
On Limitations of Using Cloud Storage for Data Replication

Christian Cachin
IBM Research - Zurich

Säumerstr. 4
CH-8803 Rüschlikon, Switzerland

cca@zurich.ibm.com

Birgit Junker1

Open Systems AG
Räffelstrasse 29

CH-8045 Zurich, Switzerland
bju@open.ch

Alessandro Sorniotti
IBM Research - Zurich

Säumerstr. 4
CH-8803 Rüschlikon, Switzerland

aso@zurich.ibm.com

Abstract—Cloud storage services often provide a key-value
store (KVS) functionality, an object-based interface for access-
ing a collection of unstructured data items or blobs. Every
blob is associated with a key that serves as identifier to access
the blob. In the simplest form, a key-value store provides only
methods for writing and reading an entire blob, for removing
blobs, and for listing all defined keys. On the other hand,
many existing schemes for replicating data with the goal of
enhancing resilience (e.g., based on quorum systems) associate
logical timestamps with the stored values, in order to distinguish
multiple versions of the same data item.

This paper uses the consensus number of a shared storage
abstraction as a measure for its power to facilitate the imple-
mentation of data replication. It is demonstrated that a KVS is
a very simple primitive, not different from read/write registers
in this sense, and that a replica capable of the typical operations
on timestamped data is fundamentally more powerful than a
KVS. Hence, data replication schemes over storage providers
with a KVS interface are inherently more difficult to realize
than replication schemes over providers with richer interfaces.

Keywords-Data storage; resilience; replication; quorum sys-
tems; wait-freedom; consensus number.

I. INTRODUCTION

One way of enhancing the dependability of a cloud service
consists of connecting multiple clouds to an intercloud or a
cloud-of-clouds and running the service on multiple replicas
in different clouds. This approach tolerates service outages
and security incidents affecting individual clouds. Although
existing cloud platforms provide high availability and relia-
bility using internal replication, some common failure modes
remain and only intercloud replication tolerates those. The
platform of a cloud provider is usually treated as a single
security domain and has little internal diversification. Hence,
only an intercloud provides multiple administrative domains;
this is especially important for building intrusion-tolerant
systems [1], [2].

Today cloud storage is often provided via the abstraction
of a key-value store (KVS), an object-based interface for
accessing a collection of unstructured blobs. Every blob
is associated with a key that serves as identifier to access
the blob. The common denominator of the KVS services

1Work done at IBM Research - Zurich.

available today contains only methods for writing and read-
ing an entire blob, for removing blobs, and for listing all
defined keys. This simplistic interface poses a problem for
replication schemes that maintain versioned data on multiple
KVS replicas. In particular, the existing solutions for reliable
storage either do not work or incur a prohibitively large
storage overhead. Băsescu et al. [3] address this problem
in detail and present a replication algorithm that maintains
two copies of the stored value per KVS in the common case.
They also show that storing two copies is necessary, in order
to achieve wait-free client operations.

Data replication in the intercloud has recently received a
lot of attention [4], [5], [6], [7]. One class of such systems
assume specialized interfaces on the storage replicas, which
are capable of limited processing and command execution
(like active disks [8] or the storage servers of HAIL [4]
and Cleversafe [6]). Replicas can therefore carry out limited
computation, such as comparing timestamps and condition-
ally storing data. This feature is required by many replicated
storage algorithms based on quorum systems, starting with
some of the first schemes [9], [10], [11]. A second class
of cloud-data replication schemes, in particular RACS [5]
and DepSky [7], uses a KVS provider; they compensate for
the relative simplicity of the KVS interface by adding extra
components for synchronization among multiple clients.

In this paper, we identify an inherent difference between
the storage abstractions used by the two classes of replication
systems mentioned before. We examine the power of the
popular KVS model from the perspective of the designer
of a failure- and intrusion-tolerant replication scheme. A
replication method enables multiple clients to operate on a
storage abstraction emulated from a pool of potentially faulty
storage providers, such as cloud-based KVSs; implicitly,
the richness, complexity, and performance of the emulated
service depends on the power of the underlying primitives.
We analyze the consensus number storage abstraction as
a measure for its capability to provide wait-free synchro-
nization among the set of clients according to Herlihy’s
fundamental notion [12], [13].

