
Lazy Revocation in Cryptographic File Systems

Michael Backes Christian Cachin Alina Oprea

IBM Zurich Research Laboratory
CH-8803 R̈uschlikon, Switzerland

{mbc,cca,opr }@zurich.ibm.com

September 2, 2005

Abstract

A crucial element of distributed cryptographic file systems are key management solutions that allow
for flexible but secure data sharing. We consider efficient key management schemes for crypto-
graphic file systems using lazy revocation. We give rigorous security definitions for three crypto-
graphic schemes used in such systems, namely symmetric encryption, message-authentication codes
and signature schemes. Additionally, we provide generic constructions for symmetric encryption
and message-authentication codes with lazy revocation using key-updating schemes for lazy revo-
cation, which have been introduced recently. We also give a construction of signature schemes with
lazy revocation from identity-based signatures. Finally, we describe how our constructions improve
the key rotation mechanism in the Plutus file system.

1 Introduction

Networked storage solutions, such as Network-Attached Storage (NAS) and Storage Area Networks
(SAN), have emerged recently as an alternative to direct-attached storage. It is desirable that clients
have similar security guarantees in these environments to those offered by traditional storage. However,
the storage servers in a networked storage system are more exposed than direct-attached disks. Clients
need to protect the confidentiality and integrity of the stored data themselves and can not rely on the
storage servers for security guarantees. Cryptographic file systems have been designed for this task.

Sharing of information among clients is an important feature offered by file systems. Protecting data
in non-cryptographic file systems relies on an access control mechanism, like the access control model
of the Unix file system. Data sharing in cryptographic file systems is complicated by the problem of key
management. While early cryptographic file systems did not address key management, recent systems
offer diverse solutions. They range from fully centralized key distribution using a trusted key server [12]
to completely decentralized key distribution done by the file system users [18, 17].

Access control granularity in a cryptographic file system affects the number of keys that need to
be managed and the complexity of user revocation. Traditionally, access control is performed at the
granularity of files and every file is protected by its own cryptographic keys. Another method, proposed
in the Plutus file system [17], is to group files intofilegroupswith the same access control permissions
and the same owner and to use the same cryptographic keys for all files in a filegroup. This method
reduces the number of keys that need to be managed and distributed to users. In the rest of the paper, we
assume that access control and key management are done for filegroups, but, nevertheless, our model
can also be applied to the case in which keys are managed for each file individually.

1



Assuming that multiple users have access permissions for a filegroup, they need to share the keys of
the filegroup. Atrusted entity, which might either be a trusted key server or the owner of the filegroup,
distributes the cryptographic keys for the filegroup. The users that have access rights to the filegroup
might change over time. New users might be granted access to the filegroup, and existing users’ access
rights might be revoked. Initially, the same cryptographic keys can be used for all files in the filegroup,
but once a revocation occurs, the keys need to be changed so that revoked users can not further perform
cryptographic operations on files. It is thus necessary that the trusted entity changes the filegroup keys
and distributes fresh keys to the users after every revocation. In addition, the cryptographic informa-
tion computed with these keys (either ciphertext or integrity protection information for files) has to be
recomputed.

There are two revocation models, depending on when the cryptographic information is updated. In
anactive revocationmodel, all cryptographic information is immediately recomputed after a revocation
takes place. This is expensive and might cause disruptions in the normal operation of the file system.
In the alternative model oflazy revocation, the information for each file is recomputed only when the
file is modified for the first time after a revocation [12]. Lazy revocation is more efficient than active
revocation, and, in addition, revoked users do not get access to new information. But in systems with
lazy revocation, key management becomes more difficult than in systems with active revocation because
multiple keys might be used simultaneously for the files in the filegroup. These keys have to be stored
and distributed to users upon request. Cryptosystems with efficient key management for file systems
using lazy revocation are the focus of our work.

Contributions. This paper provides a comprehensive formalization of the cryptographic primitives
used in a file system with lazy revocation. In our model, the cryptographic keys needed for operations
on files are updated every time the trusted entity revokes a user. A user that has access rights to a
filegroup receives from the trusted entity auser keythat can be used to extract all keys needed for the
cryptographic operations on the files. We define variations of symmetric encryption schemes, message-
authentication codes and signature schemes with lazy revocation.

We give rigorous security definitions for the three cryptographic primitives. We also give generic
constructions of symmetric encryption schemes and message-authentication codes with lazy revocation
using the abstraction of key-updating schemes for lazy revocation, defined in a companion paper [2]. In
addition, we give a generic transformation of identity-based signatures [24] to signature schemes with
lazy revocation. Finally, we show how our primitives can be used in cryptographic file systems adopting
lazy revocation.

