Lazy Revocation in Cryptographic File Systems

Michael Backes Christian Cachin Alina Oprea

IBM Zurich Research Laboratory
CH-8803 Rischlikon, Switzerland
{mbc,cca,opr }@zurich.ibm.com

September 2, 2005

Abstract

A crucial element of distributed cryptographic file systems are key management solutions that allow
for flexible but secure data sharing. We consider efficient key management schemes for crypto-
graphic file systems using lazy revocation. We give rigorous security definitions for three crypto-
graphic schemes used in such systems, namely symmetric encryption, message-authentication codes
and signature schemes. Additionally, we provide generic constructions for symmetric encryption
and message-authentication codes with lazy revocation using key-updating schemes for lazy revo-
cation, which have been introduced recently. We also give a construction of signature schemes with
lazy revocation from identity-based signatures. Finally, we describe how our constructions improve
the key rotation mechanism in the Plutus file system.

1 Introduction

Networked storage solutions, such as Network-Attached Storage (NAS) and Storage Area Networks
(SAN), have emerged recently as an alternative to direct-attached storage. It is desirable that clients
have similar security guarantees in these environments to those offered by traditional storage. However,
the storage servers in a networked storage system are more exposed than direct-attached disks. Clients
need to protect the confidentiality and integrity of the stored data themselves and can not rely on the
storage servers for security guarantees. Cryptographic file systems have been designed for this task.

Sharing of information among clients is an important feature offered by file systems. Protecting data
in non-cryptographic file systems relies on an access control mechanism, like the access control model
of the Unix file system. Data sharing in cryptographic file systems is complicated by the problem of key
management. While early cryptographic file systems did not address key management, recent systems
offer diverse solutions. They range from fully centralized key distribution using a trusted key server [12]
to completely decentralized key distribution done by the file system users [18, 17].

Access control granularity in a cryptographic file system affects the number of keys that need to
be managed and the complexity of user revocation. Traditionally, access control is performed at the
granularity of files and every file is protected by its own cryptographic keys. Another method, proposed
in the Plutus file system [17], is to group files irftiegroupswith the same access control permissions
and the same owner and to use the same cryptographic keys for all files in a filegroup. This method
reduces the number of keys that need to be managed and distributed to users. In the rest of the paper, we
assume that access control and key management are done for filegroups, but, nevertheless, our model
can also be applied to the case in which keys are managed for each file individually.

Assuming that multiple users have access permissions for a filegroup, they need to share the keys of
the filegroup. Atrusted entitywhich might either be a trusted key server or the owner of the filegroup,
distributes the cryptographic keys for the filegroup. The users that have access rights to the filegroup
might change over time. New users might be granted access to the filegroup, and existing users’ access
rights might be revoked. Initially, the same cryptographic keys can be used for all files in the filegroup,
but once a revocation occurs, the keys need to be changed so that revoked users can not further perform
cryptographic operations on files. It is thus necessary that the trusted entity changes the filegroup keys
and distributes fresh keys to the users after every revocation. In addition, the cryptographic informa-
tion computed with these keys (either ciphertext or integrity protection information for files) has to be
recomputed.

There are two revocation models, depending on when the cryptographic information is updated. In
anactive revocatioomodel, all cryptographic information is immediately recomputed after a revocation
takes place. This is expensive and might cause disruptions in the normal operation of the file system.
In the alternative model dhzy revocationthe information for each file is recomputed only when the
file is modified for the first time after a revocation [12]. Lazy revocation is more efficient than active
revocation, and, in addition, revoked users do not get access to new information. But in systems with
lazy revocation, key management becomes more difficult than in systems with active revocation because
multiple keys might be used simultaneously for the files in the filegroup. These keys have to be stored
and distributed to users upon request. Cryptosystems with efficient key management for file systems
using lazy revocation are the focus of our work.

Contributions. This paper provides a comprehensive formalization of the cryptographic primitives
used in a file system with lazy revocation. In our model, the cryptographic keys needed for operations
on files are updated every time the trusted entity revokes a user. A user that has access rights to a
filegroup receives from the trusted entityiser keythat can be used to extract all keys needed for the
cryptographic operations on the files. We define variations of symmetric encryption schemes, message-
authentication codes and signature schemes with lazy revocation.

We give rigorous security definitions for the three cryptographic primitives. We also give generic
constructions of symmetric encryption schemes and message-authentication codes with lazy revocation
using the abstraction of key-updating schemes for lazy revocation, defined in a companion paper [2]. In
addition, we give a generic transformation of identity-based signatures [24] to signature schemes with
lazy revocation. Finally, we show how our primitives can be used in cryptographic file systems adopting
lazy revocation.

Our lazy revocation model generalizesy rotation a mechanism used previously for key manage-
ment in the Plutus file system [17]. Using our constructions, we improve the key management scheme
of the Plutus file system in two ways: first, the extraction of encryption keys for previous time inter-
vals can be done more efficiently than key rotation in Plutus, using only symmetric-key operations,
and, secondly, using signature schemes with lazy revocation, the storage space taken by the signature
verification keys can be reduced from linear in the number of revocations to a constant.

Related work. Riedel et al. [23] survey the security of existing storage systems, in particular crypto-
graphic file systems. Here we focus on key management schemes in these systems. The first crypto-
graphic file systems (CFS [7, 8] and TCFS [10]) include simple key management schemes, not suitable
for sharing large amounts of data. Cepheus [12] considers data sharing and uses a trusted key server for
distributing cryptographic keys. Cepheus introduces the idea of lazy revocation, and implements it by
storing all previous cryptographic keys for a filegroup on the trusted server.

