
Design and Implementation of a Key-Lifecycle
Management System

Mathias Björkqvist Christian Cachin Robert Haas Xiao-Yu Hu
Anil Kurmus René Pawlitzek Marko Vukolić

IBM Research - Zurich, CH-8803 Rüschlikon, Switzerland
{mbj,cca,rha,xhu,kur,rpa,mvu}@zurich.ibm.com

23 March 2010

Abstract

Key management is the Achilles’ heel of cryptography. This work presents a novel Key-Lifecycle
Management System (KLMS), which addresses two issues that have not been addressed comprehen-
sively so far.

First, KLMS introduces a pattern-based method to simplify and to automate the deployment task
for keys and certificates, i.e., the task of associating them with endpoints that use them. Currently,
the best practice is often a manual process, which does not scale and suffers from human error.
Our approach eliminates these problems and specifically takes into account the lifecycle of keys
and certificates. The result is a centralized, scalable system, addressing the current demand for
automation of key management.

Second, KLMS provides a novel form of strict access control to keys and realizes the first cryp-
tographically sound and secure access-control policy for a key-management interface. Strict access
control takes into account the cryptographic semantics of certain key-management operations (such
as key wrapping and key derivation) to prevent attacks through the interface, which plagued earlier
key-management interfaces with less sophisticated access control.

Moreover, KLMS addresses the needs of a variety of different applications and endpoints, and
includes an interface to the Key Management Interoperability Protocol (KMIP) that is currently
under standardization.

1 Introduction

Cryptography is used to secure many information-technology systems, ranging from encrypting data on
storage and establishing virtual private networks to protecting communication with mobile devices and
using SSL certificates for e-commerce over the Internet. All uses of cryptography rely on the proper
keys being present. Key management deals with the lifecycle of cryptographic keys, with operations for
creating, importing, storing, reading, updating, exporting, and deleting them, and with distributing keys
before they are used in cryptographic functions. An important aspect is to manage the attributes of keys
that govern their usage and their relation to other keys.

Complications with key distribution are seen as the source of most operational problems with secure
systems using cryptography. A key-management system must provision the appropriate keys and deploy
them to endpoints, the entities that consume keys and use them for cryptographic functions. Managing a
large number of keys manually does not scale, suffers from human error, and is prohibitively expensive.
As a result, there is a great demand for automated key-management today, provided by centralized,
scalable systems.

1

In an enterprise context, multiple users associated with many endpoints access the key-management
system and perform operations on the objects that it maintains. These objects include symmetric keys,
public keys, private keys, and certificates. A key-management system focuses on attribute handling
rather than on cryptographic functions. But a comprehensive key-management system will also support
a small set of cryptographic operations, including creating a key, issuing a certificate, to derive a new
key (a deterministic operation that creates a symmetric key from an existing one), and to wrap or unwrap
a key with another key (wrapping means to encrypt a target key with another key for export and transfer
to another system).

In this paper, we describe the design and implementation of a prototype Key-Lifecycle Management
System (KLMS). It unifies key management for local and remote endpoints and handles many different
types of cryptographic objects in a flexible way. KLMS addresses enterprise-level key management and
covers many endpoints that require cryptographic keys, from heterogeneous applications, servers, and
network devices to storage devices and media (e.g., tape cartridges). The system can provision keys
to any application that can receive keys through the Java KeyStore (JKS) interface, as for example,
file-based keystores in several formats, and it provides a prototype server for the Key Management
Interoperability Protocol (KMIP), which is under standardization by OASIS [16].

KLMS introduces two novel features of a key-management system: first, the notion of deployment
patterns to automate the administration and the deployment tasks for keys and certificates; and second, a
strict implementation of access control to keys, which takes into account the cryptographic semantics of
certain key-management operations and realizes the first cryptographically sound access-control policy
for a key-management interface. We now briefly describe these two contributions.

Automated deployment. Often multiple related keys must be administered by the management sys-
tem. To simplify this task, several keys can be grouped and deployed together to one or more endpoints.
Such deployments can be structured according to certain patterns. In the example of a TLS-protected
web server connected to the Internet, which is clustered for high availability, the same private key and
certificate should be deployed to all nodes in the cluster. On the other hand, for a communication setup
where multiple servers identify each other using their client-certificates through TLS-connections, every
server should receive its own private key plus the public keys of all servers.

For supporting such scenarios, KLMS provides a novel pattern-based method for automated key and
certificate deployment. A flexible deployment manager (DM) automates deployment and shields the
system administrator from the lower-level key creation and distribution tasks. Once a suitable pattern
and the supporting policies for a particular application are defined, KLMS automatically generates,
distributes, and maintains as many keys or key pairs as necessary, and responds dynamically to changes
of the topology, when new endpoints are added to the application.

KLMS also takes care of automatically managing the lifecycle of keys. It may create keys ahead of
time and only maintain them internally, provisioned for a certain application. At the time of activation of
a key, KLMS automatically deploys it to endpoints for the duration of its active life-time, and withdraws
the key again from all endpoints when it expires. The key-lifecycling logic is tightly coupled with the
deployment manager.

Strict access control. Every key-management system serves keys to users, the principals that invoke
its operations. In the usual basic form of access control, the system decides about access to a key
only by consulting an access-control list (ACL) associated with the key. But because the operations of
the system allow users to create complex relationships between keys, through key derivation and key
wrapping, basic access control may have security problems. For example, if there exists a key k1 that
some user is not allowed to read, but the user may wrap k1 under another key k2 and export the wrapped
representation, the user may nevertheless obtain the bits of k1. Another example is a key that was derived

2

from a parent key; when a user reads the parent key, the user implicitly also obtains the cryptographic
material of the derived key.

In general, a cryptographic interface that manages keys and allows the creation of such dependencies
among keys poses the problem that access to one key may give a user access to many another keys. This
issue has been identified in the APIs of several cryptographic modules [2, 7, 9, 11] and may lead to
serious security breaches when one does not fully understand all implications of an API.

Therefore, KLMS provides a strict mode of access control, in which decisions take the semantics of
the key-management API into account, and implements a cryptographically sound access-control policy
on all symmetric keys and private keys. The above issues with basic access control are eliminated with
strict access control. Our strict access-control policy builds on the work of Cachin and Chandran [8],
which describes a secure cryptographic token interface and introduces a cryptographically strong secu-
rity policy. A strict access-control decision not only depends on the ACL of the corresponding key, but
also takes into account the ACLs of related keys and the history of past operations executed on them. It
prevents any unauthorized disclosure of a symmetric key or a private key.