Our lazy revocation model generalizeskey rotation, a mechanism used previously for key manage-
ment in the Plutus file system [17]. Using our constructions, we improve the key management scheme
of the Plutus file system in two ways: first, the extraction of encryption keys for previous time inter-
vals can be done more efficiently than key rotation in Plutus, using only symmetric-key operations,
and, secondly, using signature schemes with lazy revocation, the storage space taken by the signature
verification keys can be reduced from linear in the number of revocations to a constant.

Related work. Riedel et al. [23] survey the security of existing storage systems, in particular crypto-
graphic file systems. Here we focus on key management schemes in these systems. The first crypto-
graphic file systems (CFS [7, 8] and TCFS [10]) include simple key management schemes, not suitable
for sharing large amounts of data. Cepheus [12] considers data sharing and uses a trusted key server for
distributing cryptographic keys. Cepheus introduces the idea of lazy revocation, and implements it by
storing all previous cryptographic keys for a filegroup on the trusted server.

Plutus [17] also adopts lazy revocation and introduces a sophisticated scheme for the derivation of

2



previous cryptographic keys from the latest keys, called key rotation. Key rotation is applied to both
the encryption keys and the signature keys for a filegroup. These keys are rotated forward by the owner
applying the RSA permutation to the current key, using knowledge of the trapdoor information. Keys
are rotated backward by users themselves using the public RSA permutation. Differentiation of readers
and writers is done by distributing the file-signing key only to writers and the file-signature verification
key only to readers.

In file systems such as Farsite [1], SNAD [22] and SiRiUS [13] the file data is protected by a unique
file encryption key and/or a unique file signature key. The meta-data information for a file includes
an encryption under the public key of each user with access rights to the file of these file keys. To
perform a file operation, a user retrieves the encrypted meta-data information from the untrusted storage
servers. While this scheme simplifies key management, it requires additional space on the storage
servers proportional to the number of users accessing a file. To our knowledge, neither of these file
systems addresses the problem of efficient revocation of users.

SUNDR [19] only provides data integrity, but not confidentiality. Every user signs files with its own
signing key. A user checking the integrity of a file also needs to check that the user that signed the
file still has write access to the file. SUNDR assumes a public-key infrastructure and a mechanism for
distributing individual users’ public keys to all users in the system.

2 Modeling Lazy Revocation in Cryptographic File Systems

In systems adopting lazy revocation, the cryptographic keys used to perform operations on files need
to be changed after every user revocation. We define atime intervalto be the period between two user
revocations. The total number of time intervals can be large. The trusted entity that is responsible for
the cryptographic keys must change them at the beginning of each time interval and distribute the fresh
keys to users having access to files.

Before providing the formal definition of our cryptographic primitives with lazy revocation, we
recall the definition ofkey-updating schemes for lazy revocation, given in a companion paper [2]. Key-
updating schemes for lazy revocation are an abstraction to manage the keys used forsymmetricencryp-
tion and authentication algorithms for data storage systems with lazy revocation.

We do not consider here public-key encryption schemes with lazy revocation, as they do not have
direct applications to storage systems. If needed in other applications, public-key encryption schemes
with lazy revocations can be defined using our lazy revocation model. A construction similar to that of
a forward-secure encryption scheme [9] can be obtained from binary tree encryption schemes defined
by Canetti, Halevi and Katz [9].

Key-Updating Schemes for Lazy Revocation. The model of key-updating schemes for lazy revoca-
tion consists of a trusted entity (calledcenterin [2]) that manages the keys for a filegroup, and users
that have access permissions to the filegroup. The trusted entity generates an initial state that is updated
at the beginning of each time interval (corresponding to a revocation) and from which it can derive user
keys upon request. A user can extract from a user key for a particular time interval the symmetric keys
for all previous time intervals. We review the formal definition of key-updating schemes here.

Definition 1 (Key-Updating Schemes for Lazy Revocation [2]).A key-updating scheme consists of
four deterministic polynomial-time algorithmsKU = (Init, Update, Derive, Extract) with the following
properties:

– The initialization algorithm,Init, takes as input asecurity parameter1κ, a number of time inter-
valsT , and arandom seeds of length polynomial inκ and outputs an initialtrusted stateS0.

3



– The key update algorithm,Update, takes as input the currenttime intervalt, the currenttrusted
stateSt, and outputs atrusted stateSt+1 for the next time interval.

– The user key derivation algorithm,Derive, is given as input atime intervalt, and thetrusted
stateSt, and outputs auser keyMt. The user key can be used to derive all keyski of previous
time intervals, for1 ≤ i ≤ t.

– The key extraction algorithm,Extract, is executed by the user and takes as input atime intervalt,
theuser keyMt for that time interval received from the trusted entity, and atarget time interval
1 ≤ i ≤ t. The algorithm outputs thekeyki for target time intervali.