Surprisingly, we find that the typical processing steps
expected from a replica in traditional replicated storage
schemes give it universal power — these replicas have

infinite consensus number and are as powerful as the con-
sensus abstraction for implementing other concurrent data
structures. A key-value store, on the other hand, has the least
amount of synchronization power available in any shared
object that has been studied — the consensus number of
a KVS is one and falls into the same class as a simple
read/write register.

Our result illustrates why data replication for typical cloud
storage systems requires additional mechanisms for letting
multiple clients access the system concurrently.

This paper continues by introducing the model and
background in the next section. Subsequently Section III
addresses the consensus number of a replica, which can
process timestamped data, and Section IV analyzes the KVS
abstraction. Section V discusses implications of the result.

II. MODEL

This section introduces the formal model. A compre-
hensive introduction to wait-free synchronization algorithms
for shared-memory systems is provided by Herlihy and
Shavit [13]. Much of the relevant background work was
developed in the context of algorithms for multi-processors,
where a set of multiple “processors” concurrently access
resources in a “shared memory.” With the advent of cloud
computing, this model has expanded its scope: it applies
analogously to multiple clients accessing shared resources in
the cloud. We focus on one shared object and assume correct
clients, in contrast to the intended application domain, where
clients access a set of potentially faulty objects.

A. Linearizability

In the system model considered here, an unbounded
number of clients access the operations provided by a shared
object O. Since the system is asynchronous and the exe-
cution of an operation is not instantaneous, each operation
is represented by two events, denoting the invocation and
the response. The sequence of invocations and responses
of O occurring in an execution σ are called a history. An
invocation and a response match if they are both events
occurring at the same client, concern the same object, and
the response occurs after the invocation and before any other
invocation concerning the same object. An operation whose
invocation appears in a history is complete if the history
also contains a matching response. The subsequence of σ
containing only the complete operations of σ is denoted by
complete(σ). If an operation is not complete in a history it
is called pending. An extension of σ is any history that can
be obtained from σ by appending responses for any subset
of the pending requests in σ.

In a sequence of events σ an operation o precedes another
operation o′ if o completes before o′ is invoked. This is
denoted by o <σ o

′. If neither of two operations precedes
the other, they are concurrent. A sequence of events that does
not contain any concurrent events is called sequential. We

assume that every client invokes operations on one object
in a well-formed way, that is, the client never invokes an
operation on an object when an operation by that client on
the same object is pending.

A history π consisting only of events in a history σ is said
to preserve the real-time order of σ if for any two operations
o and o′ in π, the condition o <σ o′ implies that o <π o′.

A client subhistory of σ for a client c is the subsequence
of σ that contains only those events that occur at c; it is
denoted by σ|c. For an object O, the object subhistory σ|O
is defined analogously. Two histories σ and σ′ are equivalent
if for every client c it holds that σ|c = σ′|c.

The sequential specification defines a shared object by
describing its behavior in sequential executions. A history σ
is legal if each of its object subhistories is legal with respect
to the sequential specification.

An important class of objects appear to execute operations
“atomically,” as captured by the notion of linearizability
formalized by Herlihy and Wing [14]. We consider only
linearizable semantics in this work.

Definition 1 (Linearizability). A history of events σ is
linearizable if it has an extension σ′ and there exists a legal
sequential history π such that:

1) complete(σ′) is equivalent to π; and
2) π preserves the real-time order of σ.

B. Wait-freedom

In a system where several clients execute operations on
shared object(s), none of the clients should be prevented
from making progress due to operations of other clients. A
system achieving this property is called wait-free. This is an
important aspect of resilient Internet services. The notion
was made formal by Herlihy [12] but probably appears first
in the work of Lamport [15]. We consider only wait-free
systems in the remainder of this work.

Definition 2 (Wait-Freedom). Consider a system where
several clients access a shared object. The system is wait-
free if in all executions, every client gets a response to an
operation invocation within a finite number of steps, that is,
independent of failures and of actions of the other clients.

C. Consensus number

The consensus problem requires multiple clients to agree
on a common value from a set of proposed values. A
consensus object abstracts a service that provides a wait-
free implementation of a distributed protocol that solves the
consensus problem [12].

Definition 3 (Consensus Object). A consensus object is
a shared object with one operation decide(v); it takes a
value v, called a proposal, as input parameter and returns
a decision value. Every client calls decide with its own
proposal v at most once. The returned decision value d
satisfies:

2

1) (Validity) The value d is the proposal of some client;
and

2) (Consistency) All clients return the same decision
value d.

