
Secure Key-Updating for Lazy Revocation

Michael Backes∗ Christian Cachin† Alina Oprea‡

Abstract

We consider the problem of efficient key management and user revocation in cryptographic file
systems that allow shared access to files. A performance-efficient solution to user revocation in such
systems is lazy revocation, a method that delays the re-encryption of a file until the next write to
that file. We formalize the notion of key-updating schemes for lazy revocation, an abstraction to
manage cryptographic keys in file systems with lazy revocation, and give a security definition for
such schemes. We give two composition methods that combine two secure key-updating schemes
into a new secure scheme that permits a larger number of user revocations. We prove the security
of two slightly modified existing constructions and proposea novel binary tree construction that is
also provably secure in our model. Finally, we give a systematic analysis of the computational and
communication complexity of the three constructions and show that the novel construction improves
the previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on high-speed, dedicated storage-area networks (SANs)
stimulates flexible methods for information sharing, but also raises new security concerns. As the net-
worked storage devices are subject to attacks, protecting the confidentiality of stored data is highly
desirable in such an environment. Several cryptographic file systems have been designed for this pur-
pose [15, 28, 23, 17], but practical solutions for efficient key management and user revocation still need
to be developed further.

We consider cryptographic file systems that allow shared access to stored information and that use
untrusted storage devices. In such systems, we can aggregate files into sets such that access permissions
and ownership are managed at the level of these sets. The users who have access to the files in a set
form a group, managed by the owner of the files, or thegroup owner. Initially, the same cryptographic
key can be used to encrypt all files in a set, but upon revocation of a user from the group, the key needs
to be changed to prevent access of revoked users to the files. The group owner generates and distributes
this new key to the users in the group. There are two options for handling user revocation,activeand
lazy revocation, which differ in the way that users are revoked from a group. With active revocation,
all files in a set are immediately re-encrypted with the new encryption key. The amount of work caused
by a single revocation with this method might, however, be prohibitive for large sets of files. With the
alternative method of lazy revocation, re-encryption of a file is delayed until the next write to that file
and, thus, users do not experience disruptions in the operation of the file system caused by the immediate
re-encryption of all files protected by the same revoked key.In systems adopting lazy revocation, the
files in a set might be encrypted with different keys. Storingand distributing these keys becomes more
difficult than in systems using active revocation.

In this paper, we address the problem of efficient key management in cryptographic file systems with
lazy revocation. An immediate solution to this problem, adopted by the first cryptographic file systems

∗Computer Science Department, Saarland University, Saarbruecken, Germany;backes@cs.uni-sb.de
†IBM Research, Zurich Research Laboratory, Rüschlikon, Switzerland;cca@zurich.ibm.com
‡Computer Science Department, Carnegie Mellon University,Pittsburgh, PA, USA;alina@cs.cmu.edu

1

using delayed re-encryption [15], is to store all keys for the files in a set at the group owner. However,
we are interested in more efficient methods, in which the number of stored keys is not proportional to
the number of revocations. We formalize the notion ofkey-updating schemes for lazy revocationand
give a rigorous security definition. In our model, acenter (e.g., the group owner) initially generates
some state information, which takes the role of the master secret key. The center state is updated at
every revocation. We call the period of time between two revocations atime interval. Upon a user
request, the center uses its current local state to derive auser keyand gives that to the user. From the
user key of some time interval, a user must be able to extract the key for any previous time interval effi-
ciently. Security for key-updating schemes requires that any polynomial-time adversary with access to
the user key for a particular time interval does not obtain any information about the keys for future time
intervals. The keys generated by our key-updating schemes can be used with a symmetric encryption
algorithm to encrypt files for confidentiality or with a message-authentication code to authenticate files
for integrity protection. Independently and concurrentlyto our work1 Fu, Kamara, and Kohno [16] have
also formalized key-updating schemes.

We describe two generic composition methods that combine two secure key updating schemes into
a new scheme in which the number of time intervals is either the sum or the product of the number of
time intervals of the initial schemes. Additionally, we investigate three constructions of key-updating
schemes. The first scheme uses a chain of pseudorandom generator applications and is related to existing
methods using one-way hash chains. It has constant update cost for the center, but the complexity
of the user-key derivation is linear in the total number of time intervals. The second scheme can be
based on arbitrary trapdoor permutations and generalizes the key rotation construction of the Plutus
file system [23]. It has constant update and user-key derivation times, but the update algorithm uses a
relatively expensive public-key operation. These two constructions require that the total numberT of
time intervals is polynomial in the security parameter. Ourthird scheme uses a novel construction. It
relies on a tree to derive the keys at the leaves from the master key at the root. The tree can be seen
as resulting from the iterative application of the additivecomposition method and supports a practically
unbounded number of time intervals. The binary-tree construction balances the tradeoff between the
center-state update and user-key derivation algorithms (both of them have logarithmic complexity inT),
at the expense of increasing the sizes of the user key and center state by a logarithmic factor inT .

The rest of the paper is organized as follows. In Section 2 we give the definition of security for
key-updating schemes. In Section 3, we introduce the additive and multiplicative composition methods
for secure key-updating schemes. The three constructions and proofs for their security are presented in
Section 4. A systematic analysis of the computational and communication complexities of the three con-
structions is given in Section 5, and an experimental evaluation is presented in Section 6. We compare
our scheme to related work in Section 7.

2 Formalizing Key-Updating Schemes

2.1 Definition of Key-Updating Schemes

In our model, we divide time into intervals, not necessarilyof fixed length, and each time interval is
associated with a new key that can be used in a symmetric-key cryptographic algorithm. In a key-
updating scheme, the center generates initial state information that is updated at each time interval, and
from which the center can derive a user key. The user key for intervalt permits a user to derive the keys
of previous time intervals (ki for i ≤ t), but it should not give any information about keys of futuretime
intervals (ki for i > t).

We formalize key-updating schemes using the approach of modern cryptography and denote the
security parameter byκ. For simplicity, we assume that all the keys are bit strings of length κ. The
number of time intervals and the security parameter are given as input to the initialization algorithm.

1A preliminary version of this paper appears as [6].

2

Definition 1 (Key-Updating Schemes). A key-updating scheme consists of four deterministic polyno-
mial time algorithmsKU = (Init, Update, Derive, Extract) with the following properties:

- The initialization algorithm,Init, takes as input thesecurity parameter1κ, the number of time
intervalsT and arandom seeds ∈ {0, 1}l(κ) for a polynomiall(κ), and outputs a bit stringS0,
called the initial centerstate.

- The key update algorithm,Update, takes as input the currenttime interval0 ≤ t ≤ T − 1, the
current centerstateSt, and outputs the centerstateSt+1 for the next time interval.

- The user key derivation algorithm,Derive, is given as input atime interval1 ≤ t ≤ T and the
centerstateSt, and outputs theuser keyMt. The user key can be used to derive all keyski for
1 ≤ i ≤ t.

- The key extraction algorithm,Extract, is executed by the user and takes as input atime inter-
val 1 ≤ t ≤ T , the user keyMt for interval t as received from the center, and atarget time
interval i with 1 ≤ i ≤ t. The algorithm outputs thekeyki for intervali.

W.l.o.g., we assume that theUpdate algorithm is run at least once after theInit algorithm, before
any user keys can be derived. The first time theUpdate algorithm is run, it is given as input time interval
t = 0. User keys and keys are associated with the time intervals between 1 andT .

2.2 Applications to Cryptographic File Systems

In a cryptographic file system adopting lazy revocation, there-encryption of a file after a revocation is
delayed until the next write to that file. Similarly to the Plutus file system, files can be divided into sets
based on their access permissions, such that all files in a sethave the same permissions. Initially, all
files in a set can be encrypted with the same key. We assume thatfile owners are responsible for the
generation and distribution of keys to the authorized users, so file owners take the role of the center in
our model of key-updating schemes.

When a user is revoked from the group of users having access tothe set of files, the file owner runs
theUpdate algorithm generating a new state and advancing the time interval. The file owner then runs
Derive and the new user key is distributed to all the users that have now access permissions to the files. A
user writing a file uses the encryption key for the latest timeinterval, which can be efficiently extracted
from the latest user key. To decrypt a file, a user needs to knowthe version of the key that was used to
encrypt it, and extract the appropriate encryption key fromthe user key. The key version with which
each file is encrypted might, for example, be stored in the filei-node on the file server.

Assuming that the integrity of files is protected with a message-authentication code (MAC), key-
updating schemes can also be used to manage symmetric keys for authentication. To guarantee inde-
pendence of the keys used for confidentiality and integrity,different instances of key-updating schemes
have to be used for encryption and authentication.