We define theInit algorithm of a key-updating scheme to be deterministic because we can compose
efficiently schemes with deterministic initialization algorithms. Theadditiveandmultiplicativecom-
position methods [2] combine two key-updating schemes into a new scheme with the number of time
interval either the sum or the product of the number of intervals of the two schemes. These methods are
useful in building schemes with a large number of time intervals.

Security of key-updating schemes for lazy revocation. Informally, a key-updating scheme is secure
if an adversary given the user keys for all consecutive time intervals up to some timet that is chosen
adaptively, has no advantage in distinguishing the key for time intervalt+1 from a randomly generated
key. Formally, consider a probabilistic polynomial-time adversaryA that participates in the following
experiment:

Initialization: Given a random seed, the initial trusted state is generated with theInit algorithm.

Key compromise: The adversary adaptively picks a time intervalt such that0 ≤ t < T as follows.
Starting with t = 0, 1, . . . , the adversary is given the user keysMt for all consecutive time
intervals untilA decides to outputstop or t becomes equal toT − 1.

Challenge: A challenge for the adversary is generated, which is either the key for time intervalt + 1
generated with the algorithms of the key-updating scheme, or a random bit string of the appropri-
ate length.

Guess:A outputs a bitb.

The key-updating scheme is secure if the advantage of the adversary of distinguishing between the
properly generated key for time intervalt + 1 and the random key is only negligibly larger than1

2 . For
an adversaryA and a key-updating schemeKU we denoteAdvskuKU (A) its advantage. We denoteAdvskuKU

the maximum advantage of all adversaries.

Remark 1. Since we allowT to be exponential in the security parameter, we require thatA, a proba-
bilistic polynomial-time algorithm, outputsstop at least once before halting. This requirement is placed
on all cryptographic primitives for lazy revocation defined in this section, but is omitted in subsequent
definitions for brevity.

Remark 2. This definition of security is equivalent to a definition in which the adversary can choose
the challenge time intervalt∗ in which it has to distinguish between the keys, as long ast∗ > t andt∗

is polynomial in the security parameter. We consider a game in which the adversary is challenged at
time intervalt+1 in all security definitions of cryptographic primitives for lazy revocation given in this
paper.

4



Implementation. Three key-updating schemes are introduced in [2]: achaining constructionbased
on familiar hash chains, atrapdoor permutationscheme derived from the key rotation method in Plu-
tus [17], and a noveltree construction, which is the most efficient one among them.

3 Symmetric Encryption Schemes with Lazy Revocation (SE-LR)

In a cryptographic file system adopting lazy revocation, the file encryption keys must be updated by the
trusted entity (e.g., the owner of the filegroup) as described above. Users might need to encrypt files
using the encryption key of the current time interval or to decrypt files usinganykey of a previous time
interval. Upon sending a corresponding request to the trusted entity, authorized users receive theuser
keyof the current time interval from the trusted entity. Both the encryption and decryption algorithms
take as input the user key, and the decryption algorithm additionally takes as input the index of the time
interval for which decryption is performed.

3.1 Security Definitions

Before defining formally symmetric encryption schemes with lazy revocation, we first define symmetric
encryption schemes and security against chosen-plaintext attacks (orCPA-security). We are interested
in CPA-security as standard randomized modes of operation (e.g., cipher-block chaining) used with a
block cipher modeled as a pseudo-random permutation satisfy this notion of security [4], but not stronger
notions like security against chosen-ciphertext attacks.

Symmetric Encryption Schemes. A symmetric encryption schemeE consists of three algorithms: a
key generation algorithmGen(·) that outputs an encryption key (taking as input the security parameter),
an encryption algorithmEnck(m) that outputs the encryption of a given messagem with key k, and a
decryption algorithmDeck(c) that decrypts a ciphertextc with keyk. The first two algorithms might be
probabilistic, butDec is deterministic.

The correctness property requires thatDeck(Enck(m)) = m, for all keysk generated with theGen
algorithm and all messagesm from the encryption domain.

CPA-security of a symmetric encryption schemeE = (Gen, Enc, Dec) requires that any polynomial-
time adversaryA with access to an encryption oracleEnc(·) is unable to distinguish between encryption
of two messagesm0 and m1 of its choice. IfA produces two messages whose encryptions it can
distinguish with non-negligible probability, we say thatA succeeds in breaking the CPA-security of
schemeE . We refer the reader to the paper by Bellare et al. [4] for formal definitions of CPA-security.
For an adversaryA and a symmetric encryption schemeE we denoteAdv

cpa
E (A) its advantage. W.l.o.g.,

we can relate the success probability ofA and its advantage as

Pr
[
A succeeds

]
=

1
2
[
1 + Adv

cpa
E (A)

]
. (1)

Definition of SE-LR. Symmetric encryption schemes with lazy revocation includeInit, Update and
Derive algorithms whose role is to generate keys similar to the corresponding algorithms of key-updating
schemes, and secret-key encryption and decryption algorithms that use the keys.