1.1 Related Work

The need for building enterprise-scope key management systems has been widely recognized [6], and the
US National Institute of Standards and Technology (NIST) has issued a general recommendation for key
management [4]. Several commercial enterprise key-management systems are on the market, including
HPTM StorageWorksTM Secure Key Manager, IBM R© Distributed Key Management System (DKMS),
IBM Tivoli R© Key Lifecycle Manager, NetApp R© Lifetime Key ManagementTM, SunTM StorageTekTM

Crypto Key Management System, and Thales R©/nCipher R© keyAuthority R©.
In order to integrate these proprietary solutions, multiple efforts are currently underway to build

and standardize key-management standards for open networks: the W3C XML Key Management Spec-
ification (XKMS) [19], the IEEE P1619.3 Key Management Project [14], and the Key Management
Interoperability Protocol (KMIP) standardization under the auspieces of OASIS [16] are some of the
most prominent ones. Cover [10] gives an up-to-date summary of the current developments.

There is a rich literature on using patterns in software engineering and in systems management.
One representative work that links this area with deployment on a system are the deployment patterns
for a service-oriented architecture of Arnold et al. [3]; these patterns distribute applications to servers
automatically by an algorithm that is available with the IBM Rational R© Software Architect product.

Access control and management of cryptographic keys are related in many ways. One prominent
line of research, starting with Akl and Taylor [1], has concentrated on representing a hierarchy (modeled
as a partially ordered set) of users and their access privileges in a directed graph of keys, where a user
inherits the privileges of all users below; this and subsequent work focuses on minimizing the number
of keys stored by a user.

Because the key-management server provides the above-mentioned cryptographic functions, it rep-
resents a cryptographic security API accessible over a network. Security APIs stand at the boundary
between untrusted code and trusted modules capable of maintaining internal state. Cryptographic se-
curity APIs are typically provided by cryptographic tokens [2], hardware-security modules (HSM) like
IBM’s 4764 cryptoprocessor that supports the IBM CCA interface [12, 15] and generic PKCS #11-
compliant [17] modules, smartcards, or the Trusted Platform Module [18]. The study of cryptographic
security APIs has so far been limited to programming APIs and to libraries; this paper extends their
study to protocols for open networks.

1.2 Organization of the Paper

Section 2 describes the architecture of KLMS and its data model, and motivates some design choices.
The main contributions, automated deployment and strict access control, are described in Sections 3

3

HSM

DM EPMOM

DB

Admin Serv.KLS

JKS KMIPVKS GUI CLI

Data

Service

Interface

Manager

Server

Client(s)

Java
Client

Generic
Client

KMIP
Client Admin

Figure 1: Key-Lifecycle Management System architecture (see text).

and 4, respectively. We conclude the paper with Section 5 by providing further information about the
implementation and discussing experimental integration of support for KMIP.

2 Model

2.1 System Architecture

The architecture of KLMS is shown in Figure 1. It is foreseen that the server is implemented in Java
and runs on a web-application server. The KLMS server interacts with the clients (endpoints) through
several types of interfaces, as described below. Administrators use a different interface than the clients
to access the server. The server itself is structured in four layers; bottom-up, these are a data layer, a
manager layer, a service layer, and an interface layer, as described next.

Data Layer. The data layer stores all information in a persistent Database (DB). Internally, DB ac-
cesses a standard SQL database through the JDBC interface. All state information of KLMS is main-
tained by DB, so that KLMS does not lose any data because of a system crash. Meta-data about keys
and certificates is stored in DB, as well as the cryptographic material itself. Some corporate security
policies mandate that certain keys exist in cleartext only in a hardware-security module (HSM); the ar-
chitecture supports this feature, by including a master key stored in an HSM and using it to encrypt all
cryptographic material in DB.

Manager Layer. KLMS contains three components that provide low-level functionalities: an Object
Manager (OM), a Deployment Manager (DM), and an Endpoint Manager (EPM).

First, OM provides a simple interface to manipulate the cryptographic objects supported by KLMS.
OM can add new objects, read, modify, search, and delete them in the DB, and maintains an in-memory
object cache that is used to speed up read operations.

Second, DM takes care of administering deployments and deployment bundles. A deployment is an
association between an object and an endpoint in the sense that KLMS provisions the object for use in
cryptographic operations by the endpoint. The deployment policy realized by the DM dictates when and

4

under which condition a deployed object finally becomes available to an endpoint through an interface;
the deployment policy is described in Section 3. A deployment bundle is a set of deployments, which
are grouped to support a given application.

Finally, EM controls the endpoints in the interface layer of the server, registering them in KLMS, po-
tentially creating new file-backed JKS endpoints, and listening to protocol ports to which KMIP clients
connect. EM unifies the different types of endpoints towards the rest of the server.

Service Layer. The service layer provides two modules: a Key-Lifecycle Service (KLS), which is used
by endpoints and by an administrator, and an Admin Service, which is only accessed by the administrator.

KLS represents the core of the server. It implements all operations related to keys and certificates
that are available to endpoints and to users, drives automated deployment and lifecycle operations in
conjunction with DM, and enforces access control. KLS can distinguish between different users, the
principals that access it; every invocation of an operation occurs in the context of a session, which
represents a user that has been securely authenticated by KLMS. The data model and the operations of
KLS are described in the next section.

The Admin Service controls the allocation of endpoints and deployments through EPM and DM,
respectively. Access to its operations also occurs in the context of a session, but is restricted to users
with the corresponding permission. The Admin Service also allows archive and recovery operations for
individual keys and for the whole database. Both modules, KLS and Admin Service, generate audit
events.

Interface Layer. Three types of endpoint interfaces interact with the clients. The Virtual Keystore
(VKS) interface emulates the provider of a Java KeyStore, for applications that are hosted by the same
application server as KLMS. The client reads and writes keys via VKS by issuing the “get” and “set”
operations of the Java KeyStore interface. VKS is a pull-style synchronous interface, i.e., KLS can
forward client calls to VKS directly to OM and DM.

