
Scalable Key Management for Distributed Cloud
Storage

Mathias Björkqvist
IBM Research - Zurich
Rüschlikon, Switzerland

mbj@zurich.ibm.com

Christian Cachin
IBM Research - Zurich
Rüschlikon, Switzerland

cca@zurich.ibm.com

Felix Engelmann
Ulm University
Ulm, Germany

felix.engelmann@uni-ulm.de

Alessandro Sorniotti
IBM Research - Zurich
Rüschlikon, Switzerland

aso@zurich.ibm.com

Abstract—As use of cryptography increases in all areas of
computing, efficient solutions for key management in distributed
systems are needed. Large deployments in the cloud can require
millions of keys for thousands of clients. The current approaches
for serving keys are centralized components, which do not scale
as desired.

This work reports on the realization of a key manager
that uses an untrusted distributed key-value store (KVS) and
offers consistent key distribution over the Key-Management
Interoperability Protocol (KMIP). To achieve confidentiality, it
uses a key hierarchy where every key except a root key itself
is encrypted by the respective parent key. The hierarchy also
allows for key rotation and, ultimately, for secure deletion of
data. The design permits key rotation to proceed concurrently
with key-serving operations.

A prototype was integrated with IBM Spectrum Scale, a
highly scalable cluster file system, where it serves keys for file
encryption. Linear scalability was achieved even under load from
concurrent key updates. The implementation shows that the
approach is viable, works as intended, and suitable for high-
throughput key serving in cloud platforms.

I. INTRODUCTION

Encryption plays a fundamental role for realizing secure
networked computing environments. Key management ensures
reliable and secure distribution of cryptographic keys to legiti-
mate clients, which are then able to encrypt data or to establish
secure communication channels. Key management for cloud-
scale distributed installations poses additional challenges over
classical, centralized systems, due to the vastly bigger systems
and the higher demands for resilience and security.

Maintaining the confidentiality of encryption keys is ex-
tremely important, especially for encrypting data in storage
systems, where losing access to the encryption key implies
losing the data itself. A communication system, in contrast,
may just restart the session if a key is lost.

As key management is critical for many environments,
industry standards have been introduced to separate key-
management functions from the components that consume
keys, and to consolidate key lifecycle management at cen-
tralized, well-protected systems [1]. Key management can
be seen as an essential service of an IT infrastructure and
especially for cloud platforms, similar to network connectivity,
computing, and storage. The most prominent standard for
distributed key management today is the OASIS Key Man-
agement Interoperability Protocol (KMIP) [2], which specifies

operations for managing, storing, and retrieving keys at a
remote server. For local key management using library-style
access PKCS #11 [3] is the prevalent interface. In the context
of cloud services, where service interactions are REST calls,
the open-source Barbican [4] key manager provides keys to
all services of OpenStack. Commercial cloud platforms use
proprietary protocols inside their infrastructure.

Key managers differ according to the operations they sup-
port and in terms of their performance, resilience, and security.
Prominent commercial key servers often put emphasis on the
needs of enterprise environments, such as fine-grained authen-
tication and support for hardware security modules (HSMs).
For example, governmental standards for handling health data
dictate a reliable audit trail to reconstruct all operations ac-
cessing cryptographic keys. Enterprise key managers are also
designed for high availability to allow uninterrupted service.
They must support the complete lifecycle of cryptographic se-
crets, with operations for creating, importing, storing, reading,
updating, exporting, and deleting keys.

Designing and operating a key-management service in a
distributed system with many entities running cryptographic
operations is challenging because it must balance between the
conflicting goals of performance and security.

A. Contribution

In this paper we present a solution for scaling a key
management service to cloud applications with thousands
of clients and possibly millions of keys. This includes the
capability to scale dynamically while maintaining security.
Our distributed key management solution should handle all
core key lifecycle-management tasks and scale in a linear
way. Existing enterprise-grade key managers do not provide
such scalability because they rely too heavily on centralized
components, such as HSMs or strongly consistent relational
databases.