Definition 2 (Symmetric Encryption with Lazy Revocation). A symmetric encryption scheme with
lazy revocation consists of a tuple of five polynomial-time algorithms(Init, Update, Derive, Enc, Dec)
with the following properties:

5



– The Init, Update andDerive deterministic algorithms have the same specification as the corre-
sponding algorithms of a key-updating scheme.

– The probabilistic encryption algorithm,Enc, takes as input atime intervalt, theuser keyMt of
the current time interval and amessagem, and outputs aciphertextc.

– The deterministic decryption algorithm,Dec, takes as input atime intervalt, theuser keyMt of
the current time interval, thetime intervali for which decryption is performed, and aciphertextc,
and outputs aplaintextm.

Correctness ofSE-LR. Suppose thatS0 ← Init(1κ, T, s) is the initial trusted state computed from
a random seeds, Si ← Update(i, Update(i − 1, . . . ,Update(0, S0) . . . )) is the trusted state for time
interval i ≤ T andMi ← Derive(i, Si) is the user key for time intervali. The correctness property
requires thatDec(t, Mt, i,Enc(i,Mi,m)) = m, for all messagesm from the encryption domain and all
i, t with i ≤ t ≤ T .

CPA-security of SE-LR. The definition of CPA-security forSE-LR schemes requires that any poly-
nomial-time adversary with access to the user key for a time intervalt that it may choose adaptively
(and, thus, with knowledge of all keys for time intervals prior tot), and with access to an encryption
oracle for time intervalt+1 is not able to distinguish encryptions of two messages of its choice for time
intervalt + 1.

Formally, consider a probabilistic polynomial-time adversaryA that participates in the following
experiment:

Initialization: Given a random seed, the initial trusted stateS0 is generated with theInit algorithm.

Key compromise: The adversary adaptively picks a time intervalt such that0 ≤ t < T . To this end, a
loop is executed and at each iterationi,A is given the user key for time intervali. The loop ends
when the adversary decides to outputstop or t becomes equal toT − 1.

Challenge: WhenA outputsstop, it also outputs two messages,m0 andm1. A random bitb is selected
andA is given a challengec = Enc(t + 1,Mt+1,mb), whereMt+1 is the user key for time
intervalt + 1 generated with theInit, Update andDerive algorithms.

Guess:A has access to an encryption oracleEnc(t + 1,Mt+1, ·) for time intervalt + 1. At the end of
this phase,A outputs a bitb′ and succeeds ifb = b′.

TheSE-LR scheme is CPA-secure if the adversary succeeds in this game with probability only negligibly
larger than1

2 . For an adversaryA and aSE-LR schemeElr we denoteAdv
cpa-lr
Elr (A) its advantage.

W.l.o.g., we can relate the success probability ofA and its advantage as

Pr
[
A succeeds

]
=

1
2
[
1 + Adv

cpa-lr
Elr (A)

]
. (2)

Remark. A tweakable block cipher [20, 16] is similar to a symmetric encryption scheme with the
difference that it is deterministic and both the encryption and decryption algorithms take an additional
parameter, calledtweak. Such ciphers must be length-preserving and require that encryptions are indis-
tinguishable as long as they are produced with different tweaks. We do not define tweakable ciphers
here, but the interested reader can consult [16] for formal definitions. Tweakable ciphers with lazy re-
vocation can be defined and implemented in a similar way as symmetric encryption schemes with lazy
revocation. We omit here the details.

6



3.2 Generic Construction

Let KU = (Init, Update, Derive, Extract) be a secure key-updating scheme andE = (Gen, Enc, Dec) a
CPA-secure symmetric encryption scheme such that the keys generated byKU have the same length as
those generated byE . We construct a symmetric encryption scheme with lazy revocationElr = (Initlr,
Updatelr, Derivelr, Enclr, Declr) as follows:

1. The Initlr, Updatelr, andDerivelr algorithms ofElr are the same as the corresponding algo-
rithms ofKU.

2. TheEnclr(t, Mt,m) algorithm runskt ← Extract(t, Mt, t) and outputsc← Enckt(m).

3. TheDeclr(t, Mt, i,m) algorithm runski ← Extract(t, Mt, i) and outputsm← Decki
(c).

Theorem 1. Suppose thatKU is a secure key-updating scheme for lazy revocation andE is a CPA-
secure symmetric encryption scheme. ThenElr is a CPA-secure symmetric encryption scheme with lazy
revocation.

Proof. Correctness is easy to see. To prove CPA-security ofElr, letAlr be a polynomial-time adversary
algorithm successful in breaking the CPA-security of schemeElr. We construct an adversaryA that
breaks the CPA-security of schemeE :

– A is given access to an encryption oracleEnc(·).