The Java Keystore (JKS) interface accesses a named Java KeyStore as a client. A Java KeyStore is
usually passive and its default implementation is a file, but depending on the installed Java Cryptography
Extension (JCE) provider, many different entities may receive key material through the JKS interface (in
particular, such clients need not be implemented in Java). JKS is a push-style asynchronous interface,
because KLS calls the Java KeyStore interface and clients may retrieve keys from JKS at a later time.

A protocol interface provides an experimental implementation of the Key Management Interoper-
ability Protocol (KMIP) draft standard [16]. KMIP is mostly a client-to-server protocol that offers rich
functionality to manipulate keys and certificates. Many of its operations can be forwarded directly to
KLS, but other operations are realized by an adapter module inside the KMIP interface. Ignoring the
(optional) server-to-client operations in KMIP, the protocol interface is again pull-style and synchronous,
similar to VKS. Clients connecting through KMIP need not be implemented in Java.

For the two keystore-based interfaces, EPM statically configures the user with which KLS is ac-
cessed. For the protocol-based interface, it is possible to take the user from the client context. For the
pull-style interfaces, access control occurs when the client calls KLS; for the push-style JKS interface,
on the other hand, access control must be enforced at the time when the deployment occurs.

Administrators access KLMS through a web-based Graphical User Interface (GUI) (built using the
Hamlets framework [13]) or through a Command-Line Interface (CLI); they both provide operations to
deal with endpoints and to manage deployments. Note that clients who access the system through one
of the endpoint interfaces cannot deploy keys or certificates in KLMS.

5

2.2 Data Model and Operations

KLMS manages symmetric keys, public keys, private keys, and certificates, which we summarily call
cryptographic objects or simply objects. All key formats supported by the underlying Java platform and
the JCE are available, including RSA, Diffie-Hellman, ElGamal, DSA, and EC-variants for public-key
algorithms and symmetric keys of arbitrary length. Objects are composed of attributes and (possibly)
cryptographic material. Attributes contain meta-data about the use of the cryptographic material, and
they are the main concern of key management. Attributes may be read and sometimes also modified
by clients in KLMS. KLMS also provides templates that simplify the handling of attributes for multiple
objects, but we do not describe them in detail here, as they are not our primary concern.

Key lifecycle Access control

State Deactivation time Usage Creator
Initialization time Compromise time Digest Dependents
Activation time Destroy time Strict Ancestors

ACL Readers

Table 1: Object attributes relevant for key lifecycle and access-control features.

KLMS currently supports close to 50 different object attributes. Rather than listing them all, we
focus on the subset that is relevant for lifecycle operations, for automated deployment, and for access
control (see Table 1). Every object has a unique identifier. A crucial attribute is the state of an object
in its lifecycle. Objects in KLMS follow a lifecycle according to NIST [4, Section 7]. NIST distin-
guishes between using a key for protect purposes when applying cryptographic armor (through encryp-
tion, wrapping, signing, and so on), and process purposes when consuming previously protected data
(through decryption, unwrapping, verification, and so on). A key may at certain times be used for one or
both purposes, or for none at all. The lifecycle of a cryptographic object progresses from a Pre-Active
state, where it is not to be used for any cryptographic operation, through an Active state, where it may
be used to protect and to process data, to a Deactivated state, where it may only be used to process data
(see Figure 2). State transitions may be triggered directly by modifications to the lifecycle-relevant at-
tributes, such as state, activation time, and deactivation time, or indirectly, as a side-effect of operations
(e.g., when destroying an object). State transitions may cause actions by the automated deployment
mechanism, as described in Section 3.

The operations of KLMS fall in two categories: those that manipulate objects, provided by KLS,

Pre-Active
Active

(protect and
process)

Deactivated
(process only)

Destroyed

Destroyed
Compromised

Compromised
(process only)

activation time
reached

deactivation time
reached

Figure 2: Key states and transitions. Transitions are triggered when an appropriate attribute is set or at
the time specified by a time-related attribute.

6

Secret key Endpoint Private key Certificate

Secret-shared Secret-uniquePrivate/certificate-shared Private-unique/certificate-shared

Figure 3: Deployment patterns.

and those that affect deployments, provided by Admin Service.
The most important operations on objects are: (1) create, which generates a new key or certificate

and stores it, with attributes supplied by the client; (2) store, which stores a key or certificate and uses
the cryptographic material supplied by the client in cleartext; (3) import, which stores a key and uses
the cryptographic material supplied by the client in wrapped form (i.e., encrypted with another key);
(4) derive, which creates a new symmetric key from an existing symmetric key; (5) read, which returns
the key or certificate with a given identifier to the client, including attributes and cryptographic material
in cleartext; (6) export, which returns the key with a given identifier to the client, including attributes
and cryptographic material in wrapped form; (7) read attributes, which is the same as read, except that it
omits the cryptographic material; (8) set attributes, which modifies the attributes of an object; (9) search,
which locates all objects matching a given search condition and returns their identifiers; (10) destroy,
which deletes the cryptographic material of an object, but leaves its attributes intact; (11) delete, which
deletes the entire object; (12) archive, for writing some objects to off-line storage; and (13) recover, for
reading objects back from off-line storage.

The relevant operations of Admin Service on deployments are: (1) specify, which creates a deploy-
ment or a deployment bundle; (2) activate, which executes a deployment or a deployment bundle and
distributes all objects to the specified endpoints; (3) withdraw, which reverses the effects of activate on
a deployment or on a deployment bundle; and (4) remove, which removes a deployment or a deployment
bundle from the system.

3 Automated Deployment

This section describes the pattern-based automated deployment in KLMS and the interaction between
key-lifecycle management and key deployment. Recall that a deployment is an association between an
object and an endpoint and that a deployment bundle is a set of deployments.

3.1 Deployment Patterns

A deployment pattern is a rule for generating deployment bundles with a defined structure. A deploy-
ment pattern is described in terms of an object list, an ordered set of keys and/or certificates to be
deployed, and an endpoint list, an ordered set of endpoints, to which the objects are to be deployed.
The pattern defines how the objects relate to the endpoints. Given an object list and an endpoint list,
a deployment pattern yields a unique deployment bundle that complies with the pattern. Deployment
patterns enable an administrator to focus on the requirements of an application, without having to worry
about deploying individual keys and certificates.

We now describe four different deployment patterns, depicted in Figure 3.

Secret-shared: This pattern associates each element of the object list with every element of the endpoint

7

list. For example, it is used to deploy a (set of) symmetric key(s) to multiple endpoints, such that
they all share the same key(s).