Plutus [17] also adopts lazy revocation and introduces a sophisticated scheme for the derivation of

previous cryptographic keys from the latest keys, called key rotation. Key rotation is applied to both
the encryption keys and the signature keys for a filegroup. These keys are rotated forward by the owner
applying the RSA permutation to the current key, using knowledge of the trapdoor information. Keys
are rotated backward by users themselves using the public RSA permutation. Differentiation of readers
and writers is done by distributing the file-signing key only to writers and the file-signature verification
key only to readers.

In file systems such as Farsite [1], SNAD [22] and SiRiUS [13] the file data is protected by a unique
file encryption key and/or a unique file signature key. The meta-data information for a file includes
an encryption under the public key of each user with access rights to the file of these file keys. To
perform a file operation, a user retrieves the encrypted meta-data information from the untrusted storage
servers. While this scheme simplifies key management, it requires additional space on the storage
servers proportional to the number of users accessing a file. To our knowledge, neither of these file
systems addresses the problem of efficient revocation of users.

SUNDR [19] only provides data integrity, but not confidentiality. Every user signs files with its own
signing key. A user checking the integrity of a file also needs to check that the user that signed the
file still has write access to the file. SUNDR assumes a public-key infrastructure and a mechanism for
distributing individual users’ public keys to all users in the system.

2 Modeling Lazy Revocation in Cryptographic File Systems

In systems adopting lazy revocation, the cryptographic keys used to perform operations on files need
to be changed after every user revocation. We defiti@ea intervalto be the period between two user
revocations. The total number of time intervals can be large. The trusted entity that is responsible for
the cryptographic keys must change them at the beginning of each time interval and distribute the fresh
keys to users having access to files.

Before providing the formal definition of our cryptographic primitives with lazy revocation, we
recall the definition okey-updating schemes for lazy revocatigiven in a companion paper [2]. Key-
updating schemes for lazy revocation are an abstraction to manage the keys @y@anf@tricencryp-
tion and authentication algorithms for data storage systems with lazy revocation.

We do not consider here public-key encryption schemes with lazy revocation, as they do not have
direct applications to storage systems. If needed in other applications, public-key encryption schemes
with lazy revocations can be defined using our lazy revocation model. A construction similar to that of
a forward-secure encryption scheme [9] can be obtained from binary tree encryption schemes defined
by Canetti, Halevi and Katz [9].

Key-Updating Schemes for Lazy Revocation. The model of key-updating schemes for lazy revoca-

tion consists of a trusted entity (callegnterin [2]) that manages the keys for a filegroup, and users

that have access permissions to the filegroup. The trusted entity generates an initial state that is updated
at the beginning of each time interval (corresponding to a revocation) and from which it can derive user
keys upon request. A user can extract from a user key for a particular time interval the symmetric keys
for all previous time intervals. We review the formal definition of key-updating schemes here.

Definition 1 (Key-Updating Schemes for Lazy Revocation [2]).A key-updating scheme consists of
four deterministic polynomial-time algorithmddJ = (Init, Update, Derive, Extract) with the following
properties:

— The initialization algorithminit, takes as input aecurity parametet”, anumber of time inter-
valsT, and arandom seed of length polynomial in and outputs an initigrusted stateS.

— The key update algorithn/pdate, takes as input the curretime intervalt, the currentrusted
stateS;, and outputs &usted state5; ; for the next time interval.

— The user key derivation algorithnerive, is given as input dime intervalt, and thetrusted
state.Sy, and outputs aiser keyM;. The user key can be used to derive all kéy®f previous
time intervals, forl < i <*t.

— The key extraction algorithnixtract, is executed by the user and takes as ingirha intervalt,
the user keyM; for that time interval received from the trusted entity, andrget time interval
1 < ¢ < t. The algorithm outputs thieeyk; for target time intervai.

We define thdnit algorithm of a key-updating scheme to be deterministic because we can compose
efficiently schemes with deterministic initialization algorithms. Huglitiveand multiplicative com-
position methods [2] combine two key-updating schemes into a new scheme with the number of time
interval either the sum or the product of the number of intervals of the two schemes. These methods are
useful in building schemes with a large number of time intervals.

Security of key-updating schemes for lazy revocation. Informally, a key-updating scheme is secure
if an adversary given the user keys for all consecutive time intervals up to some tiraeis chosen
adaptively, has no advantage in distinguishing the key for time intervalfrom a randomly generated
key. Formally, consider a probabilistic polynomial-time adversdrihat participates in the following
experiment:

Initialization: Given a random seed, the initial trusted state is generated withithegorithm.

Key compromise: The adversary adaptively picks a time intervauch thatd < ¢ < T as follows.
Starting witht = 0,1,..., the adversary is given the user keyg for all consecutive time
intervals until.4 decides to outpuitop or ¢t becomes equal t6' — 1.

Challenge: A challenge for the adversary is generated, which is either the key for time intefval
generated with the algorithms of the key-updating scheme, or a random bit string of the appropri-
ate length.

Guess: A outputs a bib.

The key-updating scheme is secure if the advantage of the adversary of distinguishing between the
properly generated key for time interva- 1 and the random key is only negligibly larger thémFor

an adversaryl and a key-updating scheri@) we denoteAdvi{} (A) its advantage. We denofelvi)

the maximum advantage of all adversaries.

Remark 1. Since we allowl” to be exponential in the security parameter, we requirehat proba-
bilistic polynomial-time algorithm, outputsop at least once before halting. This requirement is placed
on all cryptographic primitives for lazy revocation defined in this section, but is omitted in subsequent
definitions for brevity.

