey of forward-secure cryptography is given by ltkis][20
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Re-keying, i.e., deriving new secret keys periodicallyrira master secret key, is a standard method
used by many applications. It has been formalized by Abdatlid Bellare [1]. The notion of key-
updating schemes that we define is closely related to rergeschemes, with the difference that in our
model, we have the additional requirement of being able tivelpast keys efficiently.

Multicast Key Distribution.  In key distribution schemes for multicast, a group congmodlistributes

a group encryption key to all users in a multicast group. Titwelg of users is dynamic and each join
or leave event requires the change of the encryption key. gba is to achieve both forward and
backward security. In contrast, in our model of key-updatichemes users should be able to derive
past encryption keys efficiently.

A common key distribution model for multicast is thatkafy graphsintroduced by Wong et al. [32]
and used subsequently in many constructions [30, 29, 19, iBthese schemes, each user knows
its own secret key and, in addition, a subset of secret kegd tesgenerate the group encryption key
and to perform fast update operations. The relation betwsens and keys is modeled in a directed
acyclic graphs, in which the source nodes are the usersmatiary nodes are keys and the unique
sink node is the group encryption key. A path from a user noded group key contains all the keys
known to that user. The complexity and communication costeyf update operations is optimal for
tree structures [31], and in this case it is logarithmic ia ttumber of users in the multicast group. We
also use trees for generating keys, but our approach igdtiffén considering the nodes of the tree to
be only keys, and not users. We obtain logarithmic updateicdse number of revocations, not in the
number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file systems [9, 11] did
not address key management. Cepheus [15] is the first cnggtoig file system that considers sharing of
files and introduces the idea of lazy revocation for imprgyierformance. However, key management
in Cepheus is centralized by using a trusted key server fpdigribution. More recent cryptographic
file systems, such as Oceanstore [25] and Plutus [23], adkdge the benefit of decentralized key
distribution and propose that key management is handledebgviiners themselves. For efficient opera-
tion, Plutus adopts a lazy revocation model and uses a kegting scheme based on RSA, as described
in Section 4.2.

Farsite [3], SNAD [28] and SiRiUS [17] use public-key crygtaphy for key management. The
group encryption key is encrypted with the public keys ofgahup members and these lockboxes are
stored on the storage servers. This approach simplifies keeyagement, but the key storage per group
is proportional to the number of users in the group. NeitHdhese systems addresses efficient user
revocation.

Independently and concurrently to our work Fu, Kamara, aoldrn [16] have proposed a crypto-
graphic definition for key-updating schemes, which they kay regression schemekey regression
schemes are, in principle, equivalent to key-updating mese Their work formalizes three key regres-
sion schemes: two constructions, one using a hash funatiborge using a pseudo-random permutation,
are essentially equivalent to our chaining constructiord an RSA-based construction originating in
Plutus, which is equivalent to our trapdoor-permutationstaiction. Our composition methods and the
tree-based construction are novel contributions that gorwktheir work.

8 Conclusions

Motivated by the practical problem of efficient key manageter cryptographic file systems that
adopt lazy revocation, we define formally the notion of keglating schemes for lazy revocation and
its security. In addition, we give two methods for additivelanultiplicative composition of two secure
key-updating scheme into a new scheme which can handle er latgnber of user revocations, while
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preserving security. We also prove the security of two $lygimodified existing constructions and pro-

pose a new construction, the binary-tree scheme, thatdedadhe tradeoffs of the existing constructions.
Finally, we provide a systematic analysis of the computati@nd communication complexities of the
three constructions.

We can extend the definition of key-updating schemes to stipper keys for interval, from which
only keys of the time intervals betweérmandt can be extracted, for artly< ¢ < t. This is useful in a
model in which users joining the group at a later time intestauld not have access to past information.
The extension can be incorporated in the tree constructithhout additional cost, but the chaining and
trapdoor permutation constructions do not work in this mb@eause the user key reveals all previous
keys.

In a companion paper [5], we show how to extend secure kegtimschemes to cryptosystems
with lazy revocation, and introduce the notions of symneegricryption, message-authentication codes,
and signature schemes with lazy revocation. Furthermoeejemonstrate that using these cryptosys-
tems in some existing distributed cryptographic file systémproves their efficiency and security.
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A Security Proofs for the Composition Methods

Proof of Theorem 1. Let A = (Ay,.Ag) be a polynomial-time adversary fé&fU. We build two
adversary algorithmsl! = (A4}, A5) and.A? = (A7, AZ) for KU; andKU,, respectively.