When KLMS instantiates a secret-shared pattern, only the endpoint list is a mandatory input. The
object list may be left out and a desired number n of symmetric keys can be given instead. In this
case, KLMS generates n symmetric keys on the fly, taking their attributes from a template that is
also included, and deploys all keys to each endpoint. (The generated keys are also stored in the
DB.)

Private/certificate-shared: This pattern associates each private-key/public-key pair or private-key/cer-
tificate pair in the object list with every element of the endpoint list. It is similar to the secret-
shared pattern, but applies to asymmetric key pairs only (where public keys and certificates are
used interchangeably).

A typical use-case for this pattern arises in a cluster of nodes that implement the same service,
using replication and/or a fail-over strategy for increasing throughput and fault-tolerance. For
example, when the cluster nodes serve web content over HTTPS for multiple domains, one private-
key/certificate pair for TLS per domain must be available to every cluster node.

Secret-unique: This pattern associates the i-th key of the object list (containing only symmetric keys)
with the i-th endpoint in the endpoint list, for i = 1, . . . , n. When KLMS instantiates a secret-
unique pattern, the object list can be omitted and a template describing attributes for the keys can
be given; KLMS then generates as many keys automatically as there are endpoints in the list, and
deploys them. This pattern can be used for generating unique master keys for a range of secure
devices, each of which is identified by a symmetric master key.

Private-unique/certificate-shared: This pattern takes an object list of n asymmetric key pairs (i.e.,
private key/public key or private key/certificate pairs) and a list of n endpoints as inputs, and asso-
ciates the i-th private key with the i-th endpoint, for i = 1, . . . , n and each public key/certificate
with every endpoint. As with other patterns, when KLMS instantiates the pattern and the object
set is omitted, then KLMS automatically generates the necessary key pairs from the attributes
given in a template (such automatically generated certificates can only be self-signed).

This pattern addresses a typical infrastructure key-distribution model, where every entity is iden-
tified by a private key/public key pair, and every entity must know the public keys of all others.
This could be a cluster of J2EE servers, whose communication is secured using those keys. Since
the certificates are self-signed, all servers must have a copy of every other server’s self-signed
certificate in their keystore.

Note that the above list of four patterns is not exhaustive: one can define more patterns analo-
gously, for example, a private-unique/certificate-unique pattern similar to secret-unique, by extending
the generic association rules between object list and endpoint list above.

3.2 Administering Deployments

Recall that deployments are specified by an administrator using the Admin Service. Information on all
objects deployed to endpoints is kept in a deployment table. Every deployment has a state that is either
OnHold or Active.

When a deployment is in state OnHold, the deployment information is present in the deployment ta-
ble, but the deployment should not yet or no longer take effect. Only during the time when a deployment
is in Active state should the object be distributed to the endpoint and available to clients at the endpoint.

The administrator schedules the transition of a deployment from OnHold to Active state and vice
versa by invoking the activate and withdraw operations of the Admin Service, respectively. After such

8

a state change has been registered in the deployment table, it is the responsibility of a distribution
process in DM to move or remove objects to or from the affected endpoints. Because its operations take
time and may fail because of network failures, the distribution process operates asynchronously in the
background. This design shields the administrator from the different semantics of the endpoints. When
DM distributes deployed objects to endpoints, it respects a deployment policy that affects its operation
as described in Section 3.3.

In order to fully realize the power of automated deployment, the Admin Service allows dynamic
modification of all pattern-based deployment bundles even after they have been created and activated. It
is possible to add and to delete objects and endpoints to and from an existing deployment bundle. For
example, when a deployment bundle d has been created by instantiating a pattern p, then an endpoint e
can be added to it, and this will specify and activate a new deployment in d that affects e according to p.
Likewise, when an endpoint e is deleted from d, this will withdraw and remove all deployments from d
that contain e. Hence, the operator can manipulate deployments in a convenient way.

Note that a deployment of an object o to an endpoint e may be created through multiple ways,
through individual deployments, deployment bundles, and pattern-based deployments. In this case, DM
regards the deployment (o, e) to be in Active state whenever at least one of the sources is in Active state.

3.3 Deployment Policy

The policy followed by DM is called the key-lifecycle deployment policy and affects the behavior of the
distribution process. The policy distinguishes state-aware endpoints that can interpret the state attribute
of an object (such as those connecting through the KMIP interface) from state-oblivious endpoints that
are not capable of expressing the notion of a lifecycle state (those connecting via VKS and JKS inter-
faces). The policy acts as follows. When DM distributes a deployment that associates an object o with
an endpoint e, and when e is state-aware, then DM always distributes o to e; on the other hand, when e is
state-oblivious, then DM only distributes o to e if o is in Active state. This ensures that a state-oblivious
endpoint never uses a key in Pre-Active state for a cryptographic operation, as this undermines the idea
of managing the lifecycle of keys.

In order to support this policy, DM includes a key lifecycle scheduler, which executes the time-
triggered state changes that can be specified by setting certain object attributes, like activation time or
deactivation time. For example, a key with an activation time in the future can already be deployed
to a state-oblivious endpoint; but the key is not distributed to the endpoint until the activation time is
reached, when the key lifecycle scheduler executes that action.

Moreover, the policy involves access control when the deployment specifies the push-style endpoint,
as explained in Section 2.1.

Two screens from the GUI available to the administrator are shown in Appendix A. They show the
interfaces for manual and automated deployment of symmetric keys, respectively.

4 Strict Access Control

The difficulty of enforcing strict access control comes from relations between keys, which are intro-
duced through wrapping and key derivation, such that a simple ACL no longer adequately represents
a permission on a key. This section explains the details behind our implementation in KLMS of the
theoretical model for strict access control of [8].

In short, strict access control guarantees that a user may only retrieve the information she is au-
thorized to, i.e., that she cannot abuse the API to violate the access control policy. To achieve this,
traditional access control (with ACLs independent among different objects) is not sufficient, since the
interdependencies among different keys, arising from key wrapping and key derivation operations, may
open security holes in cryptographic APIs [2, 7, 9, 11].

9

KLMS server supports key wrapping (encrypting a target key under a different key, called wrapping
key) through the export and import operations of KLS. To enforce strict access control, only key wrap-
ping schemes are allowed that also provide strong integrity [8], such as authenticated symmetric-key
encryption [5] as realized by block-cipher encryption in CCM or GCM padding mode. When a wrap-
ping in another format is supplied to an import operation, it must be treated like a store operation (with
a cleartext key).