In particular, we address key management for an enterprise
environment with a scalable cloud platform. The clients or
endpoints accessing the key manager primarily perform data-
at-rest encryption, but could be any other application that
executes cryptographic operations. The key server has to
provide a consistent view of the available keys when accessed
from multiple clients.



The key manager consists of three components with differ-
ent security assumptions:
Trusted storage: A master key resides on a trusted medium

for persistent storage across power cycles. When the
system is turned off, no component apart from the trusted
storage medium maintains any relevant cryptographic
information; in other words, only the root of trust must
be guarded. For supporting lifecycle management and
key rotation, the medium should support secure erasure.
Potential implementations are hardware security modules
(HSMs), USB-attached smart cards, or also cheap re-
movable USB drives that can be physically destroyed for
key erasure. For better scalability, multiple instances of
trusted storage may be utilized.

Metadata key-value store: For supporting scalable opera-
tion, all cryptographic material apart from the master key
is held in an untrusted distributed storage system modeled
as a key-value store (KVS). All data stored in the KVS
is protected with the master key, i.e., by wrapping or
through a key hierarchy. The distributed KVS supports
high-throughput and scalable access to the stored key
material. The KVS platforms available today often do not
support atomic operations but only eventual consistency,
however. This can lead to issues caused by simultaneous
access to the same key by multiple clients.

Key server: Keys are delivered to the clients in cleartext and
are available in the memory of the key server. The key
server is trusted not to disclose keys to unauthorized
clients. It overwrites keys no longer needed according
to standard practice.

The KVS used for scalability does not permit strongly
consistent operations on keys, such as key rotation. We resolve
this through a novel design for concurrent key-management
operations that use a weakly consistent data store.

In particular, we describe an implementation of a key
manager using hierarchically protected keys, where only the
master key resides on trusted storage. The important features
of this design are:

1) The key server permits continuous access to keys in the
presence of ongoing key rotation operations;

2) The key server scales linearly with the available server
resources.

An implementation for the IBM Spectrum Scale cluster files
system (http://www.ibm.com/systems/storage/spectrum/scale/,
formerly known as General Parallel File System or GPFS)
was developed and evaluated for this purpose. Experiments
show that the design and prototype deliver the expected
performance, in particular, linear scalability with the server
resources.

B. Products and related work

Every cryptographic system must manage keys. Several
standalone key managers have been developed to provide a
generic service and support the standard protocols, such as
KMIP [2]. Key-lifecycle management operations are important

for enterprise deployment [1] and for satisfying regulatory
requirements [5].

Two prominent products addressing this space are the
Vormetric Data Security Management (DSM) server [6] and
the IBM Security Key Lifecycle Manager (ISKLM). Vormetric
DSM offers interoperability with KMIP and facilitates inte-
gration with database systems, such as Microsoft SQL Server.
It is certified at several FIPS 140-2 levels, depending on the
hardware on which it operates. With an appropriate HSM,
certification ranges up to FIPS 140-2 Level 3. Due to its
centralized architecture it is inherently not scalable. ISKLM
runs on standard servers atop a software stack that includes
IBM WebSphere and DB2. For key storage, ISKLM may use
a PKCS #11-attached HSM, and for resilience and high avail-
ability, it can run distributedly on a cluster. It provides a web
interface for management, control, and auditing, and a KMIP
interface serving keys to endpoints. Due to its dependence on
the database, ISKLM is also centralized. Although these and
other similar solutions are complex and incur high operational
expenses, they do not scale as well for distributed platforms.

Barbican [4] inside OpenStack is a scalable key-
management component for cloud platforms. It supports asyn-
chronous operations on symmetric and private keys, public
keys, and certificates. As all services in OpenStack, it is
accessed through a REST API and uses the Keystone [7]
component for authorization. Its operations are not as general
as those of KMIP, for instance. The backend of Barbican is
modular, designed as a plug-in system, so that it currently
supports an SQL database or a KMIP client for storing secrets
remotely, or an HSM accessed through PKCS #11 for local
key storage. In Barbican, multiple workers run concurrently
and on different hosts, but they all interact with the central
backend database through a message queue. This limits its
scalability. Considering also its restricted functionality in the
API, Barbican doesn’t offer the desired scalable support for
key storage in combination with key rotation and secure
erasure.