– A generates a random seeds and uses this to generate an instance of the schemeKU.

– A gives toAlr the user keysMt from the instance of schemeKU generated in the step above.

– WhenAlr outputsstop at time intervalt and two messages,m0 andm1, A also outputsm0 and
m1.

– A is given challengec and it gives this challenge toAlr.

– WhenAlr makes a query to the encryption oracle for time intervalt + 1, A replies to this query
using the encryption oracleEnc(·).

– A outputs the same bit asAlr.

From the construction of the simulation it follows that

Pr
[
A succeeds

]
= Pr[Alr succeeds|E

]
,

whereE is the event thatAlr does not distinguish the simulation done byA from the CPA game
defined in Section 3. The only difference between the simulation and the CPA game is thatA uses in the
simulation the encryption oracle with a randomly generated key to reply to encryption queries for time
intervalt+1, whereas in the CPA game the encryption is done with keykt+1 generated with theUpdate,
Derive andExtract algorithms of schemeKU. By the definition ofE, we havePr[Ē] ≤ AdvskuKU .

We can bound the probability of success ofAlr as:

Pr
[
Alr succeeds

]
= Pr

[
Alr succeeds|E

]
Pr

[
E

]
+

Pr
[
Alr succeeds|Ē

]
Pr

[
Ē

]
≤ Pr

[
Alr succeeds|E

]
+Pr

[
Ē

]
≤ Pr

[
A succeeds

]
+AdvskuKU . (3)

7



Using (1), (2), and (3) we obtain

Adv
cpa-lr
Elr (Alr) ≤ Adv

cpa
E (A) + 2AdvskuKU .

SinceE is a CPA-secure encryption scheme andKU is a secure key-updating scheme, it follows that
Adv

cpa
E (A) andAdvskuKU are negligible. This implies thatAdv

cpa-lr
Elr (Alr) is negligible, which proves the

statement of the theorem.

Implementation. In practice, we can instantiate the CPA-secure symmetric-encryption scheme with
a block cipher (such as AES) in one of the CPA-secure modes of operation [21] (e.g., cipher-block
chaining). The most efficient key-updating scheme is our binary tree construction proposed in [2],
which only performs symmetric-key operations (more specifically, pseudo-random function applications
implemented again by a block cipher). ItsUpdate, Derive andExtract algorithms have logarithmic
complexity and its trusted state and user key sizes are logarithmic in the total number of time intervals.

Suppose that AES with 128-bit key size is used for the derivation of the cryptographic keys. In
a system that supports up to 1000 revocations, at most 10 AES computations need to be done for the
Update, Derive andExtract algorithms. The center state and user keys consist of up to 10 AES keys
or 160 bytes each. This adds a very small overhead to the cost of file data encryption. Details of the
binary-tree construction are given in a companion paper [2].

4 Message-Authentication Codes with Lazy Revocation (MAC-LR)

If message-authentication codes are used for providing integrity in a cryptographic file system, then
a secret key for computing and verifying authentication tags needs to be distributed to all authorized
users. The users generate an authentication tag using the key of the current time interval and may
verify authentication tags for any of the previous time intervals with the corresponding keys. Similar
to symmetric-key encryption with lazy revocation, both the tagging and verification algorithms need to
take as input the current user key, and the verification algorithm additionally takes as input the index of
the time interval at which the tag was generated.

4.1 Security Definitions

Before defining message-authentication codes with lazy revocation, we recall the definitions of message
authentication codes and their security under chosen-message attacks (orCMA-security).

Message-Authentication Codes. A message-authentication code (MAC) consists of three algorithms:
a key generation algorithmGen(·) that outputs a key (taking as input a security parameterκ), a tagging
algorithmTagk(m) that outputs the authentication tagτ of a given messagem with keyk, and a verifi-
cation algorithmVerk(m, τ) that outputs a bit. A tagτ is said to bevalid on a messagem for a keyk if
Verk(m, τ) = 1. The first two algorithms might be probabilistic, butVer is deterministic.

The correctness property requires thatVerk(m,Tagk(m)) = 1, for all keysk generated with the
Gen algorithm and all messagesm from the message space.

CMA-security for a message-authentication code [5] requires that any polynomial-time adversary
with access to a tagging oracleTag(·) is not able to generate a message and a valid tag for which it did
not query the tagging oracle.

8



Definition of MAC-LR. Message-authentication codes with lazy revocation includeInit, Update and
Derive algorithms whose role is to generate keys similar to the corresponding algorithms of key-updating
schemes, and secret-key tagging and verification algorithms that use those keys.

Definition 3 (Message-Authentication Codes with Lazy Revocation).A message-authentication code
with lazy revocation consists of a tuple of five polynomial-time algorithms(Init, Update, Derive, Tag,
Ver) with the following properties:

– The Init, Update andDerive deterministic algorithms have the same specification as the corre-
sponding algorithms of a key-updating scheme.