2.3 Security of Key-Updating Schemes

The definition of security for key-updating schemes requires that a polynomial-time adversary with
access to the user key for a time intervalt is not able to derive any information about the keys for the next
time interval. The definition we give here is related to the definition of forward-secure pseudorandom
generators given by Bellare and Yee [8]. Formally, considera probabilistic polynomial-time adversary
A = (AU ,AG) that participates in the following experiment:

Initialization: The initial center state is generated with theInit algorithm.

Key updating: The adversary adaptively picks a time intervalt such that0 ≤ t ≤ T − 1 as follows.
Starting with t = 0, 1, . . . , algorithmAU is given the user keysMt for all consecutive time
intervals untilAU decides to outputstop or t becomes equal toT − 1. We require thatAU ,

3

Expsku-0
KU,A(1κ, T) Expsku-1

KU,A(1κ, T)
S0 ← Init(1κ, T) S0 ← Init(1κ, T)
t← 0 t← 0
(d, z)← AU (t,⊥,⊥) (d, z)← AU (t,⊥,⊥)
while(d 6= stop) and (t < T − 1) while(d 6= stop) and (t < T − 1)

t← t + 1 t← t + 1
St ← Update(t− 1, St−1) St ← Update(t− 1, St−1)
Mt ← Derive(t, St) Mt ← Derive(t, St)
(d, z)← AU (t, Mt, z) (d, z)← AU (t,Mt, z)

St+1 ← Update(t, St) kt+1 ←R {0, 1}κ

Mt+1 ← Derive(t + 1, St+1) b← AG(kt+1, z)
kt+1 ← Extract(t + 1, Mt+1, t + 1) return b

b← AG(kt+1, z)
return b

Figure 1:Experiments defining the security of key-updating schemes.

a probabilistic polynomial-time algorithm, outputsstop at least once before halting.AU also
outputs some additional informationz ∈ {0, 1}∗ that is given as input to algorithmAG.

Challenge: A challenge for the adversary is generated, which is either the key for time intervalt + 1
generated with theUpdate, Derive andExtract algorithms, or a random bit string of lengthκ.

Guess:AG takes the challenge andz as inputs and outputs a bitb.

The key-updating scheme is secure if the advantage of the adversary of distinguishing between the
properly generated key for time intervalt+1 and the random key is only negligibly larger than1

2 . More
formally, the definition of a secure key-updating scheme is the following:

Definition 2 (Security of Key-Updating Schemes). Let KU = (Init, Update, Derive, Extract) be a
key-updating scheme andA a polynomial-time adversary algorithm that participates in one of the two
experiments defined in Figure 1. The advantage of the adversary A = (AU ,AG) for KU is defined as

AdvskuKU (A) =
∣

∣Pr
[

Expsku-1KU,A(1κ, T) = 1
]

−Pr
[

Expsku-0KU,A(1κ, T) = 1
]
∣

∣.

Without loss of generality, we can relate the success probability of adversaryA of distinguishing
between the two experiments and its advantage as

Pr[A succeeds] =
1

2

[

Pr
[

Expsku-0KU,A = 0
]

+ Pr
[

Expsku-1KU,A = 1
]

]

=
1

2

[

1 + AdvskuKU (A)
]

. (1)

The maximum advantage of all probabilistic polynomial-time adversaries is denoted

AdvskuKU = max
A
{AdvskuKU (A)}.

The key-updating schemeKU is secureif there exists a negligible functionǫ such thatAdvskuKU =
ǫ(κ).

Remark. The security notion we have defined is equivalent to a seemingly stronger security definition,
in which the adversary can choose the challenge time interval t∗ with the restriction thatt∗ is greater than
the time interval at which the adversary outputsstop and thatt∗ is polynomial in the security parameter.
This second security definition guarantees, intuitively, that the adversary is not gaining any information
about the keys of any future time intervals after it outputsstop.

4

Init(1κ, T, s) Derive(t, (S1
t , S2

t))
S1

0 ← Init1(1
κ, T1, G1(s)) if t < T1

S2
0 ← Init2(1

κ, T2, G2(s)) M1
t ← Derive1(t, S

1
t)

return (S1
0 , S2

0) M2
t ← ⊥

else

M1
t ← Derive1(T1, S

1
t)

M2
t ← Derive2(t− T1, S

2
t)

return(M1
t , M2

t)

Update(t, (S1
t , S2

t)) Extract(t, (M1
t , M2

t), i)
if t < T1 if i > T1

S1
t+1 ← Update1(t, S

1
t) ki ← Extract2(t− T1, M

2
t , i− T1)

S2
t+1 ← S2

t else

else if t < T1

S1
t+1 ← S1

t ki ← Extract1(t, M
1
t , i)

S2
t+1 ← Update2(t− T1, S

2
t) else

return (S1
t+1, S

2
t+1) ki ← Extract1(T1, M

1
t , i)

return ki

Figure 2:The additive composition ofKU1 andKU2.

3 Composition of Key-Updating Schemes

Let KU1 = (Init1, Update1, Derive1, Extract1) andKU2 = (Init2, Update2, Derive2, Extract2) be
two secure key-updating schemes using the same security parameterκ with T1 andT2 time intervals,
respectively. In this section, we show how to combine the twoschemes into a secure key-updating
schemeKU = (Init, Update, Derive, Extract), which is either the additive or multiplicative composition
of the two schemes withT = T1 + T2 andT = T1 · T2 time intervals, respectively. Similar generic
composition methods have been given previously for forward-secure signature schemes [26].

For simplicity, we assume the length of the random seed in theInit algorithm of the schemeKU to
beκ for both composition methods. LetG : {0, 1}κ → {0, 1}l1(κ)+l2(κ) be a pseudorandom generator;
it can be used to expand a random seed of lengthκ into two random bit strings of lengthl1(κ) andl2(κ),
respectively, as needed forInit1 and Init2. We writeG(s) = G1(s)‖G2(s) with |G1(s)| = l1(κ) and
|G2(s)| = l2(κ) for s ∈ {0, 1}κ.

3.1 Additive Composition

The additive composition of two key-updating schemes uses the keys generated by the first scheme for
the firstT1 time intervals and the keys generated by the second scheme for the subsequentT2 time
intervals. The user key for the firstT1 intervals inKU is the same as that of schemeKU1 for the same
interval. For an intervalt greater thanT1, the user key includes both the user key for intervalt− T1 of
schemeKU2, and the user key for intervalT1 of schemeKU1. The details of the additive composition
method are described in Figure 2. The security of the composition operation is analyzed in the following
theorem, whose proof is given in Appendix A.

Theorem 1. Suppose thatKU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2,
Derive2, Extract2) are two secure key-updating schemes withT1 andT2 time intervals, respectively, and
that G is a pseudorandom generator as above. ThenKU = (Init, Update, Derive, Extract) described
in Figure 2 denoted asKU1 ⊕ KU2 is a secure key-updating scheme withT1 + T2 time intervals.

Extended Additive Composition. It is immediate to extend the additive composition to construct a
new scheme withT1 + T2 + 1 time intervals. The idea is to use the first scheme for the keysof the first
T1 intervals, the second scheme for the keys of the nextT2 intervals, and the seeds as the key for the
(T1 + T2 + 1)-th interval. By revealing the seeds as the user key at intervalT1 + T2 + 1, all previous
keys ofKU1 andKU2 can be derived. This idea will be useful in our later construction of a binary tree
key-updating scheme. We call this composition methodextended additive composition.

5

3.2 Multiplicative Composition

The idea behind the multiplicative composition operation is to use every key of the first scheme to seed
an instance of the second scheme. Thus, for each one of theT1 time intervals of the first scheme, we
generate an instance of the second scheme withT2 time intervals.

We denote a time intervalt for 1 ≤ t ≤ T1 · T2 of schemeKU as a pairt = <i, j>, wherei andj
are such thatt = (i − 1)T2 + j for 1 ≤ i ≤ T1 and1 ≤ j ≤ T2. TheUpdate algorithm is run initially
for time intervalt = 0, which will be expressed as<0, 0>. The user key for a time intervalt = <i, j>
includes both the user key for time intervali− 1 of schemeKU1 and the user key for time intervalj of
schemeKU2. A user receivingM<i,j> can extract the key for any time interval<m,n> ≤ <i, j> by
first extracting the keyK for time intervalm of KU1 (this step needs to be performed only ifm < i),
then usingK to derive the initial state of them-th instance of the schemeKU2, and finally, deriving the
keyk<m,n>. The details of the multiplicative composition method are shown in Figure 3.