Through key derivation, a new symmetric key is generated from a parent key. Multiple keys derived
from each other form a hierarchy, where knowledge of one key implies knowledge of all keys that are
below in the hierarchy. Our system supports key derivation through the derive operation of KLS, and
only key derivation functions with strong one-wayness are considered secure under the strict access-
control policy.

Users. Recall from Section 2 that KLS distinguishes between different users who access it. For this
section, a user u represents an entity that may invoke an operation of KLS, or is one of the special values
any and creator. Users creator and any exist to simplify the formulation of ACLs. KLMS
authenticates the user that invokes an operation and supplies the identity of the user to an operation as
the authenticated user; it is different from any and creator.

Access-control policy. For most operations, KLS can take the access-control policy from the attributes
of the affected object. But since KLS provides operations that do not refer to any existing object (e.g.,
create), it must take the access-control policy for those operations from attributes associated with the
user that executes the operation. Therefore, there is a user permission list associated with every user u,
denoted u.UPL, which is a set of permissions.

Permissions. Permissions are the elements that appear in the access-control list attribute of an object
and in the user permission list. The permissions that may appear in an object ACL are: Admin (permits
all operations), Derive (permits key derivation using the key as a parent key), Destroy (permits destroy
and delete operations), Export (permits a key to be exported in a wrapped form), Read (permits reading
the key in cleartext), ReadAttributes (permits gaining knowledge about key attributes), Unwrap (permits
a key to be used for unwrapping in the import operation), and Wrap (permits a key to be used for
wrapping in the export operation). The permissions that may appear in a user permission list (UPL) are
Create and Store (for executing the respective operations).

Access-Control Lists. An access-control list value is an unordered set of pairs (u, p), where u is a
user and p is a permission. An ACL attribute usually contains at least the entry (creator, Admin).

4.1 Attributes for Access Control

We now describe the relevant attributes that govern the strict access-control policy.

Usage: The usage attribute determines in which cryptographic operations a key may be used by the
endpoints. Its value is a subset of {Sign, Verify, Encrypt, Decrypt, Wrap, Unwrap, Derive}. In our con-
text, the only relevant function is to distinguish whether a key may be used for wrapping and unwrapping
in export and import operations. Under strict access control, a symmetric key used for wrapping or un-
wrapping another key must never be used for a different purpose, as this may violate the specification of
the interface [8]. Hence, every symmetric key must be used either for wrapping and/or unwrapping or
for other cryptographic operations, like encryption, authentication, key derivation and so on. The strict
policy enforces that these two kinds of key usage are mutually exclusive.

10

Digest: The server uses a digest attribute to avoid that the same cryptographic key exists as more than
one object in its database. The digest is computed as the SHA-256 hash value of the cryptographic
material, and must be available at least for all symmetric key objects and private key objects.

Strict: The strict attribute contains a boolean value and denotes whether the object falls under the
strict access-control policy and benefits its guarantees. The attribute can only be true for symmetric
keys and private keys. When it is true, it may be set to false by an explicit set attributes operation. Once
the strict attribute is set to false, it cannot be set to true again.

ACL: The ACL attribute contains an access-control list value and denotes the ACL of the object. We
assume that every ACL value satisfies the following invariant (the corresponding checks are omitted
below):

1. if for some user u, an entry (u, Admin) ∈ ACL, then for every permission p, also (u, p) ∈ ACL;
and

2. if for some user u, an entry (u, Export) ∈ ACL or (u, Read) ∈ ACL, then also (u, ReadAttributes) ∈
ACL; and

3. if for some user u, an entry (u, Read) ∈ ACL, then also (u, Export) ∈ ACL.

The invariant ensures, first, that the Admin permission implies every other permission as well, second,
that the Export and Read permissions imply permission to read the attributes, and, third, that the Read
permission implies the Export permission.

Creator: The creator attribute contains a user that is different from creator and any. It denotes
the authenticated user for the create, store, import, or derive operation that generated the object.

Dependents: The dependents attribute contains a set of strings that serve as identifiers for those objects
whose cleartext value can be computed from knowledge of the cleartext value of the object itself (these
are usually symmetric keys and private keys). It contains at least the identifier of the object itself.

Ancestors: The ancestors attribute contains a set of strings that serve as identifiers for those objects
on which the given object depends, i.e., all objects whose dependents attribute contains the identifier of
the given object. It contains at least the identifier of the object itself.

Readers: The readers attribute contains a set of users (except creator). It denotes those users who
have, or may potentially have, obtained the cleartext value of the given object because they have either
executed a read operation for the given object and obtained its cleartext value or because they have
executed a read operation for another object and the identifier of the given object is contained in the
dependents attribute of the other object.

4.2 Authorization of Operations

This section describes the authorization of operations by KLS and specifies the strict access-control
policy. An operation is executed by an authenticated user u on an object o, which is named by its

11

identifier. An attribute attr of o is denoted by o.attr. We use the following macro to express the basic
access-control policy for user u, permission p, and object o:

BASICAUTH(u, p, o) = (any, p) ∈ o.ACL or(
u = o.creator and (creator, p) ∈ o.ACL

)
or

(u, p) ∈ o.ACL.

In other words, BASICAUTH gives a permission p to user u for an operation o, if (a) any user has a
permission p, or (b) if the creator of o has permission p and u is the creator of o, or (c) if ACL of o lists
permission p for u.

Create. This operation generates a new key or certificate and adds it to KLS; it takes the cryptographic
specification of the key as input, together with the attributes that govern the object. For certificates, KLS
generates a certificate request and completes the create operation only later, when the certificate arrives
from a certification authority. The condition Create ∈ u.UPL must be true. After creating the object,
the operation initializes the access-control-related attributes of all objects created during the operation
as follows (we will refer to this algorithm again for the store, import, and derive operations).

1. It sets the strict attribute to false, unless another value is given; strict may only be true for sym-
metric keys and for private keys, but not for any other objects.

2. It sets the ACL attribute of all new objects to the value supplied with the operation. The ACL must
contain at least the entry (creator, Admin).

3. For every new object o, it sets the creator attribute to the authenticated user, sets dependents and
ancestors to the singleton set containing the identifier of o, and sets readers to the empty set.

The assumption that the default ACL gives Admin permission to the creator may be omitted when there
exists a security officer or a server administrator outside the model, who can control the object.