Several key management services are available in cloud
platforms today, such as Amazon KMS, CloudHSM, and IBM
Key Protect [8], [9], [10]; they hide the complexities of in-
house key management but rely on partial trust in the cloud
operator.

II. OBJECTIVES

A. Security goals

In a deployment of the key manager, there are two actors:
the key manager and the client. Only the key manager may
access the master key and the trusted storage. Any other entity
is subsumed into an adversary, an actor with complete access
to the metadata KVS, communication links, and so on. The
adversary might be an untrusted storage provider, the client
itself, or the operator of the network between the client and
the server.

Clients can authenticate themselves to the key manager and
establish a secure connection using TLS, with server- and
client-side certificates. The key manager authorizes access to



keys based on the identity in the client certificate and delivers
keys to the client over the secure channel. There are two
concrete goals addressing security.

Key confidentiality: The adversary should not be able to
learn any useful information about a key to which it does not
have access, i.e., keys for which it is not authorized, neither
by interacting with the server, by observing the KVS, nor by
listening on the network.

Key erasure: Clients can request that a key is deleted per-
manently. This supports the secure deletion of data protected
by this key, since physical deletion of stored data from disks or
solid-state storage is no longer possible in practice [11]. Key
deletion supports the approach to secure deletion introduced
by Di Crescenzo et al. [12] and recently extended by Cachin
et al. [13], where only a single key at the root of a hierarchy
must actually be erasable. All other metadata in the hierarchy
can be exposed to the adversary. From the perspective of the
key manager, secure deletion is supported through key rotation
of the master key and deletion of expired keys.

B. Other goals

Scalability: The service performance should scale lin-
early with the available resources and not disrupt client
operations. To achieve this, the key manager is implemented
by parallel stateless workers that have access to the master
key. The key server processes have to operate in a consistent
way, to serve the current version of a key consistent with the
data protected by it. It should also be possible to dynamically
adapt the number of servers to the load of the system.

Availability: Associated with scalability, the service must
also be resilient to failures of individual nodes. Problems with
the consistency of different key management servers can result
in loss of data, when different clients encrypt with different
keys.

Usability: In any security system, the weakest link is the
erroneous handling of sensitive material by users or operators
(as the reliance on user-memorable passwords shows). The
system should support operations in a straightforward and
transparent way.

III. DESIGN

A. Architecture

The architecture of the key server is shown in Figure 1.
Every node essentially runs the same key server independently
of the others, but has access to the distributed metadata KVS
and to the trusted storage. Having multiple key servers work
in parallel provides scalability. The core server locally caches
the most recently accessed keys in memory.

The KVS for metadata must support the usual put and get
operations on key/value pairs, with the additional requirement
that it supports conditional put. More precisely, the KVS
supports

get(key)→ (value, version)

put(key, value, version)→ success,

Key Cache

Core Server

KMIP
Server

Client
Application

Trusted
Storage

Metadata
KVS

Management
Tools

User

Local

Objec
ts

LKM

KMIP over TLS

Dire
ct

CLI

CLI, GUI, WWW

Key Server

Untrusted

Fig. 1. Overview of the key manager components. Cryptographic material is
only stored and handled inside the dashed regions.

where put takes effect only when success = TRUE. Every put
operation monotonically increments the version associated to a
value. The specification requires that put returns TRUE if and
only if the version of key that is replaced by the operation was
version. Multiple platforms can provide such operations, i.e.,
Comet [14], redis (https://redis.io), or Amazon DynamoDB
(https://aws.amazon.com/dynamodb/). The prototype that tar-
gets file encryption in IBM Spectrum Scale uses the cluster
configuration repository (CCR) as the distributed KVS im-
plementation, which is a Spectrum-Scale-internal distributed
data store with high availability that offers versioned put/get
operations.