Init(1κ, T, s) Derive(<i, j>, (S1
i−1, S

1
i , S2

j))
S1

0 ← Init1(1
κ, T1, G1(s)) if i > 1

S1
1 ← Update1(0, S1

0) M1
i−1 ← Derive1(i− 1, S1

i−1)
k1
1 ← Extract1(1, Derive1(1, S1

1), 1) else

S2
0 ← Init2(1

κ, T2, G2(k
1
1)) M1

i−1 ← ⊥
return (⊥, S1

0 , S2
0) M2

j ← Derive2(j, S
2
j)

return (M1
i−1, M

2
j)

Update(<i, j>, (S1
i−1, S

1
i , S2

j)) Extract(<i, j>, (M1
i−1, M

2
j), <m,n>)

if j = T2 if i = m

S1
i+1 ← Update1(i, S

1
i) k<m,n> ← Extract2(j, M

2
j , m)

k1
i+1 ← Extract1(i + 1, else

Derive1(i + 1, S1
i+1), i + 1) K ← Extract1(i− 1, M1

i−1, m)
S2

0 ← Init2(1
κ, T2, G2(k

1
i+1)) S2

0 ← Init2(1
κ, T2, G2(K))

S2
1 ← Update2(0, S2

0) k<m,n> ← Extract2(T2, S
2
0 , n)

return (S1
i , S1

i+1, S
2
1) return k<m,n>

else

S2
j+1 ← Update2(j, S

2
j)

return (S1
i−1, S

1
i , S2

j+1)

Figure 3:The multiplicative composition ofKU1 andKU2.

The security of the multiplicative composition method is analyzed in the following theorem, whose
proof is given in Appendix A.

Theorem 2. Suppose thatKU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2,
Derive2, Extract2) are two secure key-updating schemes withT1 andT2 time intervals, respectively, and
that G is a pseudorandom generator as above. ThenKU = (Init, Update, Derive, Extract) described
in Figure 3 denoted asKU1 ⊗ KU2 is a secure key-updating scheme withT1 · T2 time intervals.

4 Constructions

In this section, we describe three constructions of key-updating schemes with different complexity and
communication tradeoffs. The first two constructions are based on previously proposed methods. We
give cryptographic proofs that demonstrate the security ofthe existing constructions after some sub-
tle modifications. Additionally, we propose a third construction that is more efficient than the known
schemes. It uses a binary tree to derive the user keys and is also provably secure in our model.

4.1 Chaining Construction (CKU)

In this construction, the center generates an initial random seed of lengthκ and applies a pseudorandom
generator iterativelyi times to obtain the key for time intervalT−i, for 1 ≤ i ≤ T−1. This construction

6

is inspired by a folklore method using a hash chain for deriving the keys. A construction based on a
hash chain can be proven secure only if the hash functionh is modeled as a random oracle. To obtain
a provably secure scheme in the standard model, we replace the hash function with a pseudorandom
generator.

Let G : {0, 1}κ → {0, 1}2κ be a pseudorandom generator. We writeG(s) = G1(s)‖G2(s) with
|G1(s)| = |G2(s)| = κ for s ∈ {0, 1}κ. The algorithms of the chaining construction, calledCKU, are:

- Init(1κ, T, s) generates a random seeds0 of lengthκ from s and outputsS0 = s0.
- Update(t, St) copies the stateSt into St+1.
- Derive(t, St) andExtract(t,Mt, i) are given in Figure 4.

Derive(t, St) Extract(t, Mt, i)
BT+1 ← St (Bt, kt)←Mt

for i = T downto t for j = t− 1 downto i

(Bi, ki)← G(Bi+1) (Bj , kj)← G(Bj+1)
return (Bt, kt) return ki

Figure 4:TheDerive(t, St) andExtract(t, Mt, i) algorithms of the chaining construction.

This construction has constant center-state size and linear cost for the user-key derivation algorithm.
An alternative construction with linear center-state sizeand constant user-key derivation is to precom-
pute all the keyski and user keysMi, for 1 ≤ i ≤ T in the Init algorithm and store all of them in
the initial center stateS0. The security of the chaining construction is given be the following theorem,
whose proof is in Appendix B.

Theorem 3. Given a pseudorandom generatorG, CKU is a secure key-updating scheme.

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial random state that is updated at each time interval by
applying the inverse of a trapdoor permutation. The trapdoor is known only to the center, but a user,
given the state at a certain moment, can apply the permutation iteratively to generate all previous states.
The key for a time interval is generated by applying a hash function, modeled as a random oracle, to
the current state. This idea underlies the key rotation mechanism of the Plutus file system [23], with the
difference that Plutus uses the output of an RSA trapdoor permutation directly for the encryption key.
We could not prove the security of this scheme in our model forkey-updating schemes, even when the
trapdoor permutation is not arbitrary, but instantiated with the RSA permutation.

This construction has the advantage that knowledge of the total number of time intervals is not
needed in advance; on the other hand, its security can only beproved in the random oracle model. Let
a family of trapdoor permutations be given such that the domain size of the permutations with security
parameterκ is l(κ), for some polynomiall. Let h : {0, 1}l(κ) → {0, 1}κ be a hash function modeled
as a random oracle. The detailed construction of the trapdoor permutation scheme, calledTDKU, is
presented below:

- Init(1κ, T, s) generates a randoms0 ←R {0, 1}
l(κ) and a trapdoor permutationf : {0, 1}l(κ) →

{0, 1}l(κ) with trapdoorτ from seeds using a pseudorandom generator. Then it outputsS0 =
(s0, f, τ).

- Update(t, St) with St = (st, f, τ) computesst+1 = f−1(st) and outputsSt+1 = (st+1, f, τ).
- Derive(t, St) outputsMt ← (st, f).
- Extract(t,Mt, i) applies the permutation iterativelyt − i times to generate statesi = f t−i(Mt)

and then outputsh(si).

The security of this construction is given be the following theorem, whose proof is in Appendix B.

Theorem 4. Given a family of trapdoor permutations and a hash functionh, TDKU is a secure key-
updating scheme in the random oracle model.

7

4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algorithmsUpdate, Derive andExtract has worst-case
complexity linear in the total number of time intervals. We present a tree construction based on ideas of
Canetti, Halevi and Katz [10] with constant complexity for theDerive algorithm and logarithmic worst-
case complexity in the number of time intervals for theUpdate andExtract algorithms. Moreover, the
amortized complexity of theUpdate algorithm is constant. In this construction, the user key size is
increased by at most a logarithmic factor inT compared to the user key size of the two constructions
described above.

Our tree-based key-updating scheme, calledTreeKU, generates keys using a complete binary tree
with T nodes, assuming thatT = 2d−1 for somed ∈ Z. Each node in the tree is associated with a time
interval between 1 andT , a unique label in{0, 1}∗, a tree-keyin {0, 1}κ and anexternal keyin {0, 1}κ

such that:

1. Time intervals are assigned to tree nodes using post-order tree traversal, i.e., a node corresponds to
intervali if it is the i-th node in the post-order traversal of the tree. We refer to the node associated
with intervalt as nodet.

2. We define a functionlabel that maps nodet with 1 ≤ t ≤ T to its label in{0, 1}∗ as follows.
The root of the tree is labeled by the empty stringε, and the left and right children of a node with
label ℓ are labeled byℓ‖0 and byℓ‖1, respectively. The parent of a node with labelℓ is denoted
by parent(ℓ), thusparent(ℓ‖0) = parent(ℓ‖1) = ℓ. We denote the length of a labelℓ by |ℓ|.

3. The tree-key for the root node is chosen at random. The tree-keys for the two children of an
internal node in the tree are derived from the tree-key of theparent node using a pseudorandom
generatorG : {0, 1}κ → {0, 1}2κ. For an inputs ∈ {0, 1}κ, we writeG(s) = G1(s)‖G2(s)
with |G1(s)| = |G2(s)| = κ. If the tree-key for the internal node with labelℓ is denoteduℓ, then
the tree-keys for its left and right children areuℓ‖0 = G1(uℓ) anduℓ‖1 = G2(uℓ), respectively.
This implies that once the tree-key for a node is revealed, then the tree-keys of its children can be
computed, but knowing the tree-keys of both children of a node does not reveal any information
about the tree-key of the node.