Store. This operation initializes a new object in KLS with the cryptographic material of a key or a
certificate given in cleartext, and with attribute values also supplied by the client, and stores the object.
The following condition must be true:

1. Store ∈ u.UPL; and

2. there is no object already present at the server whose digest attribute is equal to the SHA-256 hash
of the cryptographic material of the object being stored.

The operation initializes all access-control-related attributes of the stored object as described for the
create operation, with the difference that it sets strict to false. This reflects the fact that the key value has
not been generated in a controlled environment, which may lead to a violation of the strict access-control
policy.

Import. Given a key supplied in wrapped form, this operation adds it to the server, with the attribute
values taken from the wrapped representation. The operation specifies the identifier of the unwrapping
key that KLS should use to unwrap the key.

The condition Store ∈ u.UPL must be true for the operation to begin. If false, the operation aborts.
Otherwise, the operation continues to check the following condition that determines if the unwrapping
operation satisfies the strict access-control policy:

12

1. for the unwrapping key w, it holds: BASICAUTH(u, Unwrap, w) and w.readers = ∅ and w.strict =
true and w is a symmetric key and {Sign, Verify, Encrypt, Decrypt, Derive} ∩ w.usage = ∅ and
Unwrap ∈ w.usage; and

2. there is no object already present at the server whose digest attribute is equal to the SHA-256 hash
of the cryptographic material of the object being imported.

If true, the operation proceeds according to the strict policy. It unwraps the cryptographic material
and the accompanying attribute values, uses them to initialize the object, and adds the object to KLS.
Furthermore, the operation adds the identifier of o to the dependents attribute of every object q whose
identifier is in w.ancestors, adds the set w.ancestors to the ancestors attribute of o, and adds the set
w.readers to o.readers.

If the condition is not met, then the operation proceeds as for the store operation with a cleartext key.
In particular, it sets the strict attribute of the imported object to false.

We remark that wrapping with public keys and unwrapping with private keys is not supported in
strict mode, according to the model of Cachin and Chandran [8]. The reason is that encryption with a
public key is not a secure wrapping method supporting the authentication of attributes; in fact, there is
no authentication of the exported (wrapped) data at all, as everyone with the public key may create such
a wrapping. Of course, one could require proper authentication of public-key-wrapped keys by a digital
signature under the private key of the entity that exported and wrapped the key. But then, the exporter
and the importer would each have to know the public key of the other one, and this is equivalent to the
case where they would share a symmetric key. Hence, it is simpler for them to wrap with a symmetric
key in this situation.

The condition that w.readers = ∅ under the strict policy means that no user in the model is supposed
to have read the wrapping key w. Of course, some security officer or server administrator may have read
the key in practice, but this occurs outside of the model, and that entity has to be trusted not to break the
strict access-control policy.

Derive. A new symmetric key n is derived from an existing symmetric key o and some auxiliary
input using a key derivation scheme, which essentially implements a pseudo-random function. Possible
derivation schemes are PBKDF2 according to PKCS #5 (RFC 2898), HMAC (RFC 2104), encryption of
the auxiliary data with a block cipher in CBC-mode, etc. The operation proceeds differently depending
on the strict attribute of o.

If o.strict = false, the condition BASICAUTH(u, Derive, o) must be true. In this case, the operation
sets the strict attribute of n to false.

If o.strict = true, the operation checks the following condition implementing the strict access-
control policy:

1. BASICAUTH(u, Derive, o); and

2. o.usage = {Derive}.

The operation initializes the access-control-related attributes of the newly created object n as described
for the create operation, with the following additions: If n.strict is true, then it adds the identifier of n to
the dependents attribute of every object q whose identifier is in o.ancestors, and adds the set o.ancestors
to the ancestors attribute of n; It sets n.readers to o.readers.

Read. Given the identifier of an object, this operation returns the attributes of the object and its cryp-
tographic material in cleartext. The following condition must be true:

o.strict = false and BASICAUTH(u, Read, o); or

13

o.strict = true and for all objects k such that the identifier attribute of k is in o.dependents, it
holds BASICAUTH(u, Read, k).

If the operation proceeds and o.strict = true, then it adds u to the readers attribute of all k as quantified
in the condition.

Export. The export operation creates an external representation of an object o specified by an identifier
and wrapped with a symmetric key w, suitable for transfer to another key-management system. KLS
supports a number of key wrapping methods, but defines its own format for representing attribute values
in the wrapped representation. As mentioned before, only wrapping schemes with strong integrity are
suitable for use under the strict policy.

The operation proceeds differently depending on the strict attribute of o. If o.strict = false, only
the condition BASICAUTH(u, Read, o) must be true. As the operation uses only basic access control, it
does not involve any extra checks.

If o.strict = true, the operation checks the following condition implementing the strict access-
control policy:

1. BASICAUTH(u, Export, o) and BASICAUTH(u, Wrap, w); and

2. for each user v in w.readers and for each object q whose identifier is in o.dependents, it holds
BASICAUTH(v, Read, q); and

3. w is a symmetric key and w.strict = true and w.identifier 6∈ o.dependents; and

4. {Sign, Verify, Encrypt, Decrypt, Derive} ∩ w.usage = ∅ and Wrap ∈ w.usage.

If the condition holds, then the operation adds the identifier of o to the dependents attribute of every
object q whose identifier is in w.ancestors, adds the identifier of w to the ancestors attribute of o, and
adds the set w.readers to o.readers. All attributes of o are included together with the wrapped key in the
external representation, in particular all access-control-related attributes mentioned in Section 4.1.

Note that by our assumption on ACL values, every user with Read permission also has Export
permission. Hence, the Export permission is weaker than Read, but only applies to objects that fall
under the strict access-control policy. For objects under basic access control, the Read permission is
needed for the export operation.

Read Attributes. The operation returns all attributes of an object o specified by its identifier, but not
the cryptographic material of o. The condition BASICAUTH(u, ReadAttributes, o) must be true.

Set Attributes. The operation sets all attributes of an object o specified by its identifier. The condition
BASICAUTH(u, Admin, o) must be true.

A client cannot modify any of the following attributes using the set attribute operation: identifier,
digest, creator, dependents, ancestors, and readers. Moreover, no operation may set the strict attribute
to true.