A consensus object permits any number of clients. For
simplicity we consider only binary consensus in this work,
where the proposals are either zero or one.

Next we introduce the concept of consensus numbers,
which is an important measure for the synchronization power
of a shared object in a wait-free system.

Definition 4 (Consensus Number [12]). The consensus
number of a shared object is the maximum number of clients
for which this object can solve the consensus problem. If no
maximum exists, the consensus number is said to be infinite.

The consensus number provides a measure for classifying
shared objects with respect to their power to synchronize
multiple concurrent clients. By definition, a consensus ob-
ject has infinite consensus number; consensus has been
called universal for this reason. One of the simplest objects
considered in the literature is a read/write register; it has
consensus number one [13]. The following result, first shown
by Herlihy [12], organizes all shared objects in a hierarchy
based on their consensus numbers.

Proposition 1 ([12]). If an object X has consensus num-
ber n and another object Y has consensus number m < n,
then X cannot be implemented in a wait-free way from Y
in a system with more than m clients.

In other words, a given shared object is strictly more
powerful than any other shared object that has a smaller
consensus number.

III. THE CONSENSUS NUMBER OF A REPLICA

Many protocols that implement robust shared memory in
distributed systems use the notion of logical timestamps [16]
for identifying different versions of a stored value over time.
They usually maintain the stored value in the form of a pair,
consisting of a timestamp ts and the actual value v.

We now introduce a replica object, which is inherent in
a large number of distributed implementations of shared
memory; it corresponds, for example, to the processors used
by Attiya et al. [10] and to the active disks of Chockler
and Malkhi [8]. Our replica object provides functionality to
conditionally store a timestamp/value pair, which is required
from the storage primitive in many robust shared storage
implementations. It serves any number of clients.

More precisely, a replica object R stores a time-
stamp/value pair internally and offers two operations, called
condwrite and read, as shown in Algorithm 1. Operation
condwrite(ts, v) takes a timestamp/value pair as input and
returns a constant symbol; it only stores the value v in the
replica object if the timestamp ts is bigger than the internally

Algorithm 1 Sequential spec. of the replica object R
state

(R.ts,R.v), initially (0,⊥);

operation condwrite(ts, v)
if ts > R.ts then

(R.ts,R.v)← (ts, v);
return ACK;

operation read()
return R.v;

stored timestamp. Operation read takes no input and returns
a value; it simply accesses the internally stored value and
returns it.

From the point of view of synchronization, replica objects
can be used to implement a consensus object for any number
of clients. Hence, a replica is universal and can implement
any synchronization primitive.

Theorem 2. The consensus number of a replica object is
infinite.

Proof: We show how to implement a consensus ob-
ject C from a replica object R. The emulation is shown
in Algorithm 2 and works as follows. At the start, the
timestamp/value pair at R is initialized to (0,⊥). When a
client invokes decide(v) of C with a proposal v, then the
emulation tries to write the pair (1, v) to R. Subsequently
it reads the value stored by R and returns it as the decision
value.

Algorithm 2 Implementation of a consensus object C using
a replica R
operation decide(v)

R.condwrite(1, v);
d← R.read();
return d;

The intuition behind this emulation is that only the first
invocation of condwrite executed by R will succeed in
storing a value, say v1, at R; it does not matter which client
executes it. Every subsequent conditional write is simply
ignored because R already stores timestamp 1. Once the
first client has decided v1, every other client that invokes
decide(v) also obtains v1.

Object C is wait-free because the implementation contains
no loops, the underlying replica R is wait-free, and every
operation immediately returns. Furthermore, C satisfies the
validity property of a consensus object, because decided
value is read from R and because the proposal of at least
one client is written to R before it is read. Hence, the
decided value must be an input from a client. Moreover,
C also implements consistency because only the first ever
invocation of condwrite may change the value the is returned

3

from R by read. Hence, C is a consensus object according
to Definition 3.

Note that there is no upper bound on the number of
clients that can write to or read from R; therefore, this
implementation solves consensus for any number of clients.
According to Definition 4, together with Proposition 1, this
implies that the consensus number of a replica object is
infinite.