4. The external key of a nodet is the keykt output by the scheme to the application for interval
t. For a nodet with tree-keyulabel(t), the external keykt is obtained by computingFulabel(t)

(1),
whereFu(b) = F (u, b) andF : {0, 1}κ × {0, 1} → {0, 1}κ is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updating scheme:

- Init(1κ, T, s) generates the tree-key for the root node randomly,uT ←R {0, 1}
κ, using seeds,

and outputsS0 = ({(ε, uT)}, ∅).
- Update(t, St) updates the stateSt = (Pt, Lt) to the next center stateSt+1 = (Pt+1, Lt+1). The

center state for intervalt consists of two sets:Pt that contains pairs of (label, tree-key) for all
nodes on the path from the root to nodet (including nodet), andLt that contains label/tree-key
pairs for all left siblings of the nodes inPt that are not inPt.
We use several functions in the description of theUpdate algorithm. For a labelℓ and a setA
of label/tree-key pairs, we define a functionsearchkey(ℓ,A) that outputs a tree-keyu for which
(ℓ, u) ∈ A, if the label exists in the set, and⊥ otherwise. Given a labelℓ and a set of label/tree-
key pairsA, function rightsib(ℓ,A) returns the label and the tree-key of the right sibling of the
node with labelℓ, and, similarly, functionleftsib(ℓ,A) returns the label and the tree-key of the
left sibling of the node with labelℓ (assuming the labels and tree-keys of the siblings are inA).
The functionleftkeys is given as input a label/tree-key pair of a node and returns all label/tree-key
pairs of the left-most nodes in the subtree rooted at the input node, including label and tree-key of
the input node.
The code for theUpdate and leftkeys algorithms is given in Figure 5. We omit the details of
functionssearchkey, rightsib andleftsib. TheUpdate algorithm distinguishes three cases:

8

Update(t, (Pt, Lt))
if t = 0

P1 ← leftkeys(ε, uT)
L1 ← ∅

else

ℓt ← label(t)
ut ← searchkey(ℓt, Pt)
if ℓt ends in 0

(ℓs, us)← rightsib(ℓt, Pt)
Pt+1 ← Pt \ {(ℓt, ut)} ∪ leftkeys(ℓs, us)
Lt+1 ← Lt ∪ {(ℓt, ut)}

else

(ℓs, us)← leftsib(ℓt, Lt)
Pt+1 ← Pt \ {(ℓt, ut)}
Lt+1 ← Lt \ {(ℓs, us)}

return (Pt+1, Lt+1)

leftkeys(ℓ, u)
A← ∅
while |ℓ| ≤ d

A← A ∪ {(ℓ, u)}
ℓ← ℓ‖0
u← G1(u)

return A

/* P1 contains the label/tree-key pairs of all the left-most nodes */
/* the set of left siblings is empty */

/* compute the label of nodet */
/* compute the tree-key of nodet */
/* t is the left child of its parent */
/* compute the label/tree-key pair of the right sibling oft */
/* update the label/tree-key pairs inPt+1 */
/* add the label/tree-key pair oft to set of left siblings fort + 1 */
/* t is the right child of its parent */
/* compute the label/tree-key pair of the left sibling oft */
/* remove label/tree-key pair oft from Pt+1 */
/* remove label/tree-key pair of left sibling oft from Lt+1 */

/* initialize setA with the empty set */
/* advance to the left until we reach a leaf */
/* add the label and tree-key of the current node inA */
/* move to left child of the node with labelp */
/* compute the tree-key of the left child */

Figure 5:TheUpdate(t, (Pt, Lt)) algorithm.

1. If t = 0, theUpdate algorithm computes the label/tree-key pairs of all left-most nodes in
the complete tree using functionleftkeys and stores them inP1. The setL1 is empty in this
case, as nodes inP1 do not have left siblings.

2. If t is the left child of its parent, the successor of nodet in post-order traversal is the left-most
node in the subtree rooted at the right siblingt′ of nodet. Pt+1 contains all label/tree-key
pairs inPt except the tuple for nodet, and, in addition, all label/tree-key pairs for the left-
most nodes in the subtree rooted att′, which are computed byleftkeys. The set of left
siblingsLt+1 contains all label/tree-key pairs fromLt and, in addition, the label/tree-key
pair for nodet.

3. If t is the right child of its parent, nodet + 1 is its parent, soPt+1 contains all label/tree-key
pairs fromPt except the tuple for nodet, andLt+1 contains all the label/tree-key pairs inLt

except the pair for the left sibling of nodet.

- Algorithm Derive(t, (Pt, Lt)) outputs the user tree-keyMt, which is the minimum information
needed to generate the set of tree-keys{ui : i ≤ t}. Since the tree-key of any node reveals the
tree-keys for all nodes in the subtree rooted at that node,Mt consists of the label/tree-key pairs
for the left siblings (if any) of all nodes on the path from theroot to the parent of nodet and the
label/tree-key pair of nodet. This information has already been pre-computed such that one can
setMt ← {(label(t), ut)} ∪ Lt.

- Algorithm Extract(t,Mt, i) first finds the maximum predecessor of nodei in post-order traversal
whose label/tree-key pair is included in the user tree-keyMt. Then it computes the tree-keys for
all nodes on the path from that predecessor to nodei. The external keyki is derived from the
tree-keyui aski = Fui

(1) using the pseudorandom function. The algorithm is in Figure6.

Analysis of Complexity. The worst-case complexity of the cryptographic operationsused in the
Update andExtract algorithms is logarithmic in the number of time intervals, and that ofDerive is
constant. However, it is easy to see that the key for each nodeis computed exactly once ifT updates

9

Extract(t, Mt, i)
ℓ1 . . . ℓs ← label(i)
v ← s

ℓ← ℓ1 . . . ℓv

while v > 0 and searchkey(ℓ, Mt) = ⊥
v ← v − 1
ℓ← ℓ1 . . . ℓv

for j = v + 1 to s

uℓ1...ℓj
← Gℓj

(uℓ1...ℓj−1
)

kℓ1...ℓs ← Fuℓ1...ℓs
(1)

return kℓ1...ℓs

/* the label ofi has lengths */

/* find a predecessor ofi that is inMt */

/* compute tree-keys of all nodes on path from predecessor toi */

/* return external key of nodei */

Figure 6:TheExtract(t, Mt, i) algorithm.

are executed. This implies that the total cost of all update operations isT pseudorandom-function ap-
plications, so the amortized cost per update is constant. The size of the center state and the user key is
proportional to the height of the binary tree, so the worst-case space complexity isO(κ log2 T) bits.

The security of the tree construction is given be the following theorem, whose proof is in Ap-
pendix B.

Theorem 5. Given a pseudorandom generatorG and a pseudorandom functionF , TreeKU is a secure
key-updating scheme.

An incremental tree construction. We can construct an incremental tree scheme using ideas from
the generic forward-secure signature scheme of Malkin, Micciancio, and Miner [26]. The incremental
scheme does not require the total number of time intervals tobe known in advance.

LetTreeKU(i) be the binary tree construction with2i−1 nodes. Then the incremental tree scheme is
obtained by additively composing binary tree schemes with increasing number of intervals:TreeKU(1)⊕
TreeKU(2) ⊕ TreeKU(3) ⊕ The keys generated by the tree schemeTreeKU(i) correspond to the
time intervals between2i − i and2i+1 − i− 2 in the incremental scheme. Once the intervals of the tree
schemeTreeKU(i) are exhausted, an instance ofTreeKU(i + 1) is generated, if needed.

In addition to allowing a practically unbounded number of time intervals, this construction has the
property that the complexity of theUpdate, Derive andExtract algorithms and the size of the center
state and user key depend on the number of past time intervals. Below we perform a detailed analysis
of the cost of the scheme for an intervalt that belongs toTreeKU(i) with 2i − i ≤ t ≤ 2i+1 − i− 2:

1. The center state includes all the root keys of the previousi−1 trees and the center state for nodet
in TreeKU(i). In the worst-case, this equals(i−1)+(2i−1) = 3i−2 = 3⌈log2(t)⌉−2 tree-keys.
Similarly, the user key for intervalt includes the user key of nodet as in schemeTreeKU(i) and
the root keys of the previousi − 1 trees, in total(i − 1) + (i − 1) = 2i − 2 = 2⌈log2(t)⌉ − 2
tree-keys. It follows that the space complexity of the center state and the user key for intervalt is
O(κ log2(t)) bits.

2. The cost of bothUpdate and Extract algorithms is at mosti = ⌈log2(t)⌉ applications of the
pseudorandom generator. The cost ofDerive is constant, as in the tree construction.