Clients address keys through a unique, randomly generated
identifier in the KMIP interface. More user-friendly attributes
such as a name may be used to associate a key with the
function that the key plays in the context of the application,
and KMIP permits multiple keys to have the same name in the
scope of a KMIP server. The name, along with other attributes,
are part of the metadata of the key itself, and these attributes
can be used to retrieve the identifier of a key, which is then
used for subsequent operations. The communication between
the client and the key server is performed using the tag-type-
length-value (TTLV) transport of the KMIP protocol, which
in turn is communicated over a mutually-authenticated TLS
connection.

Cryptographic keys stored in the KVS are protected using
a master key retrieved from trusted storage. More precisely,



every key in the KVS is wrapped with the master key
using AES and authenticated encryption with Galois Counter
Mode (GCM). For every wrapped key (in the KVS), also the
identifier of the wrapping key is stored in the metadata. This
is needed for key rotation.

The trusted storage accessed by every node is initialized
with the master key. It can be evolved through key rotation. A
user interacts with the system through management tools for
the provisioning of the master key in trusted storage.

The core of the key server provides a local key manager
(LKM) interface towards a KMIP proxy server, which inter-
faces to the clients. This ensures compatibility with many ex-
isting endpoint clients in cloud and enterprise storage systems
that access a key manager over KMIP. The key management
service itself is completely stateless, and can flush its cache
at any time.

A client accesses a key over KMIP (via Create, Locate, Get,
Destroy, Rekey . . . operations), using the identifier, which is
stored e.g., in the metadata of the data unit protected by this
key. For a cloud object store, this could be in the metadata
of the account/container/object of an object as in OpenStack
Swift; for a distributed file system, this could be in the inode
of a file.

Storing keys in wrapped form ensures the key confidentiality
requirement. No data on persistent storage, apart from the
trusted storage, reveals any information about the keys. De-
crypted keys only exist in volatile memory. Furthermore using
authenticated encryption for wrapping also guards against
accidental or intentional alteration of cryptographic keys or
their attributes in the KVS.

The goals of scalability and availability are achieved by the
design of stateless key server nodes, which can be placed into
different failure zones, and by the use of a highly available
KVS for storing the key data. The inherent scalability and
availability of the distributed KVS is further enhanced by
deploying separate trusted storage on each key server node,
thus improving the characteristics of the entire system.

A potential drawback of this design is the overhead related
to the management of the trusted storage. The added complex-
ity comes from the fact that the master keys are now managed
internally by the system, and not delegated to an external
key management service. The overhead varies depending on
e.g., the choice of trusted storage media type, the degree of
integration of the trusted storage management with the rest of
the system, and regulatory compliance requirements.

B. Operations

Cryptographic material is stored in a format that is a
simplification of the network-level representation of KMIP.
This has the advantage that much of the needed functionality
is already available from existing KMIP libraries.

Clients authenticate to the KMIP server during the TLS
handshake using a client certificate, following the standard
practice that has been available and deployed with many KMIP
servers. After authentication, they may exchange data in the
KMIP format over the secure channel.

At system initialization time, the core server generates a
fresh master key and its identifier, and writes them to the
trusted storage over the local interface. Every key is stored in
the KVS as a separate data object under its identifier. During
operation the core server responds to client operations, arriving
through the KMIP interface, as follows.

Create: The key material is generated from a crypto-
graphically strong random source. The key itself is wrapped
with the master key; the master-key identifier together with the
key identifier are added as attributes. The data is serialized
in the KMIP-derived format and stored as an object in the
KVS, according to its key identifier. Key and key identifier
are returned to the client.

Get: For retrieving keys, the server uses the identifier
provided in the request by the client to locate the key. To
obtain the key material from the KVS, the server retrieves the
object containing the wrapped key, unwraps the key material
with the master key specified in the attributes, and verifies the
integrity of the unwrapped data. Then it returns key and key
identifier to the client.