IV. THE CONSENSUS NUMBER OF A KEY-VALUE STORE

A key-value store (KVS) represents an object-based stor-
age service, which has become popular in the context
of cloud storage. Pioneered by Amazon S3 [17], it now
represents a de-facto standard for many commercial cloud
storage services (e.g., Windows Azure [18], Rackspace [19],
and many others [20]).

This section illustrates the fundamental power of a KVS
for wait-free synchronization. We show how to implement a
KVS from a so-called snapshot object in a wait-free manner.
Snapshot objects represent a prominent abstraction of shared
storage with many applications. Since a snapshot object can
be implemented from register objects, we can show that the
KVS object has consensus number one.

A. Key-value store objects

A key-value store object, abbreviated KVS, is an associa-
tive array that allows storage and retrieval of values in a set
V associated with keys in a set K. The size of the stored
values is typically much larger than the length of a key, so
the values in V cannot be translated to elements of K and
be stored as keys.

A KVS supports four operations, formally specified in Al-
gorithm 3 [3]. The operations support (1) storing a value val
associated with a key key (denoted put(key, val)), (2) retriev-
ing a value val associated with a key (val← get(key)), which
may also return FAIL if key does not exist, (3) listing the keys
that are currently associated (l ← list()), and (4) removing
a value associated with a key (remove(key)).

B. Snapshot objects

A snapshot object [21], abbreviated SO, is a shared object
that stores n values in a system of n clients, one value per
client. In a single-writer snapshot object, as considered here,
every value may only be written by the corresponding client
and all clients may read all values.

More precisely, an atomic snapshot object SO maintains
a vector D of n values from a domain V and provides two
operations, denoted update and scan. When a client with
an index i ∈ {1, . . . , n} invokes update(i, v) for a value
v ∈ V , then SO atomically sets D[i]← v and responds with
an acknowledgment. No client may invoke update with the
index of another client. Operation scan() with no parameters
may be invoked by any client and returns the vector D.

The sequential specification of an atomic snapshot object
requires that for each D returned by scan, entry D[i] for

Algorithm 3 Sequential spec. of a key-value store object
state

live ⊆ K × V , initially ∅;

operation put(key, val)
live← (live \ {(key, v) | v ∈ V}) ∪ (key, val);
return ACK;

operation get(key)
if ∃v ∈ V such that (key, v) ∈ live then

return v;
else

return FAIL;

operation list()
return {key | ∃v : (key, v) ∈ live};

operation remove(key)
live← live \ {(key, v) | v ∈ V};
return ACK;

i = 1, . . . , n equals the value d given in the most recent
preceding update(i, d) operation by the client with index i;
if there is no such preceding update, then D[i] is equal to ⊥.

Interestingly, one can implement an atomic snapshot ob-
ject for any number of clients only from atomic read/write
registers [21]. Because registers have consensus number one,
atomic snapshot objects have consensus number one.

C. From snapshot objects to KVS objects

This section gives a constructive proof of the following
theorem, by exhibiting a wait-free implementation of a KVS
object from atomic snapshot objects.

Theorem 3. The consensus number of a key-value store
object is one.

Proof: We implement a KVS object K with one atomic
snapshot object SO. Recall that clients interact with every
object in a well-formed manner.

The idea behind the emulation is to maintain in SO[i] a
list of all put and remove operations executed on the KVS by
the client with index i. Every such operation is represented
by a tuple (i, ts, key, val) ∈ {1, . . . , n}×N×K×V , where ts
represents a logical timestamp that is incremented by every
client when it executes an operation.

The history of operations of the client with index i, as
stored in D[i], consists of a concatenated list of such tuples:

D[i] = (i, ts, key, val) ‖ · · · ‖ (i, ts′, key′, val′).

For two tuples τ = (i, ts, key, val) and τ ′ =
(j, ts′, key′, val′) we define a tuple order relation and say
that τ is bigger than τ ′, denoted τ > τ ′, whenever ts > ts′

or ts = ts′ ∧ i > j.
We next describe the implementation; a formal statement

appears in Algorithm 4.