5 Performance of the Constructions

In this section we analyze the time complexity of the cryptographic operations and the space complexity
of the center and the user for the three proposed constructions. Recall that all schemes generate keys
of lengthκ. In analyzing the time complexity of the algorithms, we specify what kind of operations
we measure and distinguish public-key operations (PK op.) from pseudorandom generator applications
(PRG op.) because PK operations are typically much more expensive than PRG applications. We omit

10

CKU TDKU TreeKU

Update(t, St) time 0 1 PK op. O(log2 T) PRG op.∗

Derive(t, St) time T − t PRG op. const. O(log2 T)

Extract(t, Mt, i) time t− i PRG op. t− i PK op. O(log2 T) PRG op.

Center state size κ poly(κ) O(κ log2 T)

User key size κ κ O(κ log2 T)

Table 1:Worst-case time and space complexities of the constructions forT time intervals.∗Note: the amortized
complexity ofUpdate(t, St) in the binary tree scheme is constant.

the time complexity of theInit algorithm, as it involves only the pseudorandom generator for all schemes
except for the trapdoor permutation scheme, in whichInit also generates the trapdoor permutation. The
space complexities are measured in bits. Table 1 shows the details for a given numberT of time intervals.

In the chaining schemeCKU, theUpdate algorithm takes no work, but theExtract and theDerive

algorithms take linear work in the number of time intervals.On the other hand, the trapdoor permu-
tation schemeTDKU has efficient user-key derivation, which involves only a copy operation, but the
complexity of theUpdate algorithm is one application of the trapdoor permutation inverse and that of
theExtract(t,Mt, i) algorithm ist− i applications of the trapdoor permutation. The tree-based scheme
TreeKU balances the tradeoffs between the complexity of the three algorithms, taking logarithmic work
in the number of time intervals for all three algorithms in the worst-case. TheDerive algorithm involves
only O(log2 T) copy operations, andUpdate andExtract algorithms involveO(log2 T) PRG opera-
tions. This comes at the cost of increasing the center-stateand user-key sizes toO(κ log2 T). Note that
the amortized cost of theUpdate algorithm in the binary tree construction is constant.

As the chaining and the trapdoor permutation schemes have worst-case complexities linear inT for
at least one algorithm, both of them require the number of time intervals to be rather small. In contrast,
the binary tree construction can be used for a practically unbounded number of time intervals.

In an application in which the number of time intervals in notknown in advance, the incremental tree
scheme can be used. Its space and time complexities only depend on the number of past revocations and
not on the total number of revocations supported. The incremental tree construction is an interesting ex-
ample of an additive composition of tree constructions withdifferent number of intervals. Furthermore,
our additive and multiplicative composition methods allowthe construction of new schemes starting
from the basic three constructions described in Section 4.

6 Experimental Evaluation

We have implemented the chaining, trapdoor, and tree constructions for 128-bit keys. We have used the
128-bit AES block cipher to implement the pseudorandom generatorG asG(s) = AESs(0

128)||AESs(1
128)

with |s| = 128 for theCKU andTreeKU constructions of Sections 4.1 and 4.3. In constructionTDKU

from Section 4.2, we have used the RSA permutation with a bit length of 1024 and public exponent 3
and the SHA-1 hash function as the random oracleh.

We performed the following experiment. For a fixed total number of revocationsT , the center first
initializes the key-updating scheme. Then, the steps beloware repeated fort = 1, . . . , T :

• The center runs theUpdate andDerive algorithms to simulate one revocation.

• Given the user key for intervalt, the user runs theExtract algorithm to obtain the keyk1 for the
first time interval.

Note that the time to extract the key for the first interval is larger than the extraction time for any other
interval between 1 andt in all three constructions. Hence, the extraction time for the first interval
represents a worst-case measure.

11

We measured the performance using four metrics: the maximumand averageUpdate andDerive

time for the center (over theT revocations), and the maximum and averageExtract time for clients to
compute the key for the first time interval (from one of theT time intervals). We ran our experiments
on a 2.4 GHz Intel Xeon processor machine, running Linux 2.6.Our unoptimized implementation was
written in C++ usinggcc 3.2.1.

The results are presented in Figures 7, 8, and 9, respectively. The graphs show the measured time as
a function of the total number of revocationsT , which ranges from28 to 225 depending on the scheme.
Note that the horizontal axis is logarithmic and that the vertical axis differs for the three constructions.

 0

 50

 100

 150

 200

 250

 300

2^{16}2^{14}2^{12}2^{10}

T
im

e
(in

 m
s)

Number of Revocations

Evaluation of the Chaining Construction

Maximum update and derive time
Average update and derive time

Maximum extract time
Average extract time

Figure 7:Evaluation of the chaining construction.

 0

 100

 200

 300

 400

 500

 600

2^{14}2^{12}2^{10}2^8

T
im

e
(in

 m
s)

Number of Revocations

Evaluation of the Trapdoor Construction

Maximum update and derive time
Average update and derive time

Maximum extract time
Average extract time

Figure 8:Evaluation of the trapdoor construction.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2^{25}2^{22}2^{19}2^{16}2^{13}2^{10}

T
im

e
(in

 m
s)

Number of Revocations

Evaluation of the Tree Construction

Maximum update and derive time
Average update and derive time

Maximum extract time
Average extract time

Figure 9:Evaluation of the tree construction.

In the chaining construction, the cost of both the center andclient computation increases linearly
with the total number of revocations, as expected. In the trapdoor permutation construction, the center
time is always constant, but the extraction time grows linearly with the total number of revocations. In
the tree construction, all four metrics have a logarithmic dependence on the total number of revoca-
tions. We observe that the tree construction performs several orders of magnitude better than the other
schemes.

Table 2 gives a direct comparison of the constructions in an experiment with 1024 revocations as
above. It contains also the timing measurements for the first1024 revocations in the tree construction
where the upper boundT on number of revocations was set to a much larger value. This makes it
possible to relate the tree construction to the trapdoor permutation scheme, which has no fixed upper
bound on the number of revocations. It is evident that the tree scheme performs much better than the

12

Scheme T Maximum Time Average Time Maximum Time Average Time
Update+Derive (ms) Update+Derive (ms) Extract (ms) Extract (ms)

Chaining 1024 2.57 1.28 2.5 1.24
Trapdoor 1024 25.07 15.36 32.96 15.25

Tree 1024 0.079 0.015 0.025 0.006
Tree 216 0.142 0.015 0.018 0.0076
Tree 225 0.199 0.015 0.02 0.01

Table 2:Evaluation of the three constructions for 1024 revocations.

other schemes, even with a bound on the number of revocationsthat allows a practically unlimited
number of them.

The space usage forT = 1024 is as follows. The center state is 16 bytes for the chaining construc-
tion, 384 bytes for the trapdoor construction, and at most 328 bytes for the tree scheme. The size of the
user key is 32 bytes for the chaining construction, 128 bytesfor the trapdoor construction, and at most
172 bytes for the tree scheme. In general, for the tree schemewith depthd, the center state takes at most
(2d− 1)(16 + d/8) bytes, containing2d− 1 key value/key label pairs, assuming 16-byte keys andd-bit
labels. The user key size is at mostd key/label pairs, which taked(16 + d/8) bytes.

In summary, we note that the performance of the tree scheme issuperior to the others. The chaining
construction has the smallest space requirements, but its computation cost becomes prohibitive for large
T . The trapdoor construction has sligthly smaller space requirements than the tree scheme, but these
savings are very small compared to the additional computational overhead.

7 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely related to for-
ward- and backward-secure cryptographic primitives. Indeed, a secure key-updating scheme is forward-
secure as defined originally by Anderson [4], in the sense that it maintains security in the time intervals
following a key exposure. However, this is the opposite of the forward security notion formalized by
Bellare and Miner [7] and used in subsequent work. Here we usethe term forward security to refer to
the latter notion.

Time-evolving cryptography protects a cryptographic primitive against key exposure by dividing the
time into intervals and using a different secret key for every time interval. Forward-secure primitives
protect past uses of the secret key: if a device holding all keys is compromised, the attacker can not
have access to past keys. In the case of forward-secure signatures, the attacker can not generate past
signatures on behalf of the user, and in the case of forward-secure encryption, the attacker can not
decrypt old ciphertexts. There exist many efficient constructions of forward-secure signatures [7, 2, 21]
and several generic constructions [24, 26]. Bellare and Yee[8] analyze forward-secure private-key
cryptographic primitives (forward-secure pseudorandom generators, message authentication codes and
symmetric encryption) and Canetti, Halevi and Katz [10] construct the first forward-secure public-key
encryption scheme.