Construction of A!. A! simulates the environment fo4, by giving to A4;, at each iteratiort the
user keyM}! that. A}, receives from the center. Il aborts or.A; does not outpustop until time
interval T, — 1, then.A' outputs_L and aborts. OthenNiseﬁl}J outputsstop at the same time interval as
Ay. Inthe challenge phaselb receives as input a challenge Key ; and gives that todg. Aé outputs
the same bit aslg. The success probability of! for b € {0, 1} is

Pr[Expii = b]= PrExpii = blE N By, @)

whereF is the event thad;, outputsstop at a time interval strictly less thdf, and E; the event that
A does not distinguish the simulation done My from the protocol execution. The only difference
between the simulation and the protocol execution is thairthial state forKU; is a random seed in
the simulation and it is generated using a pseudorandonragené& in the protocol. I1fA distinguishes
the simulation from the protocol, then a distinguisher atgm D for the pseudorandom generator with
advantage\dv?,#(D) can be constructed. By the definition B§, we havePr[Ey] = AdvE8(D).
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Construction of A%2. 4% simulates the environment fot: it first picks a random seeglof lengthx
and generates fror@'; (s) an instance of the schenidJ;. For the firstT} iterations ofA;,, A? gives
to Ay the user keys generated frosm If A aborts orA4;, stops at a time interval less thdh, then
A? aborts the simulation. For the neXs time interval,.A? feeds.A;, the user keys received from the
center. If.4;, outputsstop at a time intervak > T, thenAﬁ, outputsstop at time intervalt — 77. In
the challenge phase% receives a challenge_r, 11, gives this challenge tglg and outputs whatlg
outputs. The success probability.4f for b € {0, 1} is

Pr[Expii’se = b]= Pr[ExpRy 4 = bl By N Ey). ©)
We can relate the success probabilities4pf4!, and.A% for b € {0, 1} as follows:
Pr[Expiy i =b] = Pr[Exp;kJ;g = bN Ey)+Pr[Expiyy = bN By

[Expfﬁj‘j =bNEyN El] + Pr[Expfﬁj‘j =bNEkyN E_l] +
r[ExpﬁkJ;g =bN Eg]
r[Expszlj‘;Z =blE1 N Eg]Pr [El N EQ] +
r[Expit0 4 = b|E2 N Ey|Pr[Ey N By ]+ Pr[Bo]

[

2

Il IN
U 7Y "% T

r[Expi = b]Pr[Ey N Bo]+ Pr[ExpR’ye = b]Pr[Ey N By |+
2] (4)
< Pr[ExpikJ;f’Al = b] + Pr[Expfﬁj‘;&Q = b]—i— Pr [E_g],

)

T

where (4) follows from (2) and (3). Finally, we can infer frdt)
AdViES (A) < Advi (AY) + AV, (A%) + AdvErE(D).

SinceAdviy) (A'), Adviy, (A%) andAdvE8(D) are negligible from the assumptions of the theorem,
the statement of the theorem follows.

Proof of Theorem 2. Let A = (Ay,.Ag) be a polynomial-time adversary féfU. We build two
adversary algorithmsgl! = (A4}, A5) and.A? = (A7, AZ) for KU; andKU,, respectively.

Construction of Al. A}, gets from the center the user key&' of schemeKU; for all time intervals
i until it outputsstop. A! simulates the environment fot by sending the following user keys:

1. Atinterval<i, 1>, for1 <i < Ty, Al runsk; « Extract; (i, M}, i); S < Inita(1%, Ty, Go(k;));
S2 « Update,(0, S2); M2 « Derives(1, S?) and gives4y, the user key/_; 1~ = (M} |, M?).

2. Attime interval<i,j>, for1 < i < Ty andl < j < Ty, A}, computesSf — Updatey (5 —

1,57 ) andM? — Derivey(j, S7) and gives tady the user keyM; ;. = (M} |, M?).