Remark 2. This definition of security is equivalent to a definition in which the adversary can choose
the challenge time interval in which it has to distinguish between the keys, as long‘as ¢ and¢*

is polynomial in the security parameter. We consider a game in which the adversary is challenged at
time intervalt + 1 in all security definitions of cryptographic primitives for lazy revocation given in this
paper.

Implementation. Three key-updating schemes are introduced in [2¢haining constructiorbased
on familiar hash chains, taapdoor permutatiorscheme derived from the key rotation method in Plu-
tus [17], and a novetee constructionwhich is the most efficient one among them.

3 Symmetric Encryption Schemes with Lazy RevocationSE-LR)

In a cryptographic file system adopting lazy revocation, the file encryption keys must be updated by the
trusted entity (e.g., the owner of the filegroup) as described above. Users might need to encrypt files
using the encryption key of the current time interval or to decrypt files wsitydkey of a previous time
interval. Upon sending a corresponding request to the trusted entity, authorized users reagses the
keyof the current time interval from the trusted entity. Both the encryption and decryption algorithms
take as input the user key, and the decryption algorithm additionally takes as input the index of the time
interval for which decryption is performed.

3.1 Security Definitions

Before defining formally symmetric encryption schemes with lazy revocation, we first define symmetric
encryption schemes and security against chosen-plaintext attack®fesecurity. We are interested

in CPA-security as standard randomized modes of operation (e.g., cipher-block chaining) used with a
block cipher modeled as a pseudo-random permutation satisfy this notion of security [4], but not stronger
notions like security against chosen-ciphertext attacks.

Symmetric Encryption Schemes. A symmetric encryption schentconsists of three algorithms: a
key generation algorithr@en(-) that outputs an encryption key (taking as input the security parameter),
an encryption algorithnncy (m) that outputs the encryption of a given messagwith key &, and a
decryption algorithnDecy(c) that decrypts a ciphertextwith key k. The first two algorithms might be
probabilistic, buDec is deterministic.

The correctness property requires tBat; (Ency(m)) = m, for all keysk generated with th&en
algorithm and all messages from the encryption domain.

CPA-security of a symmetric encryption scheéne- (Gen, Enc, Dec) requires that any polynomial-
time adversaryd with access to an encryption oraélec(-) is unable to distinguish between encryption
of two messagesiy and m; of its choice. If A produces two messages whose encryptions it can
distinguish with non-negligible probability, we say thdtsucceeds in breaking the CPA-security of
schemef. We refer the reader to the paper by Bellare et al. [4] for formal definitions of CPA-security.
For an adversaryl and a symmetric encryption scheigve denoteAdvgpa(A) its advantage. W.l.0.g.,
we can relate the success probabilityofnd its advantage as

Pr[A succeeds= %[1 + AdvgP (A)]. (1)

Definition of SE-LR. Symmetric encryption schemes with lazy revocation incllide Update and
Derive algorithms whose role is to generate keys similar to the corresponding algorithms of key-updating
schemes, and secret-key encryption and decryption algorithms that use the keys.

Definition 2 (Symmetric Encryption with Lazy Revocation). A symmetric encryption scheme with
lazy revocation consists of a tuple of five polynomial-time algorittiini, Update, Derive, Enc, Dec)
with the following properties:

— Thelnit, Update and Derive deterministic algorithms have the same specification as the corre-
sponding algorithms of a key-updating scheme.

— The probabilistic encryption algorithrinc, takes as input #me intervalt, the user keyM; of
the current time interval andraessagen, and outputs a&iphertexte.

— The deterministic decryption algorithmec, takes as input ime intervalt, theuser keyM; of
the current time interval, thiame intervali for which decryption is performed, anctgphertexic,
and outputs laintextm.

Correctness ofSE-LR. Suppose thab, < Init(1%, T, s) is the initial trusted state computed from
a random seed, S; < Update(i, Update(i — 1,..., Update(0,.Sp)...)) is the trusted state for time
interval: < T and M; < Derive(i, S;) is the user key for time interval The correctness property
requires thaDec(t, M, i, Enc(i, M;, m)) = m, for all messages: from the encryption domain and all
i,twithi <t <T.

CPA-security of SE-LR. The definition of CPA-security foBE-LR schemes requires that any poly-
nomial-time adversary with access to the user key for a time inteértbadt it may choose adaptively
(and, thus, with knowledge of all keys for time intervals priort}pand with access to an encryption
oracle for time intervat + 1 is not able to distinguish encryptions of two messages of its choice for time
intervalt + 1.

Formally, consider a probabilistic polynomial-time adversaryhat participates in the following
experiment:

Initialization: Given a random seed, the initial trusted stéijas generated with thinit algorithm.

Key compromise: The adversary adaptively picks a time intervalich that) < ¢ < 7. To this end, a
loop is executed and at each iteratip is given the user key for time interval The loop ends
when the adversary decides to outpiup or ¢t becomes equal t& — 1.

Challenge: When.A outputsstop, it also outputs two messages, andmy. A random bit is selected
and A is given a challenge = Enc(t + 1, M;4+1,my), where M, is the user key for time
intervalt 4+ 1 generated with thénit, Update andDerive algorithms.

Guess: A has access to an encryption ora€te(t + 1, M1, -) for time intervalt + 1. At the end of
this phaseA outputs a bit/ and succeeds if = v'.