Referencing a key with the unique identifier instead of the
name supports the implementation of client-side key rotation;
note that the name may be the same across different versions.

The key server additionally maintains a cache with the
recently served keys in cleartext. The server only has to query
the KVS when it has no cached copy of the key or when a
cached key reaches its refresh age.

Destroy: The server deletes the corresponding object with
the wrapped key in the KVS. Note this does not yet securely
erase the key according to the security model, as the KVS
may still keep a copy of the object and the master key has not
yet changed. This is addressed below.

Rekey: The KMIP Rekey operation for a given key creates
a fresh key with the same name and other attributes as the
existing key. It is implemented by creating a new key and
destroying the old one, and by removing the name from the
old key. The returned key material is fresh and has a new
identifier. The old key may still be accessible until the master
key is changed as well.

Secure deletion: The key server provides secure deletion
in the sense that the master key is rotated. Any key material
that was stored on the untrusted KVS wrapped with the
previous master key then becomes inaccessible. To support
this, master keys contain a version in their attributes. The
challenge lies in rotating the master key without disrupting
the other operations of the key server.

For the moment, assume that the rotation is triggered by a
dedicated agent, which may be a special management node
or an administrator client. For rotating one particular key in a
hierarchy, we call the keys that it wraps children (i.e., a client-
visible key) and the wrapping key the parent (i.e., master key).

To rotate the parent (i.e., master) key, fresh key material
with a higher version is first chosen and written to trusted
storage. From this moment on, any operation on the parent
key that does not specify a version or identifier returns the
new key. On the other hand, for any children wrapped with



the old key, the appropriate version can be retrieved with the
key identifier available in the metadata of the wrapping. This
ensures continuous operation while rotation is in progress, in
particular, key creation, retrieval, and destruction operations
can be served by other key-manager nodes. The agent now
cycles over all children of the parent, unwraps the child key,
rewraps it with the new parent key, and stores the outcome
in the corresponding object. When this is complete, the old
parent key is securely erased from the trusted storage.

This design can be generalized to key-wrapping hierarchies
of depth larger than one in a future extension. When the
key-rotation agent invokes a rotation operation for a key,
the rotation recursively trickles down to all its children. Key
rotation would then progress over the tree of children, until
they are all wrapped with the new key.

The only limitation regarding concurrent operation is that
the agent performing key rotation must be unique, as other-
wise, two rotation operations might occur concurrently and
leave the data in the KVS in an inconsistent state. With an
arbitrary, weakly consistent KVS, one can implement this by
partitioning the key space across the agents or alternatively by
using an external locking mechanism. With a versioned KVS,
however, the KVS-level objects can be replaced conditionally
on the old version containing the previous wrapping key
identifier. This ensures that each key is rotated atomically, with
the same parent key as for all of its siblings.

The operations for rotating the master key ensure the
security goal of key erasure.

IV. EVALUATION

To evaluate the key manager we have developed a prototype
and benchmarked it using the IBM Spectrum Scale distributed
cluster file system, formerly known as General Parallel File
System (GPFS). Spectrum Scale offers encryption at the level
of files, and some of the authors have already been involved in
the design and realization of the encryption feature (available
since GPFS V4.1). Each node in the cluster accesses the
encryption keys individually as a KMIP client; typically keys
are served using the IBM Security Key Lifecycle Manager
(ISKLM).

The benchmark was performed in a realistic environment
with a Spectrum Scale cluster (version 4.1) on two physical
servers. Each server was equipped with dual Intel Xeon E5630
processors and 40GB memory, running RedHat enterprise
Linux version 7. A Spectrum Scale cluster with a varying
number of clients was created on the physical servers. For
every file system node, a dedicated key manager node runs
on the same physical server. In production deployment we
envisage that every file-system/key-manager node pair is co-
located on each physical server; this enhances the reliability
as it spreads key management across different failure zones.