If A aborts or4;, outputsstop at a time intervaki, ;> with j # T3, then.A}, aborts the simulation
and outputsl. Otherwise,Ai, outputsstop at time intervali. In the challenge intervaLA1 is given
a challenge keyt; 1 and it executesSs « Inito(1%, Ty, Go(kir1)); S? « Update, (0, SO) M —
Derivey (1, 5%); ki — Extractz(1, M, 1). It then gives the challengef to Ag. A}, outputs the same bit
asAg. The success probability of! for b € {0,1} is

Pr[Expy 4 = b= Pr[Expii 4 = blE1 N B, (5)

whereE; is the event thad;, outputsstop at a time intervals, j) with j = T» and E; the event that
A does not distinguish the simulation done 4y from the protocol execution. I distinguishes the
simulation from the protocol, then a distinguisher aldoritD for the pseudorandom generator with
advantage\dv?,#(D) can be constructed. By the definition B§, we havePr[Ey] = AdvE8(D).

17



Construction of A2.  Assuming that4;, runs at most times (andy is polynomial inx), A? makes a
guess for the time intervat in which 4;, outputsstop. A2 picksi* uniformly at random from the set
{1,...,q}. A% generates an instance of the schefhg with i* time intervals. For any intervati, j>
with i < i*, A2 generates the user keys using the keys from this instans& of For time intervals
<i*,j> with 1 < j < Ty, A? outputs user keYMik_l,Mz) where ML, is the user key for time
intervali* — 1 of KU; that it generated itself anl\JI{j2 is the user key for time intervgl of KU, that it
received from the center.

If A aborts or4;, outputsstop at a time intervak:i, j> with ¢ # ¢* or with = ¢* andj = T, then
A? aborts the simulation and outputs Otherwise, ifA4;, outputsstop at a time intervak:i*, j>, then
Aa outputsstop at time intervalj. In the challenge phasel? receives a challenge key.; and gives
that to.Ag. A% outputs the same bit aég. The success probability of? for b € {0,1} is

Pr[Expfit o = b] = éPr[ExpﬁkJ;Z — bE) N By ®)
As in the proof of Theorem 1, we can infer
Pr[ExpRih =b] < Pr[Expi 4 =0|E1 N E2|Pr[Er N Ey)+
Pr[ExpRy 4 = bl E1 N Eo|Pr[Ey N Ea)+ Pr[Ey]
= Pr[Expi) "4 = b]Pr[E1 N Ep]+qPr[Expgis’ s = b]Pr[E1 N By
+ Pr[Es)] (7
< Pr[ExpikJ' = b] +q Pr[ExpikJ;’Ag = b]—t—Pr[E_g],
where (7) follows from (5) and (6). Finally we can infer frort) ¢that
AdviEH (A) < AdviRs, (A1) + gAdVRE, (A%) + AdVEE(D).

SinceAdviy) (A'), Adviy, (A%) andAdvE 8 (D) are negligible from the assumptions of the theorem,
the statement of the theorem follows.

B Security Proofs for the Three Constructions

Proof of Theorem 3. Let. A = (Ay, Ag) be a polynomial-time adversary successful in breaking the
security of the key-updating scheme. We construct an dlgorD that distinguishes the output of the
pseudorandom generator from a random string of leggttvith sufficiently large probability.

Algorithm D has to simulate the environment fgr. D picks By, uniformly at random from
{0, 1}* and computes the user keys for previous time intervalBas:;) = G(Bj4+1), fori =T,..., 1.
D gives to Ay, user keyM; = (B;, k;) at iteration;.

Algorithm D is given a challenge string= rg||r; of length2x, which in experiment 0 is the output
of the pseudorandom generator on input a random seed ohlengind in experiment 1 is a random
string of length2x. Formally, theprg experiments are defined in Figure 10.4f; outputsstop at time

Ex pprg 0 Expprg 1
s —r {0,1}" rollr —r {0,1}2"
rollr1 < G(s) b« D(rollr1)
b« D(rollr1) return b
return b

Figure 10:Experiments defining the security of pseudorandom genefato

interval ¢, D gives to.Ag the challenge key;.; = r; and D outputs whatAg outputs. Denote by
py = Pr[ExpE’4 = b]. Itis immediate that