TheSE-LR scheme is CPA-secure if the adversary succeeds in this game with probability only negligibly
cpa-lr

larger than%. For an adversaryl and aSE-LR schemef!* we denoteAdv,,; — (A) its advantage.
W.l.0.g., we can relate the success probabilitydodind its advantage as

Pr[A succeeds= % [1+ Advh™t(A)]. (2)

Remark. A tweakable block cipher [20, 16] is similar to a symmetric encryption scheme with the
difference that it is deterministic and both the encryption and decryption algorithms take an additional
parameter, calletiveak Such ciphers must be length-preserving and require that encryptions are indis-
tinguishable as long as they are produced with different tweaks. We do not define tweakable ciphers
here, but the interested reader can consult [16] for formal definitions. Tweakable ciphers with lazy re-
vocation can be defined and implemented in a similar way as symmetric encryption schemes with lazy
revocation. We omit here the details.

3.2 Generic Construction

Let KU = (Init, Update, Derive, Extract) be a secure key-updating scheme &nd (Gen, Enc, Dec) a
CPA-secure symmetric encryption scheme such that the keys generatéthaye the same length as
those generated k. We construct a symmetric encryption scheme with lazy revoc&ttén= (Init'*,
Update®®, Derive!™, Enc'*, Dec'*) as follows:

1. Thelnit!*, Update'*, andDerivel* algorithms of£1* are the same as the corresponding algo-
rithms of KU.

2. TheEnc'* (¢, My, m) algorithm runsk; « Extract(t, M;,t) and outputs: < Ency, (m).
3. TheDec'*(t, My, i, m) algorithm runsk; <« Extract(¢, My, i) and outputsn < Decy, (c).

Theorem 1. Suppose thakU is a secure key-updating scheme for lazy revocation &gl a CPA-
secure symmetric encryption scheme. T&¥nis a CPA-secure symmetric encryption scheme with lazy
revocation.

Proof. Correctness is easy to see. To prove CPA-securif}oflet A* be a polynomial-time adversary
algorithm successful in breaking the CPA-security of schérife We construct an adversag that
breaks the CPA-security of scherfie

— Ais given access to an encryption oraEle(-).
— A generates a random seednd uses this to generate an instance of the schéine
— A gives to A" the user keyd/, from the instance of schent€U generated in the step above.

— WhenA'* outputsstop at time interval and two messages;, andm;, .4 also outputsny and
mi.

— Ais given challenge and it gives this challenge td'*.

— WhenA'* makes a query to the encryption oracle for time intervall, A replies to this query
using the encryption orackenc(+).

— A outputs the same bit a4'*.

From the construction of the simulation it follows that
Pr[A succeeds= Pr[A'" succeeds$E],

where E is the event that4'* does not distinguish the simulation done Hyfrom the CPA game
defined in Section 3. The only difference between the simulation and the CPA gameAdsubes in the
simulation the encryption oracle with a randomly generated key to reply to encryption queries for time
intervalt 41, whereas in the CPA game the encryption is done withikey generated with thEpdate,
Derive andExtract algorithms of schem&U. By the definition ofE, we havePr[E] < Adviy.

We can bound the probability of success4¥f as:

Pr[A' succeeds = Pr[A'" succeed$E|Pr[E|+
Pr[A" succeed$E | Pr|E]
r[A™ succeed$E]+ Pr[E]

P
Pr[A succeed$+Adviy). (3)

IN A

7

Using (1), (2), and (3) we obtain

Adv R (ATT) < AdvP?(A) + 2AdVERY.
Sincef is a CPA-secure encryption scheme afld is a secure key-updating scheme, it follows that
AdvF®(A) andAdviss are negligible. This implies thatdvgie ™" (%) is negligible, which proves the
statement of the theorem. O

Implementation. In practice, we can instantiate the CPA-secure symmetric-encryption scheme with
a block cipher (such as AES) in one of the CPA-secure modes of operation [21] (e.g., cipher-block
chaining). The most efficient key-updating scheme is our binary tree construction proposed in [2],
which only performs symmetric-key operations (more specifically, pseudo-random function applications
implemented again by a block cipher). lipdate, Derive and Extract algorithms have logarithmic
complexity and its trusted state and user key sizes are logarithmic in the total number of time intervals.

Suppose that AES with 128-bit key size is used for the derivation of the cryptographic keys. In
a system that supports up to 1000 revocations, at most 10 AES computations need to be done for the
Update, Derive and Extract algorithms. The center state and user keys consist of up to 10 AES keys
or 160 bytes each. This adds a very small overhead to the cost of file data encryption. Details of the
binary-tree construction are given in a companion paper [2].

4 Message-Authentication Codes with Lazy RevocationAC-LR)

If message-authentication codes are used for providing integrity in a cryptographic file system, then
a secret key for computing and verifying authentication tags needs to be distributed to all authorized
users. The users generate an authentication tag using the key of the current time interval and may
verify authentication tags for any of the previous time intervals with the corresponding keys. Similar
to symmetric-key encryption with lazy revocation, both the tagging and verification algorithms need to
take as input the current user key, and the verification algorithm additionally takes as input the index of
the time interval at which the tag was generated.

4.1 Security Definitions

Before defining message-authentication codes with lazy revocation, we recall the definitions of message
authentication codes and their security under chosen-message attaCk&Xegecurity.

Message-Authentication Codes. A message-authentication code (MAC) consists of three algorithms:
a key generation algorithiien(-) that outputs a key (taking as input a security parameea tagging
algorithmTag,, (m) that outputs the authentication ta@f a given message: with key &, and a verifi-
cation algorithnVer (m, 7) that outputs a bit. A tag is said to bevalid on a message: for a keyk if
Ver,(m,) = 1. The first two algorithms might be probabilistic, Bidr is deterministic.

The correctness property requires thaty (m, Tag,(m)) = 1, for all keysk generated with the
Gen algorithm and all messages from the message space.