Forward security has been combined with backward security in models that protect both the past
and future time intervals, called key-insulated [13, 14] and intrusion-resilient models [22, 12]. In both
models, there is a center that interacts with the user in the key update protocol. The basic key insulation
model assumes that the center is trusted and the user is compromised in at mostt time intervals and
guarantees that the adversary does not gain information about the keys for the intervals the user is not
compromised. A variant of this model, called strong key insulation, allows the compromise of the
center as well. Intrusion-resilience tolerates arbitrarily many break-ins into both the center and the user,
as long as the break-ins do not occur in the same time interval. The relation between forward-secure,
key-insulated and intrusion-resilient signatures has been analyzed by Malkin, Obana and Yung [27]. A
survey of forward-secure cryptography is given by Itkis [20].

13

Re-keying, i.e., deriving new secret keys periodically from a master secret key, is a standard method
used by many applications. It has been formalized by Abdallaand Bellare [1]. The notion of key-
updating schemes that we define is closely related to re-keying schemes, with the difference that in our
model, we have the additional requirement of being able to derive past keys efficiently.

Multicast Key Distribution. In key distribution schemes for multicast, a group controller distributes
a group encryption key to all users in a multicast group. The group of users is dynamic and each join
or leave event requires the change of the encryption key. Thegoal is to achieve both forward and
backward security. In contrast, in our model of key-updating schemes users should be able to derive
past encryption keys efficiently.

A common key distribution model for multicast is that ofkey graphs, introduced by Wong et al. [32]
and used subsequently in many constructions [30, 29, 19, 18]. In these schemes, each user knows
its own secret key and, in addition, a subset of secret keys used to generate the group encryption key
and to perform fast update operations. The relation betweenusers and keys is modeled in a directed
acyclic graphs, in which the source nodes are the users, intermediary nodes are keys and the unique
sink node is the group encryption key. A path from a user node to the group key contains all the keys
known to that user. The complexity and communication cost ofkey update operations is optimal for
tree structures [31], and in this case it is logarithmic in the number of users in the multicast group. We
also use trees for generating keys, but our approach is different in considering the nodes of the tree to
be only keys, and not users. We obtain logarithmic update cost in the number of revocations, not in the
number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file systems [9, 11] did
not address key management. Cepheus [15] is the first cryptographic file system that considers sharing of
files and introduces the idea of lazy revocation for improving performance. However, key management
in Cepheus is centralized by using a trusted key server for key distribution. More recent cryptographic
file systems, such as Oceanstore [25] and Plutus [23], acknowledge the benefit of decentralized key
distribution and propose that key management is handled by file owners themselves. For efficient opera-
tion, Plutus adopts a lazy revocation model and uses a key-updating scheme based on RSA, as described
in Section 4.2.

Farsite [3], SNAD [28] and SiRiUS [17] use public-key cryptography for key management. The
group encryption key is encrypted with the public keys of allgroup members and these lockboxes are
stored on the storage servers. This approach simplifies key management, but the key storage per group
is proportional to the number of users in the group. Neither of these systems addresses efficient user
revocation.

Independently and concurrently to our work Fu, Kamara, and Kohno [16] have proposed a crypto-
graphic definition for key-updating schemes, which they call key regression schemes. Key regression
schemes are, in principle, equivalent to key-updating schemes. Their work formalizes three key regres-
sion schemes: two constructions, one using a hash function and one using a pseudo-random permutation,
are essentially equivalent to our chaining construction, and an RSA-based construction originating in
Plutus, which is equivalent to our trapdoor-permutation construction. Our composition methods and the
tree-based construction are novel contributions that go beyond their work.

8 Conclusions

Motivated by the practical problem of efficient key management for cryptographic file systems that
adopt lazy revocation, we define formally the notion of key-updating schemes for lazy revocation and
its security. In addition, we give two methods for additive and multiplicative composition of two secure
key-updating scheme into a new scheme which can handle a larger number of user revocations, while

14

preserving security. We also prove the security of two slightly modified existing constructions and pro-
pose a new construction, the binary-tree scheme, that balances the tradeoffs of the existing constructions.
Finally, we provide a systematic analysis of the computational and communication complexities of the
three constructions.

We can extend the definition of key-updating schemes to support user keys for intervalt, from which
only keys of the time intervals betweeni andt can be extracted, for any1 ≤ i ≤ t. This is useful in a
model in which users joining the group at a later time interval should not have access to past information.
The extension can be incorporated in the tree construction without additional cost, but the chaining and
trapdoor permutation constructions do not work in this model because the user key reveals all previous
keys.

In a companion paper [5], we show how to extend secure key-updating schemes to cryptosystems
with lazy revocation, and introduce the notions of symmetric encryption, message-authentication codes,
and signature schemes with lazy revocation. Furthermore, we demonstrate that using these cryptosys-
tems in some existing distributed cryptographic file systems improves their efficiency and security.

References

[1] M. Abdalla and M. Bellare. Increasing the lifetime of a key: A comparitive analysis of the security of
rekeying techniques. InProc. Asiacrypt 2000, volume 1976 ofLecture Notes in Computer Science, pages
546–559. Springer-Verlag, 2000.

[2] M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. InProc. Asiacrypt 2000, volume
1976 ofLecture Notes in Computer Science, pages 116–129. Springer-Verlag, 2000.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, available, and reliable storage for an incom-
pletely trusted environment. InProc. 5th Symposium on Operating System Design and Implementation
(OSDI). Usenix, 2002.

[4] R. Anderson. Two remarks on public-key cryptology. Technical Report UCAM-CL-TR-549, University of
Cambridge, 2002.

[5] M. Backes, C. Cachin, and A. Oprea. Lazy revocation in cryptographic file systems. InProc. 3rd Intl. IEEE
Security in Storage Workhsop (SISW), 2005.

[6] M. Backes, C. Cachin, and A. Oprea. Secure key-updating for lazy revocation. Research Report RZ 3627,
IBM Research, Aug. 2005. Appears also as Cryptology ePrint Archive, Report 2005/334.

[7] M. Bellare and S. Miner. A forward-secure digital signature scheme. InProc. Crypto 1999, volume 1666 of
Lecture Notes in Computer Science, pages 431–448. Springer-Verlag, 1999.

[8] M. Bellare and B. Yee. Forward-security in private-key cryptography. InProc. CT-RSA 2003, volume 2612
of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, 2003.

[9] M. Blaze. A cryptographic file system for Unix. InProc. First ACM Conference on Computer and Commu-
nication Security (CCS), pages 9–16, 1993.

[10] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. InProc. Eurocrypt
2003, volume 2656 ofLecture Notes in Computer Science, pages 255–271. Springer-Verlag, 2003.

[11] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano. The design and implementation of a transparent
cryptographic file system for Unix. InProc. USENIX Annual Technical Conference 2001, Freenix Track,
pages 199–212, 2001.

[12] Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-resilient public-key encryption. InProc.
CT-RSA 2003, volume 2612 ofLecture Notes in Computer Science, pages 19–32. Springer-Verlag, 2003.

[13] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key insulated public-key cryptosystems. InProc. Eurocrypt 2002,
volume 2332 ofLecture Notes in Computer Science, pages 65–82. Springer-Verlag, 2002.

[14] Y. Dodis, J. Katz, and M. Yung. Strong key-insulated signature schemes. InProc. Workshop of Public Key
Cryptography (PKC), volume 2567 ofLecture Notes in Computer Science, pages 130–144. Springer-Verlag,
2002.

[15] K. Fu. Group sharing and random access in cryptographicstorage file systems. Master’s thesis, Mas-
sachusetts Institute of Technology, 1999.

[16] K. Fu, S. Kamaram, and T. Kohno. Key regression: Enabling efficient key distribution for secure distributed
storage. InProc. Network and Distributed Systems Security Symposium (NDSS 2006), 2006.

[17] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing remote untrusted storage. InProc.
Network and Distributed Systems Security Symposium (NDSS 2003), pages 131–145, 2003.

15

[18] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in groups of low-state devices.
In Proc. Crypto 2004, volume 3152 ofLecture Notes in Computer Science, pages 511–522. Springer-Verlag,
2004.

[19] J. Goshi and R. E. Ladner. Algorithms for dynamic multicast key distribution trees. InProc. 22nd Symposium
on Principles of Distributed Computing (PODC), pages 243–251. ACM, 2003.

[20] G. Itkis. Forward security, adaptive cryptography: Time evolution. Survey, available fromhttp://www.
cs.bu.edu/fac/itkis/pap/forward-secure-survey.pdf.