4

Algorithm 4 Implementation of a KVS object K form a
snapshot object SO.
operation put(key, val) by client with index i

D ← SO.scan();
t← 0;
for j ∈ {1, . . . , n} and (j, ts, k, v) ∈ D[j] do

if k = key and t < ts then
t← ts;

t← t+ 1;
d← D[i] ‖ (i, t, key, val);
SO.update(i, d);
return;

operation get(key) by client with index i
D ← SO.scan();
(t, val)← (0,⊥);
for j ∈ {1, . . . , n} and (j, ts, k, v) ∈ D[j] do

if k = key and t < ts then
(t, val)← (ts, v);

return val;

operation remove(key) by client with index i
put(key,⊥); // invoke the operation on itself
return;

operation list()
D ← SO.scan();
let L be the set of distinct keys from D, i.e.,

L←
{
k
∣∣(j, ts, k, v) ∈ ⋃n

i=1 D[i]
}

;
K ← ∅;
for key ∈ L do

let (j, ts, k, v) be the biggest tuple in
⋃n

i=1 D[i]
with k = key according to tuple order;

if v 6= ⊥ then
K ← K ∪ {key};

return K;

The operation put(key, val) by a client with index i first
scans SO and retrieves all histories. Then it determines the
maximal tuple (j, ts, k, v) from all histories according to
tuple order. It increments the timestamp, sets t ← ts + 1,
appends the tuple (i, t, key, val) to the list in D[i], and uses
the result to update its entry in SO. Recall that only the
client with index i may invoke update(i, ·).

Operation get(key) just scans the snapshot object and
searches in the returned histories for the largest tuple ac-
cording to tuple order whose key equals key; denote this by
(i, ts, key, val). If such a tuple is found, the operation returns
val; otherwise, it returns ⊥.

To execute remove(key), the implementation stores the
special character ⊥ under key using the put operation already
implemented.

Finally, the list() operation scans the snapshot object,
examines every tuple from every history, and retains, for
every key, the maximal tuple according to tuple order. These
tuples are collected in a set K. The list to return is then
obtained by extracting the keys of those tuples from K in
which the value is not ⊥, i.e., those that have not been

removed.
Note that the size of D[i] could be reduced without af-

fecting the emulation: operations that have been superseded
by other operations (for the same key but with a larger
timestamp) can be eliminated to save space.

We now show that this implementation produces lin-
earizable histories that satisfy the specification of a KVS
according to Algorithm 3. Given a history σ, we construct
a legal sequential history π that satisfies the properties of
linearizability and argue that it is legal.
• The empty history is legal.
• Any history without concurrent operations is legal. This

follows because the timestamps are strictly monotoni-
cally increasing during all put and remove operations.
As the get operation returns the value with the highest
timestamp in tuple order, get returns the most recently
written value. The same argument shows that the output
of the list operation is legal.

• Two concurrent get and/or list operations with no
concurrent put or remove operations can be ordered in
any way, since they do not affect each other.

• Two concurrent put and/or remove operations with the
same key are scheduled according to the order on the
tuples that represent them. Suppose clients p and r
are concurrently invoking operations ωp = put and
ωr = remove with the same key. The operations are
scheduled such that ωp >π ωr if and only if the tuple
representing ωp is bigger than the tuple representing ωr.
Note that p 6= r because all clients execute operations
in a well-formed way. Thus, one of the two tuples
is strictly bigger than the other in tuple order. All
subsequent get and list operations also return the result
of the operation (ωp or ωr) that is scheduled last.
Another subsequent put and remove operation with the
same key will increment the timestamp, hence, the
results of ωp or ωr are never returned afterwards.

• Consider now a put or remove operation that is concur-
rent to get or list operation. We observe that the update
on SO near the end of the put and remove operations
and the scan on SO at the beginning of the get and list
operations are linearizable because SO is atomic.
We schedule a put or remove operation ω in π before a
concurrent get or list operation ρ whenever the update
in ω precedes the scan in ρ. If ω <π ρ, then ω
incremented the timestamp and ρ returns the value
written by ω because it has the maximal timestamp,
as required. Otherwise, if ρ <π ω, then ρ appears in
π before ω. This is also legal since the scan operation
of ρ has not been affected by the update operation in
ω according to the construction of π. Hence, the value
returned by ρ is legal.

• Finally, consider multiple concurrent put and/or remove
operations. As shown before, executions with one put
or remove operation concurrent to one further operation

5

can be linearized.
Assume that k − 1 put and remove operations have
been linearized and consider the k-th put or remove
operation ω. It is scheduled:

– after all get and list operations whose embedded
scan precedes the update operation in ω;

– before all get and list operations whose embedded
scan is scheduled after the update operation in ω;

– before all put and remove operations by clients
with a higher index; and

– after all put and remove operations by clients with
a smaller index.