CMA-security for a message-authentication code [5] requires that any polynomial-time adversary
with access to a tagging oracleg(-) is not able to generate a message and a valid tag for which it did
not query the tagging oracle.

Definition of MAC-LR. Message-authentication codes with lazy revocation incladeUpdate and
Derive algorithms whose role is to generate keys similar to the corresponding algorithms of key-updating
schemes, and secret-key tagging and verification algorithms that use those keys.

Definition 3 (Message-Authentication Codes with Lazy Revocation)A message-authentication code
with lazy revocation consists of a tuple of five polynomial-time algorittiimi, Update, Derive, Tag,
Ver) with the following properties:

— Thelnit, Update and Derive deterministic algorithms have the same specification as the corre-
sponding algorithms of a key-updating scheme.

— The probabilistic tagging algorithnfag, takes as input ime intervalt, theuser keyM; of the
current time interval and messagen, and outputs an authenticatitag .

— The deterministic verification algorithier, takes as input ime intervalt, theuser keyM, of
the current time interval, thi@me intervali for which verification is performed, messagen, and
atag, and outputs &it. A tagT computed at time intervalis said to bevalid on message if
Ver(t, My, i,m, Tag(i, M;,m)) = 1 for somet > i.

Correctness of MAC-LR. Suppose tha, < Init(1%, T, s) is the initial trusted state computed from
a random seed, S; <« Update(i, Update(i — 1,...,Update(0,Sy) ...)) is the trusted state for time

interval: < T and M; < Derive(i, S;) is the user key for time interval The correctness property
requires thawer(¢, My, i, m, Tag(i, M;,m)) = 1, for all messages: from the message space and all
i,twithi <t <T.

CMA-security of MAC-LR. The definition of security foMAC-LR schemes requires that any poly-
nomial-time adversary with access to the user key for a time intertredt it may choose adaptively
(and, thus, with knowledge of all keys for time intervals priotxoand with access to a tagging oracle
for time intervalt + 1 is not able to create a valid tag on a message not queried to the tagging oracle.

Formally, consider a probabilistic polynomial-time adversaryhat participates in the following
experiment;

Initialization: Given a random seed, the initial trusted stsi§ds generated with thinit algorithm.

Key compromise: The adversary adaptively picks a time intervalich that) < ¢ < 7. To this end, a
loop is executed and at each iteratipd is given the user key for time interval The loop ends
when the adversary decides to outpup or ¢ becomes equal t& — 1.

Tag generation: 4 has access to a tagging ora¢te (¢ + 1, M, 1, -) for time intervalt + 1 and outputs
a message: and a tagr.

The adversary is successful in breaking the CMA-security of the message-authenticationceaesif
not a query to the tagging oracle ands a valid tag onn for intervalt + 1. The MAC-LR scheme is
CMA-secure if the adversary succeeds in this game only with negligible probability.

4.2 Generic Construction

Let KU = (Init, Update, Derive, Extract) be a secure key-updating scheme &hll = (Gen, Tag,

Ver) a CMA-secure message-authentication code such that the keys generatedhaye the same
length as those generated MA. We construct a message-authentication code with lazy revocation
MA = (Init'*, Update™™, Derive'*, Tag'*, Ver'*) as follows:

9

1. Thelnit'*, Update!™, andDerive'* algorithms of schemBIA'* are the same as the corresponding
algorithms ofKU.

2. TheTag'" (¢, My, m) algorithm runsk, < Extract(t, My, t) and outputs: < Tag, (m).

3. TheVer*(t, My, i, m,) algorithm runsk; < Extract(t, My, i) and outputs the value returned
by Ver, (m, 7).

Theorem 2. Suppose thaKU is a secure key-updating scheme for lazy revocationMAds a CMA-
secure message-authentication code. TRBXI™ is a secure message-authentication code with lazy
revocation.

Proof. Correctness is easy to see. To prove CMA-securityMar'*, let A" be a polynomial-time
adversary algorithm successfully in breaking the security of schdi&. We construct an adversary
A that breaks the security of schefié\:

— Ais given access to a tagging oradleg(-).
— A generates a random seednd uses this to generate an instance of sch€he
— A gives to.A'* the user key$/; from the instance of schent@J generated in the step above.

— When A* makes a query to the tagging oracle for time intetval 1, A replies to this query
using the tagging oracl€ag(-).

— A outputs the same message and tag pait'ds

From the construction of the simulation it follows that
Pr[A succeeds= Pr[A'" succeeds$E],

whereF is the event thatl** does not distinguish between the simulation dongland the MAC game
from Section 4. Using a similar argument as in the proof of Theorem 1, we can Ba{iifl < Advi.
It is immediate, as in the proof of Theorem 1 that

Pr[A' succeed$< Pr[A succeed$+Advily,

and the security of schem&$) andMA imply the conclusion of the theorem. O

Implementation. In practice, there are many efficient MAC schemes, such as CBC-MAC [21] or
HMAC [3]. They can be combined with key-updating schemes for lazy revocation and achieve the same
complexities as the implementation of symmetric encryption schemes with lazy revocation.

5 Signature Schemes with Lazy Revocatior56-LR)

Signature schemes can be used for providing integrity of files. When differentiation of readers and writ-
ers is desired, a MAC is not sufficient because it is a symmetric primitive, and an asymmetric signature
scheme is needed. The group signing key is distributed only to writers, but the group verification key
is given to all readers for the filegroup. Writers may modify files and recompute signatures using the
signing key of the current time interval. Readers may check signatures on files generated at previous
time intervals. We consider a model for signature schemes with lazy revocation in which the public key
remains constant over time and only the signing keys change at the beginning of every time interval.