[21] G. Itkis and L. Reyzin. Forward-secure signatures withoptimal signing and verifying. InProc. Crypto 2001,
volume 2139 ofLecture Notes in Computer Science, pages 332–354. Springer-Verlag, 2001.

[22] G. Itkis and L. Reyzin. SiBIR: Signer-base intrusion-resilient signatures. InProc. Crypto 2002, volume
2442 ofLecture Notes in Computer Science, pages 499–514. Springer-Verlag, 2002.

[23] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file sharing on
untrusted storage. InProc. 2nd USENIX Conference on File and Storage Technologies (FAST), 2003.

[24] H. Krawczyk. Simple forward-secure signatures from any signature scheme. InProc. 7th ACM Conference
on Computer and Communication Security (CCS), pages 108–115, 2000.

[25] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In Proc. 9th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 190–201. ACM, 2000.

[26] T. Malkin, D. Micciancio, and S. Miner. Efficient generic forward-secure signatures with an unbounded
number of time periods. InProc. Eurocrypt 2002, volume 2332 ofLecture Notes in Computer Science,
pages 400–417. Springer-Verlag, 2002.

[27] T. Malkin, S. Obana, and M. Yung. The hierarchy of key evolving signatures and a characterization of proxy
signatures. InProc. Eurocrypt 2004, volume 3027 ofLecture Notes in Computer Science, pages 306–322.
Springer-Verlag, 2004.

[28] E. Miller, D. Long, W. Freeman, and B. Reed. Strong security for distributed file systems. InProc. the First
USENIX Conference on File and Storage Technologies (FAST), 2002.

[29] O. Rodeh, K. Birman, and D. Dolev. Using AVL trees for fault tolerant group key management.International
Journal on Information Security, 1(2):84–99, 2001.

[30] A. T. Sherman and D. A. McGrew. Key establishment in large dynamic groups using one-way function trees.
IEEE Transactions on Software Engineering, 29(5):444–458, 2003.

[31] R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data processing with applications
to information security. InProc. 32nd International Colloquium on Automata, Languages and Programming
(ICALP), 2005.

[32] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key graphs.IEEE/ACM
Transactions on Networking, 8(1):16–30, 2000.

A Security Proofs for the Composition Methods

Proof of Theorem 1. Let A = (AU ,AG) be a polynomial-time adversary forKU. We build two
adversary algorithmsA1 = (A1

U ,A1
G) andA2 = (A2

U ,A2
G) for KU1 andKU2, respectively.

Construction of A1. A1 simulates the environment forA, by giving toAU at each iterationt the
user keyM1

t thatA1
U receives from the center. IfA aborts orAU does not outputstop until time

intervalT1 − 1, thenA1 outputs⊥ and aborts. Otherwise,A1
U outputsstop at the same time interval as

AU . In the challenge phase,A1
G receives as input a challenge keykt+1 and gives that toAG. A1

G outputs
the same bit asAG. The success probability ofA1 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU1,A1 = b

]

= Pr
[

Expsku-bKU,A = b|E1 ∩ E2

]

, (2)

whereE1 is the event thatAU outputsstop at a time interval strictly less thanT1 andE2 the event that
A does not distinguish the simulation done byA1 from the protocol execution. The only difference
between the simulation and the protocol execution is that the initial state forKU1 is a random seed in
the simulation and it is generated using a pseudorandom generatorG in the protocol. IfA distinguishes
the simulation from the protocol, then a distinguisher algorithm D for the pseudorandom generator with
advantageAdv

prg

G (D) can be constructed. By the definition ofE2, we havePr[Ē2] = Adv
prg

G (D).

16

Construction of A2. A2 simulates the environment forA: it first picks a random seeds of lengthκ
and generates fromG1(s) an instance of the schemeKU1. For the firstT1 iterations ofAU , A2 gives
to AU the user keys generated froms. If A aborts orAU stops at a time interval less thanT1, then
A2 aborts the simulation. For the nextT2 time interval,A2 feedsAU the user keys received from the
center. IfAU outputsstop at a time intervalt ≥ T1, thenA2

U outputsstop at time intervalt − T1. In
the challenge phase,A2

G receives a challengekt−T1+1, gives this challenge toAG and outputs whatAG

outputs. The success probability ofA2 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU2,A2 = b

]

= Pr
[

Expsku-bKU,A = b|Ē1 ∩ E2

]

. (3)

We can relate the success probabilities ofA,A1, andA2 for b ∈ {0, 1} as follows:

Pr
[

Expsku-bKU,A = b
]

= Pr
[

Expsku-bKU,A = b ∩ E2

]

+ Pr
[

Expsku-bKU,A = b ∩ Ē2

]

= Pr
[

Expsku-bKU,A = b ∩ E2 ∩ E1

]

+ Pr
[

Expsku-bKU,A = b ∩E2 ∩ Ē1

]

+

Pr
[

Expsku-bKU,A = b ∩ Ē2

]

≤ Pr
[

Expsku-bKU,A = b|E1 ∩ E2

]

Pr
[

E1 ∩ E2

]

+

Pr
[

Expsku-bKU,A = b|E2 ∩ Ē1

]

Pr
[

E2 ∩ Ē1

]

+ Pr
[

Ē2

]

= Pr
[

Expsku-b
KU1,A1 = b

]

Pr
[

E1 ∩ E2

]

+ Pr
[

Expsku-b
KU2,A2 = b

]

Pr
[

E2 ∩ Ē1

]

+

Pr
[

Ē2

]

(4)

≤ Pr
[

Expsku-b
KU1,A1 = b

]

+ Pr
[

Expsku-b
KU2,A2 = b

]

+ Pr
[

Ē2

]

,

where (4) follows from (2) and (3). Finally, we can infer from(1)

AdvskuKU (A) ≤ AdvskuKU1
(A1) + AdvskuKU2

(A2) + Adv
prg

G (D).

SinceAdvskuKU1
(A1), AdvskuKU2

(A2) andAdv
prg

G (D) are negligible from the assumptions of the theorem,
the statement of the theorem follows.

Proof of Theorem 2. Let A = (AU ,AG) be a polynomial-time adversary forKU. We build two
adversary algorithmsA1 = (A1

U ,A1
G) andA2 = (A2

U ,A2
G) for KU1 andKU2, respectively.

Construction of A1. A1
U gets from the center the user keysM1

i of schemeKU1 for all time intervals
i until it outputsstop. A1 simulates the environment forA by sending the following user keys:

1. At interval<i, 1>, for 1 ≤ i ≤ T1,A1 runski ← Extract1(i,M
1
i , i); S2

0 ← Init2(1
κ, T2, G2(ki));

S2
1 ← Update2(0, S

2
0); M2

1 ← Derive2(1, S
2
1) and givesAU the user keyM<i,1> = (M1

i−1,M
2
1).

2. At time interval<i, j>, for 1 ≤ i ≤ T1 and1 < j ≤ T2, A1
U computesS2

j ← Update2(j −

1, S2
j−1) andM2

j ← Derive2(j, S
2
j) and gives toAU the user keyM<i,j> = (M1

i−1,M
2
j).

If A aborts orAU outputsstop at a time interval<i, j> with j 6= T2, thenA1
U aborts the simulation

and outputs⊥. Otherwise,A1
U outputsstop at time intervali. In the challenge interval,A1

G is given
a challenge keyki+1 and it executesS2

0 ← Init2(1
κ, T2, G2(ki+1)); S2

1 ← Update2(0, S
2
0); M ←

Derive2(1, S
2
1); k2

1 ← Extract2(1,M, 1). It then gives the challengek2
1 toAG . A1

G outputs the same bit
asAG . The success probability ofA1 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU1,A1 = b

]

= Pr
[

Expsku-bKU,A = b|E1 ∩ E2

]

, (5)

whereE1 is the event thatAU outputsstop at a time interval(i, j) with j = T2 andE2 the event that
A does not distinguish the simulation done byA1 from the protocol execution. IfA distinguishes the
simulation from the protocol, then a distinguisher algorithm D for the pseudorandom generator with
advantageAdv

prg

G (D) can be constructed. By the definition ofE2, we havePr[Ē2] = Adv
prg

G (D).