– The probabilistic tagging algorithm,Tag, takes as input atime intervalt, theuser keyMt of the
current time interval and amessagem, and outputs an authenticationtag τ .

– The deterministic verification algorithm,Ver, takes as input atime intervalt, theuser keyMt of
the current time interval, thetime intervali for which verification is performed, amessagem, and
a tag τ , and outputs abit. A tagτ computed at time intervali is said to bevalid on messagem if
Ver(t, Mt, i,m, Tag(i, Mi,m)) = 1 for somet ≥ i.

Correctness ofMAC-LR. Suppose thatS0 ← Init(1κ, T, s) is the initial trusted state computed from
a random seeds, Si ← Update(i, Update(i − 1, . . . ,Update(0, S0) . . . )) is the trusted state for time
interval i ≤ T andMi ← Derive(i, Si) is the user key for time intervali. The correctness property
requires thatVer(t, Mt, i,m, Tag(i, Mi,m)) = 1, for all messagesm from the message space and all
i, t with i ≤ t ≤ T .

CMA-security of MAC-LR. The definition of security forMAC-LR schemes requires that any poly-
nomial-time adversary with access to the user key for a time intervalt that it may choose adaptively
(and, thus, with knowledge of all keys for time intervals prior tot), and with access to a tagging oracle
for time intervalt + 1 is not able to create a valid tag on a message not queried to the tagging oracle.

Formally, consider a probabilistic polynomial-time adversaryA that participates in the following
experiment:

Initialization: Given a random seed, the initial trusted stateS0 is generated with theInit algorithm.

Key compromise: The adversary adaptively picks a time intervalt such that0 ≤ t < T . To this end, a
loop is executed and at each iterationi,A is given the user key for time intervali. The loop ends
when the adversary decides to outputstop or t becomes equal toT − 1.

Tag generation: A has access to a tagging oracleTag(t+1,Mt+1, ·) for time intervalt+1 and outputs
a messagem and a tagτ .

The adversary is successful in breaking the CMA-security of the message-authentication code ifm was
not a query to the tagging oracle andτ is a valid tag onm for interval t + 1. TheMAC-LR scheme is
CMA-secure if the adversary succeeds in this game only with negligible probability.

4.2 Generic Construction

Let KU = (Init, Update, Derive, Extract) be a secure key-updating scheme andMA = (Gen, Tag,
Ver) a CMA-secure message-authentication code such that the keys generated byKU have the same
length as those generated byMA. We construct a message-authentication code with lazy revocation
MAlr = (Initlr, Updatelr, Derivelr, Taglr, Verlr) as follows:

9



1. TheInitlr, Updatelr, andDerivelr algorithms of schemeMAlr are the same as the corresponding
algorithms ofKU.

2. TheTaglr(t, Mt,m) algorithm runskt ← Extract(t, Mt, t) and outputsc← Tagkt
(m).

3. TheVerlr(t, Mt, i,m, τ) algorithm runski ← Extract(t, Mt, i) and outputs the value returned
by Verki

(m, τ).

Theorem 2. Suppose thatKU is a secure key-updating scheme for lazy revocation andMA is a CMA-
secure message-authentication code. ThenMAlr is a secure message-authentication code with lazy
revocation.

Proof. Correctness is easy to see. To prove CMA-security forMAlr, let Alr be a polynomial-time
adversary algorithm successfully in breaking the security of schemeMAlr. We construct an adversary
A that breaks the security of schemeMA:

– A is given access to a tagging oracleTag(·).

– A generates a random seeds and uses this to generate an instance of schemeKU.

– A gives toAlr the user keysMt from the instance of schemeKU generated in the step above.

– WhenAlr makes a query to the tagging oracle for time intervalt + 1, A replies to this query
using the tagging oracleTag(·).

– A outputs the same message and tag pair asAlr.

From the construction of the simulation it follows that

Pr
[
A succeeds

]
= Pr[Alr succeeds|E

]
,

whereE is the event thatAlr does not distinguish between the simulation done byA and the MAC game
from Section 4. Using a similar argument as in the proof of Theorem 1, we can boundPr[Ē] ≤ AdvskuKU .
It is immediate, as in the proof of Theorem 1 that

Pr
[
Alr succeeds

]
≤ Pr

[
A succeeds

]
+AdvskuKU ,

and the security of schemesKU andMA imply the conclusion of the theorem.

Implementation. In practice, there are many efficient MAC schemes, such as CBC-MAC [21] or
HMAC [3]. They can be combined with key-updating schemes for lazy revocation and achieve the same
complexities as the implementation of symmetric encryption schemes with lazy revocation.