10

5.1 Security Definitions

Before defining signature schemes with lazy revocation, we recall the definition of signature schemes
and their security under chosen-message attackSNtX-security.

Signature schemes. A signature scheme consists of three algorithms: a key generation algorithm
Gen(+) that outputs a public key/secret key péiK, SK) (taking as input a security parametey, a
signing algorithmo < Signgk (m) that outputs a signature of a given messagesing the signing key
SK, and a verification algorithiWerpyk (m, o) that outputs a bit. A signatureis valid on a message:
if Verpk(m, o) = 1. The first two algorithms might be probabilistic, Bdr is deterministic.

The correctness property requires tatpk (m, Signgk (m)) = 1, for all key pairs(PK, SK) gen-
erated with theGen algorithm and all messages from the signature domain.

CMA-security for a signature scheme [14] requires that a polynomial-time adversary with access to
a signing oracl&ign(-) is not able to generate a message and a valid signature for which it did not query
the signing oracle.

Definition of SS-LR. Signature schemes with lazy revocation incluie, Update and Derive algo-

rithms similar to those of key-updating schemes, but with the following differencesitlmitputs also

the public key of the signature scheme, and fleive algorithm outputs directly the signing key for

the time interval given as input. User keys in this case are the same as signing keys, as users perform
operations only with the signing keys of the current time inter§8kLR schemes also include signing

and verification algorithms.

Definition 4 (Signhature Schemes with Lazy Revocation)A signature scheme with lazy revocation
consists of a tuple of five polynomial-time algorithifisit, Update, Derive, Sign, Ver) with the follow-
ing properties:

— The deterministic initialization algorithninit, takes as input theecurity parametet”, thenum-
ber of time intervald’, and a random seed and outputs an initigtusted state5, and thepublic
keyPK.

The deterministic key update algorithibbpdate, takes as input the curretine intervalt and the
currenttrusted state5;, and outputs &usted states;, 1 for the next time interval.

The deterministic key derivation algorithierive, takes as input aime intervalt and thetrusted
stateS;, and outputs &igning ke\5K; for time intervalt.

The probabilistic signing algorithm3jgn, takes as input theecret keyK, for time intervalt and
amessagen, and outputs aignatureo.

The deterministic verification algorithrier, takes as input thpublic keyPK, atime intervalt,
amessagen and asignatures and outputs dit. A signatures generated at timeis said to be
valid on a message: if Ver(PK,t,m,o) = 1.

Correctness ofSS-LR. Suppose thatSy, PK) < Init(1%, T, s) are the public key and the initial
trusted state computed from a random see$l; < Update(i, Update(i — 1, ..., Update(0,.Sp) .. .))
is the trusted state for time intervak 7' andSK; < Derive(i, S;) is the signing key for time interval
i. The correctness property requires that(PK, ¢, m, Sign(SK¢, m)) = 1, for all messages: and all
time intervalst < T.

11

Security of SS-LR. The definition of security fobS-LR requires that any polynomial-time adversary
with access to the signing keg; for 1 < ¢ < ¢, with ¢ adaptively chosen, and a signing oracle for
time intervalt + 1 is not able to generate a message and a valid signature for time irttervdhat was
not obtained from the signing oracle.

Formally, consider a probabilistic polynomial-time adversaryhat participates in the following
experiment:

Initialization: Given a random seed, the initial trusted st8geand the public keyPK are generated
with thenit algorithm.PK is given toA.

Key compromise: In this phase, the adversary adaptively picks a time intgrsath that) <t < T.
To this end, a loop is executed and at each iteratiohis given the signing key for time interval
The loop ends when the adversary decides to oustpptor ¢ becomes equal t& — 1.

Signature generation: A is given access to a signing ora8lign(SK;1, -) for time intervalt + 1 and
outputs a message and signature.

The adversary is successful in breaking the CMA-security of the signature schemeai$ not a query
to the signing oracle and is a valid signature om: for time intervalt + 1. The SS-LR scheme is
CMA-secure if the adversary succeeds in this game with negligible probability.

5.2 Generic Construction from Identity-Based Signatures

We present a generic transformation of identity-based signature schemes to signature schemes with lazy
revocation. We first recall identity-based signatures and their security definition, then we describe the
transformation and, finally, we prove that the transformation constructs a secure signature scheme with
lazy revocation.

Identity-based signatures (BS). Identity-based signatures have been introduced by Shamir [24]. A
trusted entity initially generates master secret kegnd amaster public key Later the trusted entity

can generate the signing key for a user from the master secret key and the user’s identity, which is an
arbitrary bit string. In order to verify a signature, it is enough to know the master public key and the
signer’s identity, which is a public string.

Definition 5 (Identity-Based Signatures). An identity-based signature scheme consists of a tuple of
four probabilistic polynomial-time algorithm@KGen, UKGen, Sign, Ver) with the following proper-
ties:

The master key generation algorithiMKGen, takes as input theecurity parametei”, and
outputs themaster public kejPK andmaster secret keylSK of the scheme.

The user key generation algorithtdKGen, takes as input thenaster secret kelyISK and the
user’s identityiD, and outputs theecret keysKp for the user.

The signing algorithmSign, takes as input theser's secret kegK,p and amessagen, and
outputs asignatureo.

The verification algorithmYer, takes as input thenaster public kepPK, the signer’s identity
ID, amessagen and asignatures and outputs a bit. The signatusegenerated by the user with
identity ID is said to bevalid on message: if Ver(MPK,ID,m,0) = 1.