It is straightforward to verify that π constructed like
this is sequential and legal.

• History π preserves the real-time order of σ because
no sequential operations are reordered.

This completes the construction of our wait-free imple-
mentation of a KVS object from a single-writer atomic snap-
shot object. Since the snapshot object has consensus number
one, Proposition 1 implies that the consensus number of a
KVS object is also one.

V. CONCLUSION

This paper shows that the consensus number of a typical
storage replica in timestamp-based replication algorithms
is infinite, but a KVS, provided by most cloud storage
services, has consensus number one. Therefore these two
providers have fundamentally different power for synchro-
nizing operations of multiple clients in wait-free algorithms
(formally captured in Proposition 1). This result explains
why replication algorithms using KVS providers, such as
DepSky [7] and Intercloud Storage [3], use more complex
methods to synchronize multiple clients than traditional data
replication schemes.

Our result also gives an incentive for considering exten-
sions of the KVS interface, such as the active KVS model
introduced recently [22].

ACKNOWLEDGMENTS

We thank Sabrina Pérez and Marko Vukolić for interesting
discussions and helpful comments.

This work has been supported in part by the Eu-
ropean Commission through the ICT programme under
contracts ICT-2007-216676 ECRYPT II and ICT-2009-
257243 TClouds.

REFERENCES

[1] F. B. Schneider and L. Zhou, “Implementing trustworthy
services using replicated state machines,” IEEE Security &
Privacy Magazine, pp. 34–43, Sep. 2005.

[2] M. Garcia, A. N. Bessani, I. Gashi, N. F. Neves, and R. R.
Obelheiro, “OS diversity for intrusion tolerance: Myth or
reality?” in Proc. DSN, 2011, pp. 383–394.

[3] C. Băsescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti,
M. Vukolić, and I. Zachevsky, “Robust data sharing with key-
value stores,” in Proc. DSN, Jun. 2012.

[4] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-
availability and integrity layer for cloud storage,” in Proc.
CCS, 2009, pp. 187–198.

[5] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon,
“RACS: A case for cloud storage diversity,” in Proc. SOCC,
2010.

[6] J. K. Resch and J. S. Plank, “AONT-RS: Blending security
and performance in dispersed storage systems,” in Proc.
FAST, 2011.

[7] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa,
“DepSky: Dependable and secure storage in a cloud-of-
clouds,” in Proc. EuroSys, 2011, pp. 31–46.

[8] G. Chockler and D. Malkhi, “Active disk Paxos with infinitely
many processes,” Distributed Computing, vol. 18, no. 1, pp.
73–84, 2005.

[9] B. Charron-Bost, F. Pedone, and A. Schiper, Eds., Replica-
tion: Theory and Practice, ser. Lecture Notes in Computer
Science. Springer, 2010, vol. 5959.

[10] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory
robustly in message-passing systems,” in Proc. PODC, 1990,
pp. 363–375.

[11] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction
to Reliable and Secure Distributed Programming (Second
Edition). Springer, 2011.

[12] M. Herlihy, “Wait-free synchronization,” ACM Transactions
on Programming Languages and Systems, vol. 11, no. 1, pp.
124–149, Jan. 1991.

[13] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann, 2008.

[14] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 12, no. 3, pp. 463–
492, Jul. 1990.

[15] L. Lamport, “A new solution of Dijkstra’s concurrent pro-
gramming problem,” Communications of the ACM, vol. 17,
no. 8, pp. 453–455, 1974.

[16] ——, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7,
pp. 558–565, Jul. 1978.

[17] “Amazon Simple Storage Service,” http://aws.amazon.com/
s3/.

[18] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie et al., “Windows Azure Storage: A highly
available cloud storage service with strong consistency,” in
Proc. SOSP, 2011.

[19] “Rackspace hosting,” http://www.rackspacecloud.com/cloud
hosting products/files/.

[20] “jclouds — multi-cloud library,” http://www.jclouds.org/.
[21] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and

N. Shavit, “Atomic snapshots of shared memory,” Journal
of the ACM, vol. 40, no. 4, pp. 873–890, 1993.

[22] R. Geambasu, A. A. Levy, T. Kohno, A. Krishnamurthy, and
H. M. Levy, “Comet: An active distributed key-value store,”
in Proc. OSDI, 2010.

6