Pr [Expprg = 1]=Pr[Exp&Ry's = 1]=p1, (8)
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and
Pr[Expfi S, = 0]= pp, )

wherepy, is the probability that4, given the user keys as in experiméntps 0, but challenge key
ki1 = Go(s) for a random seed € {0,1}", outputs 0. The challenge key given.tbin experiment
Exp™ 0 is Go(GT " 1(s)), whereG? (s) = G1(... G1(s) ...) for i applications of;. We can bound

the absolute difference betwegnandp|, as
Ip) —po| < Pr[Adistinguishes betweefi>(s) andGa(G] 7(s))]
< (T —t)Pr[A distinguishes between—p {0,1}" andG(s)]
< (T —t)AdVEE. (10)

Using (8), (9) and (10), we can relate the success prohiabilif.A andD by

Pr[D succeed$ = o (Pr[Exp%" = 0]+ Pr[Expr5' = 1])
1
= 3 (o + 1)
1
= §(po +p1+po — po)

v

Pr[A succeed%—%(T — t)AdvEE.

It follows that )
Pr[A succeed$< Pr[D succeed§s+§(T — t)AdvEE,

and
AdvERy (A) < Advg®(D) + (T — t)Advg® < TAdVE®.

The statement of the theorem follows from the fact thé?;® is negligible.

Proof of Theorem 4. Let A = (Ay,Ag) be a polynomial-time adversary successful in breaking
the security of the key-updating scheme. Assuming tatruns at mosyy times, we construct an
algorithmZ, which givenf andy — f(z) with z «—px {0, 1}**) computesf—'(y) with sufficiently
large probability.

Algorithm Z has to simulate the environment fdr 7 makes a guess at the time interaln which
Ay outputsstop. Z pickst* uniformly at random from the sél, . .., ¢}. If .4;, does not outputtop at
time intervalt*, thenZ aborts the simulation. Otherwise, at time interv#&ss thant*, 7 gives to.A4;,
the user keyM; = (f* ~t(y), f).

Algorithm Extract is executed by4 as in the description of the scheme, Bugimulates the random
oracle forA. If A queriesz to the random oracle for whicfi(x) = y, thenZ outputsz. Let E be the
event thatd asks query: = f~!(y) to the oracle and: the negation of this event. Since the adversary
has no advantage in distinguishing the properly generaggd k ; from a randomly generated key if it
does not query the random oraclerait follows that

Pr[A succeeds$E| <

N =

from which we can infer
Pr[A succeed$= Pr[A succeed$E]| Pr[E]+ Pr[A succeed$E|Pr[E] < Pr[E] +%. (11)
Equations (1) and (11) imply thﬁ’tr[E] > %AdvsTlBlKU(A). Then the success probability of algoritiin

is atleast, Pr[E]> 5-Advifiy(A). The statement of the theorem follows from the fact thatrtigm
7 has only a negligible probability of success.
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Proof of Theorem 5. SchemeTreeKU with T = 2¢ — 1 time intervals can be obtained frodhex-
tended additive compositions of a trivial key-updatingesole TrivKU with one time interval, defined
as follows:

- Init(1%, T, s) generates a random user kil —pr {0, 1}* from the seed and outputsSy = M.
- Update(t, S¢) outputsS;1 < S; only for ¢ = 0.

- Derive(t, S¢) outputsM; <« M fort¢ = 1.

- Extract(t, My, q) returnsk = Fy(1) fort =i = 1.

Given thatF is a pseudorandom function, it is easy to see ThatKU is a secure key-updating scheme.
Consider an adversary that has a non-negligible advantage in breakingKU. Since the scheme has
one time interval A is not given any user keys and it has to outgigp at time interval 0. We build a
distinguisher algorithnD for the pseudorandom functio is given access to an oradlé: {0,1} —
{0,1}", which is eithetF'(k, -) with k < {0, 1}", orarandom functiog «—r {f : {0,1} — {0,1}"}.

D gives toA the challengé:; = G(1) and outputs the same bit ds It is immediate that the advantage
of D in distinguishing the pseudorandom function from randonrcfions is the same as the advantage
of adversaryA in breakingTrivKU.

The tree scheme witf’ time intervals can be constructed as follows: gene?été instances of
TrivKU and make them leaves in the tree; build the tree bottom-upltitigely composing (using the
extended method) two adjacent nodes at the same level irethelthe security of the binary tree scheme
obtained by additive composition as described above falfram Theorem 1.
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