5 Signature Schemes with Lazy Revocation (SS-LR)

Signature schemes can be used for providing integrity of files. When differentiation of readers and writ-
ers is desired, a MAC is not sufficient because it is a symmetric primitive, and an asymmetric signature
scheme is needed. The group signing key is distributed only to writers, but the group verification key
is given to all readers for the filegroup. Writers may modify files and recompute signatures using the
signing key of the current time interval. Readers may check signatures on files generated at previous
time intervals. We consider a model for signature schemes with lazy revocation in which the public key
remains constant over time and only the signing keys change at the beginning of every time interval.

10



5.1 Security Definitions

Before defining signature schemes with lazy revocation, we recall the definition of signature schemes
and their security under chosen-message attacks (orCMA-security).

Signature schemes. A signature scheme consists of three algorithms: a key generation algorithm
Gen(·) that outputs a public key/secret key pair(PK,SK) (taking as input a security parameterκ), a
signing algorithmσ ← SignSK(m) that outputs a signature of a given messagem using the signing key
SK, and a verification algorithmVerPK(m,σ) that outputs a bit. A signatureσ is valid on a messagem
if VerPK(m,σ) = 1. The first two algorithms might be probabilistic, butVer is deterministic.

The correctness property requires thatVerPK(m,SignSK(m)) = 1, for all key pairs(PK,SK) gen-
erated with theGen algorithm and all messagesm from the signature domain.

CMA-security for a signature scheme [14] requires that a polynomial-time adversary with access to
a signing oracleSign(·) is not able to generate a message and a valid signature for which it did not query
the signing oracle.

Definition of SS-LR. Signature schemes with lazy revocation includeInit, Update andDerive algo-
rithms similar to those of key-updating schemes, but with the following differences: theInit outputs also
the public key of the signature scheme, and theDerive algorithm outputs directly the signing key for
the time interval given as input. User keys in this case are the same as signing keys, as users perform
operations only with the signing keys of the current time interval.SS-LR schemes also include signing
and verification algorithms.

Definition 4 (Signature Schemes with Lazy Revocation).A signature scheme with lazy revocation
consists of a tuple of five polynomial-time algorithms(Init, Update, Derive, Sign, Ver) with the follow-
ing properties:

– The deterministic initialization algorithm,Init, takes as input thesecurity parameter1κ, thenum-
ber of time intervalsT , and a random seeds, and outputs an initialtrusted stateS0 and thepublic
keyPK.

– The deterministic key update algorithm,Update, takes as input the currenttime intervalt and the
currenttrusted stateSt, and outputs atrusted stateSt+1 for the next time interval.

– The deterministic key derivation algorithm,Derive, takes as input atime intervalt and thetrusted
stateSt, and outputs asigning keySKt for time intervalt.

– The probabilistic signing algorithm,Sign, takes as input thesecret keySKt for time intervalt and
amessagem, and outputs asignatureσ.

– The deterministic verification algorithm,Ver, takes as input thepublic keyPK, a time intervalt,
a messagem and asignatureσ and outputs abit. A signatureσ generated at timet is said to be
valid on a messagem if Ver(PK, t,m, σ) = 1.

Correctness ofSS-LR. Suppose that(S0,PK) ← Init(1κ, T, s) are the public key and the initial
trusted state computed from a random seeds, Si ← Update(i, Update(i − 1, . . . ,Update(0, S0) . . . ))
is the trusted state for time intervali ≤ T andSKi ← Derive(i, Si) is the signing key for time interval
i. The correctness property requires thatVer(PK, t,m,Sign(SKt,m)) = 1, for all messagesm and all
time intervalst ≤ T .

11



Security of SS-LR. The definition of security forSS-LR requires that any polynomial-time adversary
with access to the signing keysSKi for 1 ≤ i ≤ t, with t adaptively chosen, and a signing oracle for
time intervalt+1 is not able to generate a message and a valid signature for time intervalt+1 that was
not obtained from the signing oracle.

Formally, consider a probabilistic polynomial-time adversaryA that participates in the following
experiment:

Initialization: Given a random seed, the initial trusted stateS0 and the public keyPK are generated
with theInit algorithm.PK is given toA.

Key compromise: In this phase, the adversary adaptively picks a time intervalt such that0 ≤ t < T .
To this end, a loop is executed and at each iterationi,A is given the signing key for time intervali.
The loop ends when the adversary decides to outputstop or t becomes equal toT − 1.

Signature generation: A is given access to a signing oracleSign(SKt+1, ·) for time intervalt + 1 and
outputs a messagem and signatureσ.

The adversary is successful in breaking the CMA-security of the signature scheme ifm was not a query
to the signing oracle andσ is a valid signature onm for time intervalt + 1. The SS-LR scheme is
CMA-secure if the adversary succeeds in this game with negligible probability.