When a set attribute operation changes the ACL attribute of o to a value ACL’, the following condi-
tion must be true:

1. for all (v, Read) ∈ ACL’ with v 6= creator and for each object q 6= o whose identifier is in
o.dependents, it holds BASICAUTH(v, Read, q); and

2. for all (creator, Read) ∈ ACL’ and for each object q 6= o whose identifier is in o.dependents,
it holds BASICAUTH(o.creator, Read, q).

14

In other words, before Read permission for o can be given to some user, the user must also be permitted
to read all keys that depend on o.

Note that according to this specification, only a user with Admin permission who has complete
control over an object, including reading its cleartext value, may trigger life-cycle state changes. One
could instead introduce a separation of the Admin permission into one for proper administration that
allows all operations (as for the Admin permission above) and one for life-cycle administration that only
allows modification to the life-cycle related attributes, such as state and the related time values.

Search. The search operation returns identifiers of all objects matching a given search condition on
attribute values. A user may invoke this operation without any particular permission. But since the
presence of an object in the reply discloses information about the attributes of the object, the user must
at least have permission to read the attributes of the returned objects.

Hence, the condition BASICAUTH(u, ReadAttributes, o) must be true for every object o whose iden-
tifier is returned in the reply from search.

Archive and Recover. The archive and recover operations save and read back an object to and from
off-line storage. The condition BASICAUTH(u, Admin, o) must be true. The attributes of o must remain
accessible online, however, in order to be used in decisions on strict access control.

Destroy and Delete. The destroy operation deletes the cryptographic material of an object o and leaves
its attributes intact; the delete operation removes the entire object from KLS. For either one, the condition
BASICAUTH(u, Destroy, o) must be true.

5 Implementation

Our implementation of the KLMS server, together with the prototype support for KMIP, measures over
70k lines of Java code. Out of this, the core of the server (below the Interface layer) takes roughly 20k
lines of Java code, with automated deployment taking slightly over 5.5k lines, and strict access control
support around 1.5k lines. Currently, KLMS supports the four automated deployment patterns presented
in Section 3.1, yet additional patterns can be added in a modular manner. The implementation of strict
access control takes into account the possible size of the object attributes dependents and readers; these
grow with the system’s age and may pose performance issues if implemented sub-optimally. To cope
with this, our implementation uses two separate global tables in the DB layer for these two attributes.
For the readers table, as for the representation of ACL, DB maintains the identity of a user determined
from an LDAP directory server in the form of the string representation of the user’s LDAP Distinguished
Name.

KLMS support for hardware-security modules (HSM) is foreseen by the architecture, but has not
been implemented yet. Currently, the DB layer is based on a small-footprint Apache Derby database.
The experimental integration of support for KMIP includes the portable portion of KMIP client/server
code (around 28.5k lines of Java code) and the KMIP/KLMS adapter code (slightly over 4k lines). With
this architecture, the support for KMIP can be easily transferred to a different key server core.

6 Evaluation

6.1 Automated Deployment

We compare automated pattern-based deployment with the KLMS GUI to manual deployment opera-
tions in a theoretical usability study. The two main screens in the administrator interface of the GUI

15

for configuring manual and automated key deployment are shown in Figures 5 and 6, respectively (Ap-
pendix A).

It is obvious that manual deployment is not only more error-prone but also less efficient than auto-
mated deployment for handling a large number of keys. To be concrete, we examine the two deployment
methods in a realistic scenario, where n private keys and the corresponding certificates are deployed to
n endpoints such that every private key is deployed to one endpoint and all certificates are deployed to
all endpoints. This corresponds to the private-unique/certificate-shared pattern.

We count the number of steps (user interactions in the form of mouse clicks and keyboard inputs)
that the administrator has to perform for accomplishing the deployment task using either method.

With both methods, the administrator needs five interactions initially for navigating to the deploy-
ment screen in order to create and select the appropriate deployment method. Once the interface is set
up like this, the administrator creates the deployments.

For manual deployment, it takes 4n(n + 1) steps to create the described deployment. The adminis-
trator selects an “Add” dialogue for every deployment, choses an object and an endpoint to include in
the deployment, and submits the operation. The administrator must repeat this these operations n(n+1)
times to deploy each private key to one endpoint and every one of the n certificates to all n endpoints.
Finally, activating the deployment requires one additional user interaction. In total, the administrator
needs 6 + 4n(n + 1) steps in manual deployment.

For automated deployment, the interface requires 4 + n user interactions to create the described
deployment. After the administrator has selected the “Add” dialogue, it must select a template for au-
tomatically creating the required number of keys and check the option to “generate keys automatically.”
Furthermore, the administrator must select the n endpoints. To activate the deployment, one additional
step is necessary. In total, 10 + n user interactions are necessary with automated deployment.

Table 2 summarizes these results and demonstrates that manual deployment requires O(n2) user
interactions and automated deployment requires O(n) user interactions for the selected task. It is clear
automated pattern-based deployment scales much better than manual deployment.

Manual deployment Automated deployment

Setup 5 5
Configuration 4n(n + 1) 4 + n
Deployment 1 1
Total O(n2) O(n)

Table 2: Number of user interactions for deployment.

6.2 Performance of Strict Access Control

We have measured the performance difference between operations under the strict access-control policy
and operations under the basic access-control policy, to determine the cost of the additional protection.

System setup. The benchmarking server is an IBM x345/6 system with two hyper-threaded Intel R©
XeonTM CPUs running at 3.06GHz and 2GB RAM. It runs our Java prototype of KLMS on an IBM J9
JVM (build 2.3, J2RE 1.5.0) with Apache Derby 10.3 as the database.

Experiments. The first experiment consists of running 100 create operations and measuring the elapsed
time or latency. The operations are executed and measured at the service layer (in KLS). The created
keys are then used to separately measure 100 search, 100 read and 100 delete operations. Because each

16

operation takes only a few milliseconds, measurements are done over 100 operations. Each measure-
ment was also performed 100 times (i.e. a total of 100 × 100 operations each, for strict and for basic
access control). Table 3 summarizes the average time taken by one operation.