For the untrusted data store, we used the cluster configura-
tion repository (CCR) integrated with Spectrum Scale; it offers
a versioned KVS interface (in fact, its implementation supports
even stronger consistency). We created a file system in the
cluster with a policy to encrypt new files. Each Spectrum Scale

0 5 10 15 20 25 30
0

50

100

150

200

250

clients

re
qu

es
ts

pe
r

se
co

nd

linear scaling
10 server threads
20 server threads

theoretical maximum

4

Fig. 2. Scalability of the service with client-side load balancing, showing
linear increase.

client was configured with the KMIP URL of its dedicated
key server, including a fail-over address at another key-server
node. The file system policy triggers the encryption process
whenever a new file is created. The default cache expiration
time was set to 15 min (but is irrelevant for the evaluation).

A. Scalability

A reasonable measure for the performance of the key man-
ager is throughput, measured as the number of keys served per
second. An artificial capacity limit was imposed by restricting
the size of the server thread pool that handles concurrent client
accesses.

We queried one key from a single key server with an
increasing number of clients running natively. Figure 2 shows
that performance scales linearly when the system operates
below its capacity limit (all measurements were taken over
an average of 10 seconds). By adapting the thread pool size,
we can show that the service scales as expected. The scaling
is independent of the distribution of threads over the servers.

In Figure 3 the independence of the threads from physical
servers is shown. Running six threads on one server yields
almost the same result as dividing them evenly among two
machines. In the case with two servers, the clients randomly
chose a server for each key. With the increasing number
of concurrent clients, we observe a degradation of the per-
formance as clients fight for resources. To resolve such a
situation, additional nodes would be added to the cluster.
Spectrum Scale clients configured in high-availability mode
and unable to reach a key manager would then automatically
fail over to other key-manager nodes.

B. Latency

During normal file-system operation the key server is rarely
exposed to high load. In this sense the throughput is more



0 2 4 6 8 10 12 14
0

20

40

60

80

clients

re
qu

es
ts

pe
r

se
co

nd

linear scaling
3 threads each on 2 server

6 threads on 1 server
theoretical maximum

5

Fig. 3. Scalability of the key manager with client-side load balancing, showing
linear increase until reaching the capacity bound.

relevant for administrative tasks, such as booting the cluster
or mounting a file system. For the perceived performance the
latency until a requested key is available matters much more.
For instance, this cost occurs whenever an application opens
a new file, and the key is not cached.

To reliably measure the latency of the key retrieval, we
captured packet traces on the querying machine. In these traces
we can measure the total delay between the TCP handshake
packets, the KMIP response, and TLS-session tear-down. The
total latency is composed of two parts. First, a noticeable
fraction of time is spent to create the TLS channel. The
second part corresponds to the key manager’s operation. We
only describe results for key-manager operations, as the TLS
contribution is independent of it.

The client requests a key by its identifier. We measured
the time between the request and the response packet, which
depends on whether the key server has cached the key.
Fetching the key from the distributed KVS obviously comes at
a cost and results in about 90ms average latency. The timings
are shown in the following table, including the standard
ISKLM key server product running on the same hardware for
comparison:

Measurement Mean [ms] Stddev [ms]
Get key from KVS 90.06 ±0.76
Get key from key-server cache 0.30 ±0.05
Get key from ISKLM 200 −−

C. Concurrency and high availability

A second set of experiments was performed, where another
client concurrently stored new keys in the key server every
100 ms (which involves a write-through to the KVS). The

experiments of Section IV-A and IV-B, where clients only
retrieve keys, were executed. We saw no impact on the retrieval
rate or latency for the other client(s).

For testing high availability scenario, we performed a syn-
thetic test from a client stub to retrieve keys, using the same
native code as for key retrieval by the Spectrum Scale file
system. The parameters were set to time out after 20 seconds
and to retry once before selecting the next server. We queried
a key repeatedly and then shut down the primary key server
while monitoring the network traffic. The resulting behavior
matched the expected behavior.