12

Correctness ofIBS. The correctness property requires that(MPK, MSK) «— MKGen(1*) is a
pair of master public and secret keys for the schebigp «— UKGen(MSK;, ID) is the signing key
for the user with identityD, thenVer(MPK, ID, m, Sign(SK|p, m)) = 1, for all messages: and all
identitiesID.

Security of IBS. Consider a probabilistic polynomial-time adversatyhat participates in the follow-
ing experiment:

Initialization: The master public keMPK and master secret kayiSK are generated witMKGen.
MPK is given toA.

Oracle queries: The adversary has access to three oraclesID(-) that allows it to generate the
secret key for a new identitforrupt(-) that gives the adversary the secret key for an identity of
its choice, andign(-, -) that generates the signature on a particular message and identity.

Output: The adversary outputs the identity of an uncorrupted user, a message and a signature.

The adversary succeeds in breaking the security dBBecheme if the signature it outputs is valid and
the adversary didn't query the message to the signing oraclelBEhecheme is secure if the adversary
succeeds in this game only with negligible probability.

The transformation. We construct a signature scheme with lazy revocation from an identity-based
signature scheme by letting every time interval define a different identitySLet(MKGen, UKGen,

Sign, Ver) be a secure identity-based signature scheme. We construct a signature scheme with lazy
revocationS* = (Init!*, Derive!*, Update!®, Sign'*, Verl®) as follows:

— Init** (1%, T) runs(MSK, MPK) «— MKGen(1%) and outputs the initial trusted statg = MSK
and the public keyMPK for the signature scheme.

— Update!* (¢, S;) outputsS; 1 < S;.

— Derive®™(t, S;) runsSK; «+ UKGen(Sy, t) and output$SK;.
— Sign*(SK¢, m) runso « Sign(SK;, m) and outputs.

— Ver'*(MPK, t, m, o) outputs the same a&r(MPK, ¢, m, o).

Theorem 3. Suppose thaf is a secure identity-based signature scheme. THéris a secure signature
scheme with lazy revocation.

Proof. Correctness is easy to see. To prove securitg 3t let A* be a polynomial-time adversary
successful in breaking the sche®¥. We construct an adversa@/for schemeS as follows:

— Ais given the public kepMPK of schemeS. A givesMPK to A'*.
— WhenA'* requests the secret kéy;, A runsSK; < Corrupt(t) and givesSK; to A*.

— When A makes a queryn to the signing oracle for interval+ 1, A runso « Sign(t + 1,m)
and returngr to A",

— Finally, A outputs a message and a signature for time intervalt + 1. Then, A outputs
(t+1,m,0).

It is immediate that the probability of success4fs the same as the probability of successiéf and
the security of the IBS schendimplies the security of th8S-LR schemeS**. O

13

Implementation. Generic constructions of identity-based schemes from a certain class of standard
identification schemes, callednvertible are given by Bellare et. al. [6]. The most efficient construction

of anIBS scheme is the Guillou-Quisquater scheme [15] that needs two exponentiations modulo an RSA
modulusN for both generating and verifying a signature. The size of a signature is two elemefits of

Relation to key-insulated signature schemes. A signature scheme with lazy revocation that fias

time intervals can be used to construct a perféct 1, T') key-insulated signature scheme, as defined by
Dodis et al. [11]. However, the two notions are not equivalent since the attack model for key-insulated
signatures is stronger. An adversary fofla— 1,7") key-insulated signature scheme is allowed to
compromise the signing keys for afiy— 1 time intervals out of the totdl’ time intervals. Further
differences between key-insulated signatures $d R are that both the trusted entity and the user
update their internal state at the beginning of every time interval and that both parties jointly generate
the signing keys for each time interval.

6 Applications

In this section, we show how our cryptographic algorithms with lazy revocation can be applied to dis-
tributed cryptographic file systems, using the Plutus file system as an example. This also leads to an
efficiency improvement for the revocation mechanism in Plutus.

The Plutus architecture. Plutus [17] is a secure file system that uses an innovative decentralized key
management scheme. In Plutus, files are divided into filegroups, each of them managed by the owner of
its files. Blocks in a file are each encrypted with a different symméteidlock key The encryptions of

the file-block keys for all blocks in a file are stored itoakbox which is encrypted with &le-lockbox

key The hash of the file is signed witHite-signing keyor integrity protection and the signature can be
verified with afile-verification key The file-lockbox, file-signing and file-verification keys are the same

for all files in a filegroup. Differentiation of readers and writers is done by distributing the appropriate
keys to the users. In particular, the group owner distributes the file-lockbox and file-verification keys
only to readers, and the file-lockbox and file-signing keys only to writers.

Plutus uses lazy revocation and a mechanism cabgdotationfor efficient key management. The
file-lockbox and file-verification keys for previous time intervals can be derived from the most recent
keys. Our cryptographic primitives with lazy revocation generalize the key rotation mechanism because
we allow previous keys to be derived from our user key, which may be different from the actual key used
for cryptographic operations at the current time interval. This allows more flexibility in constructing
key-updating schemes.

We now recall the Plutus key rotation mechanisms for encryption and signing keys and demonstrate
in both cases how our cryptographic primitives with lazy revocation lead to more efficient solutions.

— For encryption the group manager as the trusted entity uses the inverse of the RSA trapdoor
permutation to update the file-lockbox encryption key after every user revocation. Users derive
file-lockbox keys of previous time intervals using the public RSA trapdoor permutation. The
construction does not have a cryptographic security proof and cannot be generalized to arbitrary
trapdoor permutations because the output of the trapdoor permutation is not necessarily uniformly
distributed. But it could be fixed by applying a hash function to the output of the trapdoor per-
mutation for deriving the key, which makes the construction provably secure in the random oracle
model [2]. Indeed, this is ourapdoor permutatiorkey-updating scheme [2].