Our second experiment measures the scalability of the implementation of the strict access-control
policy in KLMS, when a tree of dependencies grows deeper. The experiment starts by creating a new key
and deriving from it a linear hierarchy of 10 keys, yielding 11 keys in total. We measure the time taken
by the derive operation to derive one key, depending on the depth where this occurs. We chose maximal
depth 10 because it is the maximum depth allowed by certain key-management products; in particular,
the IBM CCA interface [15] allows maximal derivation depth 10. As the latencies are small (a few
dozens of milliseconds), each data point is obtained by taking an average over 100 identical successive
operations, and a total of 100 data points are collected per derivation level (10× 100× 100 derivations
in total). Then the ACL of every key in the hierarchy is modified by adding the read permission for a
fixed user, starting from the deepest key in the hierarchy up to the initial key. We measure the time taken
by the set attributes operation. The measurements are done as previously for the derive operation.

Operation Policy Average latency 95%-confidence interval

Create
basic 4.81 [4.44; 5.19]
strict 5.10 [4.69; 5.51]

Search
basic 2.50 [2.39; 2.61]
strict 2.61 [2.50; 2.72]

Read
basic 2.64 [2.60; 2.69]
strict 3.75 [3.67; 3.83]

Delete
basic 9.38 [8.97; 9.79]
strict 9.97 [9.49; 10.44]

Table 3: The table shows the average times taken by four representative operations and the corresponding
95%-confidence intervals, in milliseconds.

 5

 10

 15

 20

 25

 30

 2 4 6 8 10

A
ve

ra
ge

 la
te

nc
y

(m
s)

Number of ancestor keys

strict
basic

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10

A
ve

ra
ge

 la
te

nc
y

(m
s)

Number of dependent keys

strict
basic

Figure 4: The graphs show the average times for the derive operations (left) and the set attributes
operations (right), for varying tree depth.

Results. Table 3 shows the overhead of the strict access-control policy for the four operations in the
first experiment. One can see that most operations perform comparably except for read, which takes on

17

average about 41% longer with strict access control. The reason is that, unlike with basic access control,
the strict policy requires the read operation to modify the Readers attribute of an object. This explains
the extra time taken by the operation.

Figure 4 shows the results of the second experiment. The measurements demonstrate that the strict
policy scales well with the depth of the derivation tree for the derive operation, showing, roughly, a
constant twofold overhead with respect to basic access control, with a slight increase for derivation trees
deeper than six levels. For the set attributes operation, we observe a increasing overhead for modifying
the ACL of those keys that have six or more dependent keys.

Acknowledgements

We thank Gordon Arnold, Todd Arnold, Tim Hahn, Ilias Iliadis, Glen Jaquette, Tony Nadalin, John Peck,
Roman Pletka, Bruce Rich, and Krishna Yellepeddy for interesting discussions and valuable comments.

This work has been supported in part by the European Commission through the ICT programme
under contract ICT-2007-216676 ECRYPT II.

18

A Graphical User Interface

Figure 5: Screen for manual deployment in the KLMS server.

Figure 6: Screen for automated deployment in the KLMS server.

19

References

[1] S. G. Akl and P. D. Taylor, “Cryptographic solution to a problem of access control in a hierarchy,”
ACM Transactions on Computer Systems, vol. 1, pp. 239–248, Aug. 1983.

[2] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, “Cryptographic processors — a survey,”
Proceedings of the IEEE, vol. 94, pp. 357–369, Feb. 2006.

[3] W. Arnold, T. Eilam, M. H. Kalantar, A. V. Konstantinou, and A. Totok, “Pattern based SOA
deployment,” in Proc. Service-Oriented Computing (ICSOC) (B. J. Krämer, K.-J. Lin, and
P. Narasimhan, eds.), vol. 4749 of Lecture Notes in Computer Science, pp. 1–12, 2007.

[4] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key management,”
NIST special publication 800-57, National Institute of Standards and Technology (NIST), 2007.
Available from http://csrc.nist.gov/publications/PubsSPs.html.

[5] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among notions and analysis
of the generic composition paradigm,” in Advances in Cryptology: ASIACRYPT 2000 (T. Okamoto,
ed.), vol. 1976 of Lecture Notes in Computer Science, pp. 531–545, Springer, 2000.

[6] BITS Security Working Group, “Enterprise key management.” Whitepaper, BITS Financial Ser-
vices Roundtable, available from http://www.bits.org/downloads/Publications%
20Page/BITSEnterpriseKeyManagementMay2008.pdf, May 2008.

[7] M. Bond, “Attacks on cryptoprocessor transaction sets,” in Proc. Cryptographic Hardware and
Embedded Systems (CHES), vol. 2162 of Lecture Notes in Computer Science, pp. 220–234, 2001.

[8] C. Cachin and N. Chandran, “A secure cryptographic token interface,” in Proc. Computer Security
Foundations Symposium (CSF-22), IEEE, July 2009. To appear.

[9] J. Clulow, “On the security of PKCS#11,” in Proc. Cryptographic Hardware and Embedded Sys-
tems (CHES), vol. 2779 of Lecture Notes in Computer Science, pp. 411–425, 2003.

[10] “Cover pages: Cryptographic key management.” http://xml.coverpages.org/
keyManagement.html, Apr. 2009.

[11] S. Delaune, S. Kremer, and G. Steel, “Formal analysis of PKCS#11,” in Proc. 21st IEEE Computer
Security Foundations Symposium (CSF), 2008.

[12] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Weingart,
“Building the IBM 4758 secure coprocessor,” IEEE Computer, vol. 34, pp. 57–66, Oct. 2001.

[13] “Hamlets.” http://hamlets.sourceforge.net.

[14] IEEE Security in Storage Working Group (SISWG), “P1619.3/D6 draft standard for key man-
agement infrastructure for cryptographic protection of stored data.” Available from https:
//siswg.net/index.php, 2009.

[15] International Business Machines Corp., CCA Basic Services Reference and Guide for the IBM
4758 PCI and IBM 4764 PCI-X Cryptographic Coprocessors, 19th ed., Sept. 2008. Available from
http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml.

[16] OASIS Key Management Interoperability Protocol Technical Committee, “Key Management
Interoperability Protocol,” Apr. 2009. Editor’s draft 0.98; available from http://www.
oasis-open.org/committees/documents.php?wg_abbrev=kmip.

20

[17] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard.” Available from
http://www.rsa.com/rsalabs/, 2004.

[18] Trusted Computing Group, “Trusted platform module specifications.” Available from http://
www.trustedcomputinggroup.org, 2008.

[19] World Wide Web Consortium, XML Key Management Working Group, “XML Key Management
Specification (XKMS 2.0).” Available from http://www.w3.org/2001/XKMS/, 2005.

21