V. CONCLUSION

As encryption of data at rest becomes more prevalent,
the challenge of managing the encryption keys also surfaces
for diverse systems. The scalable key-management design
presented in this work targets cloud-scale deployments. It
is compatible with storing the master keys in an HSM, but
achieves better performance than a solution exclusively relying
on a centralized key manager or a HSM.

The key manager is built on top of an untrusted key-value
store (KVS) and demonstrated in the context of the IBM
Spectrum Scale cluster file system. It serves file-encryption
keys using the KMIP standard. A key-hierarchy and key
rotation operations supporting secure deletion of critical data
have been described and prototyped.

The evaluation shows that the key manager was able to scale
linearly even under load from key updates, and performance
measurements conducted on the individual components indi-
cate that the throughput and latency are mostly limited by the
performance of the distributed KVS.

ACKNOWLEDGMENTS

This work has been supported in part by the European
Commission through the Horizon 2020 Framework Pro-
gramme (H2020-ICT-2014-1) under grant agreement number
644579 ESCUDO-CLOUD and in part by the Swiss State
Secretariat for Education, Research and Innovation (SERI)
under contracts number 15.0087.

REFERENCES

[1] M. Björkqvist, C. Cachin, R. Haas, X. Hu, A. Kurmus, R. Pawlitzek, and
M. Vukolić, “Design and implementation of a key-lifecycle management
system,” in Proc. Financial Cryptography and Data Security (FC 2010),
ser. Lecture Notes in Computer Science, R. Sion, Ed., vol. 6052.
Springer, 2010, pp. 160–174.

[2] OASIS Key Management Interoperability Protocol Technical Commit-
tee, “Key Management Interoperability Protocol Version 1.2,” 2015,
oASIS Standard, available from http://www.oasis-open.org/committees/
documents.php?wg abbrev=kmip.

[3] OASIS PKCS 11 Technical Committee, “PKCS #11 Cryptographic
Token Interface Current Mechanisms Specification Version 2.40,” 2016,
oASIS Standard, available from https://www.oasis-open.org/committees/
tc home.php?wg abbrev=pkcs11.

[4] “OpenStack Barbican,” https://wiki.openstack.org/wiki/Barbican, 2018.
[5] E. Barker, “Recommendation for key management — Part 1: General,”

National Institute of Standards and Technology (NIST), NIST Special
Publication 800-57 Part 1 Revision 4, 2016, available from http://csrc.
nist.gov/publications/PubsSPs.html.

[6] “Vormetric Data Security Management,” https://www.thalesesecurity.
com/products/data-encryption/vormetric-data-security-manager, 2018.



[7] “OpenStack Keystone,” https://wiki.openstack.org/wiki/Keystone, 2018.
[8] “Amazon CloudHSM,” https://aws.amazon.com/cloudhsm/, 2018.
[9] “Amazon Key Management Service,” https://aws.amazon.com/kms/,

2018.
[10] “IBM Key Protect,” https://console.ng.bluemix.net/catalog/services/

key-protect/, 2018.
[11] J. Reardon, S. Capkun, and D. Basin, “SoK: Secure data deletion,” in

Proc. 34th IEEE Symposium on Security & Privacy, 2013.
[12] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson, “How

to forget a secret,” in Proc. 16th Symposium on Theoretical Aspects of
Computer Science (STACS), ser. Lecture Notes in Computer Science,
C. Meinel and S. Tison, Eds., vol. 1563. Springer, 1999, pp. 500–509.

[13] C. Cachin, K. Haralambiev, H. Hsiao, and A. Sorniotti, “Policy-based
secure deletion,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 259–270. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516690

[14] R. Geambasu, A. Levy, T. Kohno, A. Krishnamurthy, and H. M. Levy,
“Comet: An active distributed key-value store,” in Proc. 9th Symp.
Operating Systems Design and Implementation (OSDI), 2010.