14

However, thebinary-tree key-updating scherf® is more efficient because it uses only symmet-
ric-key operations (e.qg., a block cipher). Used in a symmetric encryption scheme with lazy revo-
cation according to Section 3, it improves the time for updating and deriving file-lockbox keys by
several orders of magnitude.

For signatures Plutus uses RSA in a slightly different method than for encryption. A different
public-key/secret-key pair is generated by the group owner after every revocation, and hence
the RSA moduli differ for all time intervals and need to be stored with the file meta-data. The
public verification exponent can be derived from the file-lockbox key by readers. An alternative
solution based on our signature schemes with lazy revocation according to Section 5 uses only one
verification key and achieves two distinct advantages: first, the storage space for the public keys
is reduced to a constant from linear in the number of revocations and, secondly, the expensive
operation of deriving the public verification exponent in Plutus does not need to be performed.
For example, using the Guillou-Quisquater IBS scheme, deriving the public key of a time interval
during verification takes only a few hash function applications.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Lorch, M. Theimer, and R. P. Wattenhofer, “FARSITE: Federated, available, and reliable storage
for an incompletely trusted environment,” Rroc. 5th Symposium on Operating System Design
and Implementation (OSDIYsenix, 2002.

M. Backes, C. Cachin, and A. Oprea, “Secure key-updating for lazy revocation,” Technical Report
RZ 3627, IBM Research, Aug. 2005.

M. Bellare, R. Canetti, and H. Krawczyk, “Keyed hash functions for message authentication,” in
Proc. Crypto 1996vol. 1109 ofLecture Notes in Computer Sciengp. 1-15, Springer-Verlag,
1996.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric
encryption,” inProc. 38th Symposium on Foundations of Computer Science (F@R.394—403,
IEEE, 1997.

M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chaining message authen-
tication code,” inProc. Crypto 1994vol. 839 ofLecture Notes in Computer Scienpg. 341-358,
Springer-Verlag, 1994.

M. Bellare, C. Namprempre, and G. Neven, “Security proofs for identity-based identification and
signature schemes,” iRroc. Eurocrypt 2004vol. 3027 ofLecture Notes in Computer Science
pp. 268-286, Springer-Verlag, 2004.

M. Blaze, “A cryptographic file system for Unix,” ifProc. First ACM Conference on Computer
and Communication Security (CC9p. 9-16, 1993.

M. Blaze, “Key management in an encrypting file system,Pioc. Summer 1994 USENIX Tech-
nical Conferencepp. 28-35, 1994.

R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption schem@pyoicl
Eurocrypt 2003 vol. 2656 ofLecture Notes in Computer Sciengp. 255-271, Springer-Verlag,
2003.

15

[10] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano, “The design and implementation of a
transparent cryptographic file system for Unix,”Pmoc. USENIX Annual Technical Conference
2001, Freenix Trackpp. 199-212, 2001.

[11] Y. Dadis, J. Katz, S. Xu, and M. Yung, “Strong key-insulated signature schemeBjfom 6th
International Workshop on Theory and Practice in Public Key Cryptography (Pk&) 2567 of
Lecture Notes in Computer Scienpg. 130-144, Springer-Verlag, 2003.

[12] K. Fu, “Group sharing and random access in cryptographic storage file systems,” Master’s thesis,
Massachusetts Institute of Technology, 1999.

[13] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted storage,”
in Proc. Network and Distributed Systems Security (NDSS) Symposium@0d31-145, ISOC,
2003.

[14] S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme secure against adaptive
chosen-message attackSJAM Journal of Computingrol. 17, no. 2, pp. 281-308, 1988.

[15] L. Guillou and J. Quisquater, “A “paradoxical” identity-based signature scheme resulting from
zero-knowledge,” irProc. Crypto 1988vol. 403 ofLecture Notes in Computer Scienpp. 216—
231, Springer-Verlag, 1988.

[16] S. Halevi and P. Rogaway, “A tweakable enciphering modeProc. Crypto 2003vol. 2729 of
Lecture Notes in Computer Scienpg. 482-499, Springer-Verlag, 2003.

[17] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure file shar-
ing on untrusted storage,” iAroc. Second USENIX Conference on File and Storage Technologies
(FAST) 2003.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-
scale persistent storage,” Rroc. 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLipS190-201, ACM, 2000.

[19] J. Li, M. Krohn, D. Mazieres, and D. Shasha, “Secure untrusted data repositoBro@m 6th
Symposium on Operating System Design and Implementation (Q$D1)21-136, Usenix, 2004.

[20] M. Liskov, R. Rivest, and D. Wagner, “Tweakable block ciphersPmc. Crypto 2002vol. 2442
of Lecture Notes in Computer Scienpp. 31-46, Springer-Verlag, 2002.

[21] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstdaedbook of Applied Cryptographfoca
Raton, FL: CRC Press, 1997.

[22] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong security for distributed file systems,” in
Proc. First USENIX Conference on File and Storage Technologies (FA®T)1-13, 2002.

[23] E. Riedel, M. Kallahalla, and R. Swaminathan, “A framework for evaluating storage system se-
curity,” in Proc. First USENIX Conference on File and Storage Technologies (FA®T1L5-30,
2002.

[24] A. Shamir, “Identity-based cryptosystems and signature schemd2dan Crypto 1984vol. 196
of Lecture Notes in Computer Scienpp. 47-53, Springer-Verlag, 1985.

16