17

Construction of A2. Assuming thatAU runs at mostq times (andq is polynomial inκ),A2 makes a
guess for the time intervali∗ in whichAU outputsstop. A2 picks i∗ uniformly at random from the set
{1, . . . , q}. A2 generates an instance of the schemeKU1 with i∗ time intervals. For any interval<i, j>
with i < i∗, A2 generates the user keys using the keys from this instance ofKU1. For time intervals
<i∗, j> with 1 ≤ j ≤ T2, A2 outputs user key(M1

i∗−1,M
2
j), whereM1

i∗−1 is the user key for time
interval i∗ − 1 of KU1 that it generated itself andM2

j is the user key for time intervalj of KU2 that it
received from the center.

If A aborts orAU outputsstop at a time interval<i, j> with i 6= i∗ or with i = i∗ andj = T2, then
A2 aborts the simulation and outputs⊥. Otherwise, ifAU outputsstop at a time interval<i∗, j>, then
A2

U outputsstop at time intervalj. In the challenge phase,A2 receives a challenge keykj+1 and gives
that toAG. A2

G outputs the same bit asAG . The success probability ofA2 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU2,A2 = b

]

=
1

q
Pr

[

Expsku-bKU,A = b|Ē1 ∩ E2

]

. (6)

As in the proof of Theorem 1, we can infer

Pr
[

Expsku-bKU,A = b
]

≤ Pr
[

Expsku-bKU,A = b|E1 ∩E2

]

Pr
[

E1 ∩ E2

]

+

Pr
[

Expsku-bKU,A = b|Ē1 ∩E2

]

Pr
[

Ē1 ∩ E2

]

+ Pr[Ē2]

= Pr
[

Expsku-b
KU1,A1 = b

]

Pr
[

E1 ∩ E2

]

+q Pr
[

Expsku-b
KU2,A2 = b

]

Pr
[

Ē1 ∩ E2

]

+ Pr[Ē2] (7)

≤ Pr
[

Expsku-b
KU1,A1 = b

]

+q Pr
[

Expsku-b
KU2,A2 = b

]

+ Pr[Ē2],

where (7) follows from (5) and (6). Finally we can infer from (1) that

AdvskuKU (A) ≤ AdvskuKU1
(A1) + qAdvskuKU2

(A2) + Adv
prg

G (D).

SinceAdvskuKU1
(A1), AdvskuKU2

(A2) andAdv
prg

G (D) are negligible from the assumptions of the theorem,
the statement of the theorem follows.

B Security Proofs for the Three Constructions

Proof of Theorem 3. LetA = (AU ,AG) be a polynomial-time adversary successful in breaking the
security of the key-updating scheme. We construct an algorithm D that distinguishes the output of the
pseudorandom generator from a random string of length2κ with sufficiently large probability.

Algorithm D has to simulate the environment forA. D picks BT+1 uniformly at random from
{0, 1}κ and computes the user keys for previous time intervals as(Bi, ki) = G(Bi+1), for i = T, . . . , 1.
D gives toAU user keyMi = (Bi, ki) at iterationi.

Algorithm D is given a challenge stringr = r0‖r1 of length2κ, which in experiment 0 is the output
of the pseudorandom generator on input a random seed of length κ, and in experiment 1 is a random
string of length2κ. Formally, theprg experiments are defined in Figure 10. IfAU outputsstop at time

Exp
prg-0
G,D Exp

prg-1
G,D

s←R {0, 1}κ r0‖r1 ←R {0, 1}2κ

r0‖r1 ← G(s) b← D(r0‖r1)
b← D(r0‖r1) return b

return b

Figure 10:Experiments defining the security of pseudorandom generator G.

interval t, D gives toAG the challenge keykt+1 = r1 andD outputs whatAG outputs. Denote by
pb = Pr

[

Expsku-bCKU,A = b
]

. It is immediate that

Pr
[

Exp
prg-1
G,D = 1

]

= Pr
[

Expsku-1CKU,A = 1
]

= p1, (8)

18

and
Pr

[

Exp
prg-0
G,D = 0

]

= p′0, (9)

wherep′0 is the probability thatA, given the user keys as in experimentExpsku-0, but challenge key
kt+1 = G2(s) for a random seeds ∈ {0, 1}κ, outputs 0. The challenge key given toA in experiment
Expsku-0 is G2(G

T−t−1
1 (s)), whereGi

1(s) = G1(. . . G1(s) . . .) for i applications ofG1. We can bound
the absolute difference betweenp0 andp′0 as

|p′0 − p0| ≤ Pr
[

A distinguishes betweenG2(s) andG2(G
T−t−1
1 (s))

]

≤ (T − t) Pr
[

A distinguishes betweens←R {0, 1}
κ andG1(s)

]

≤ (T − t)Adv
prg

G . (10)

Using (8), (9) and (10), we can relate the success probabilities ofA andD by

Pr
[

D succeeds
]

=
1

2

(

Pr
[

Exp
prg-0
G,D = 0

]

+ Pr
[

Exp
prg-1
G,D = 1

])

=
1

2

(

p′0 + p1

)

=
1

2
(p0 + p1 + p′0 − p0)

≥ Pr
[

A succeeds
]

−
1

2
(T − t)Adv

prg

G .

It follows that

Pr
[

A succeeds
]

≤ Pr
[

D succeeds
]

+
1

2
(T − t)Adv

prg

G ,

and
AdvskuCKU(A) ≤ Adv

prg

G (D) + (T − t)Adv
prg

G ≤ TAdv
prg

G .

The statement of the theorem follows from the fact thatAdv
prg

G is negligible.

Proof of Theorem 4. Let A = (AU ,AG) be a polynomial-time adversary successful in breaking
the security of the key-updating scheme. Assuming thatAU runs at mostq times, we construct an
algorithmI, which givenf andy ← f(x) with x ←R {0, 1}

l(κ) computesf−1(y) with sufficiently
large probability.

Algorithm I has to simulate the environment forA. I makes a guess at the time intervalt∗ in which
AU outputsstop. I pickst∗ uniformly at random from the set{1, . . . , q}. If AU does not outputstop at
time intervalt∗, thenI aborts the simulation. Otherwise, at time intervalt less thant∗, I gives toAU

the user keyMt = (f t∗−t(y), f).
Algorithm Extract is executed byA as in the description of the scheme, butI simulates the random

oracle forA. If A queriesx to the random oracle for whichf(x) = y, thenI outputsx. Let E be the
event thatA asks queryx = f−1(y) to the oracle and̄E the negation of this event. Since the adversary
has no advantage in distinguishing the properly generated keykt+1 from a randomly generated key if it
does not query the random oracle atx, it follows that

Pr
[

A succeeds|Ē
]

≤
1

2
,

from which we can infer

Pr
[

A succeeds
]

= Pr
[

A succeeds|E
]

Pr
[

E
]

+ Pr
[

A succeeds|Ē
]

Pr
[

Ē
]

≤ Pr
[

E
]

+
1

2
. (11)

Equations (1) and (11) imply thatPr
[

E
]

≥ 1
2AdvskuTDKU(A). Then the success probability of algorithmI

is at least1
q
Pr

[

E
]

≥ 1
2q

AdvskuTDKU(A). The statement of the theorem follows from the fact that algorithm
I has only a negligible probability of success.

19

Proof of Theorem 5. SchemeTreeKU with T = 2d − 1 time intervals can be obtained fromd ex-
tended additive compositions of a trivial key-updating schemeTrivKU with one time interval, defined
as follows:

- Init(1κ, T, s) generates a random user keyM ←R {0, 1}
κ from the seeds and outputsS0 = M .

- Update(t, St) outputsSt+1 ← St only for t = 0.

- Derive(t, St) outputsMt ←M for t = 1.

- Extract(t,Mt, i) returnsk = FM (1) for t = i = 1.

Given thatF is a pseudorandom function, it is easy to see thatTrivKU is a secure key-updating scheme.
Consider an adversaryA that has a non-negligible advantage in breakingTrivKU. Since the scheme has
one time interval,A is not given any user keys and it has to outputstop at time interval 0. We build a
distinguisher algorithmD for the pseudorandom function.D is given access to an oracleG : {0, 1} →
{0, 1}κ, which is eitherF (k, ·) with k ←R {0, 1}

κ, or a random functiong ←R {f : {0, 1} → {0, 1}κ}.
D gives toA the challengek1 = G(1) and outputs the same bit asA. It is immediate that the advantage
of D in distinguishing the pseudorandom function from random functions is the same as the advantage
of adversaryA in breakingTrivKU.

The tree scheme withT time intervals can be constructed as follows: generate2d−1 instances of
TrivKU and make them leaves in the tree; build the tree bottom-up by additively composing (using the
extended method) two adjacent nodes at the same level in the tree. The security of the binary tree scheme
obtained by additive composition as described above follows from Theorem 1.

20