5.2 Generic Construction from Identity-Based Signatures

We present a generic transformation of identity-based signature schemes to signature schemes with lazy
revocation. We first recall identity-based signatures and their security definition, then we describe the
transformation and, finally, we prove that the transformation constructs a secure signature scheme with
lazy revocation.

Identity-based signatures (IBS). Identity-based signatures have been introduced by Shamir [24]. A
trusted entity initially generates amaster secret keyand amaster public key. Later the trusted entity
can generate the signing key for a user from the master secret key and the user’s identity, which is an
arbitrary bit string. In order to verify a signature, it is enough to know the master public key and the
signer’s identity, which is a public string.

Definition 5 (Identity-Based Signatures).An identity-based signature scheme consists of a tuple of
four probabilistic polynomial-time algorithms(MKGen, UKGen, Sign, Ver) with the following proper-
ties:

– The master key generation algorithm,MKGen, takes as input thesecurity parameter1κ, and
outputs themaster public keyMPK andmaster secret keyMSK of the scheme.

– The user key generation algorithm,UKGen, takes as input themaster secret keyMSK and the
user’s identityID, and outputs thesecret keySKID for the user.

– The signing algorithm,Sign, takes as input theuser’s secret keySKID and amessagem, and
outputs asignatureσ.

– The verification algorithm,Ver, takes as input themaster public keyMPK, the signer’s identity
ID, amessagem and asignatureσ and outputs a bit. The signatureσ generated by the user with
identity ID is said to bevalid on messagem if Ver(MPK, ID,m, σ) = 1.

12



Correctness of IBS. The correctness property requires that, if(MPK,MSK) ← MKGen(1κ) is a
pair of master public and secret keys for the scheme,SKID ← UKGen(MSK, ID) is the signing key
for the user with identityID, thenVer(MPK, ID,m, Sign(SKID,m)) = 1, for all messagesm and all
identitiesID.

Security of IBS. Consider a probabilistic polynomial-time adversaryA that participates in the follow-
ing experiment:

Initialization: The master public keyMPK and master secret keyMSK are generated withMKGen.
MPK is given toA.

Oracle queries: The adversary has access to three oracles:InitID(·) that allows it to generate the
secret key for a new identity,Corrupt(·) that gives the adversary the secret key for an identity of
its choice, andSign(·, ·) that generates the signature on a particular message and identity.

Output: The adversary outputs the identity of an uncorrupted user, a message and a signature.

The adversary succeeds in breaking the security of theIBS scheme if the signature it outputs is valid and
the adversary didn’t query the message to the signing oracle. TheIBS scheme is secure if the adversary
succeeds in this game only with negligible probability.

The transformation. We construct a signature scheme with lazy revocation from an identity-based
signature scheme by letting every time interval define a different identity. LetS = (MKGen, UKGen,
Sign, Ver) be a secure identity-based signature scheme. We construct a signature scheme with lazy
revocationSlr = (Initlr, Derivelr, Updatelr, Signlr, Verlr) as follows:

– Initlr(1κ, T ) runs(MSK,MPK) ← MKGen(1κ) and outputs the initial trusted stateS0 = MSK
and the public keyMPK for the signature scheme.

– Updatelr(t, St) outputsSt+1 ← St.

– Derivelr(t, St) runsSKt ← UKGen(S0, t) and outputsSKt.

– Signlr(SKt,m) runsσ ← Sign(SKt,m) and outputsσ.

– Verlr(MPK, t,m, σ) outputs the same asVer(MPK, t,m, σ).

Theorem 3. Suppose thatS is a secure identity-based signature scheme. ThenSlr is a secure signature
scheme with lazy revocation.

Proof. Correctness is easy to see. To prove security ofSlr, let Alr be a polynomial-time adversary
successful in breaking the schemeSlr. We construct an adversaryA for schemeS as follows:

– A is given the public keyMPK of schemeS. A givesMPK toAlr.

– WhenAlr requests the secret keyMt,A runsSKt ← Corrupt(t) and givesSKt toAlr.

– WhenAlr makes a querym to the signing oracle for intervalt + 1,A runsσ ← Sign(t + 1,m)
and returnsσ toAlr.

– Finally,Alr outputs a messagem and a signatureσ for time intervalt + 1. Then,A outputs
(t + 1,m, σ).

It is immediate that the probability of success ofA is the same as the probability of success ofAlr and
the security of the IBS schemeS implies the security of theSS-LR schemeSlr.

13



Implementation. Generic constructions of identity-based schemes from a certain class of standard
identification schemes, calledconvertible, are given by Bellare et. al. [6]. The most efficient construction
of anIBS scheme is the Guillou-Quisquater scheme [15] that needs two exponentiations modulo an RSA
modulusN for both generating and verifying a signature. The size of a signature is two elements ofZ∗

N .

Relation to key-insulated signature schemes.A signature scheme with lazy revocation that hasT
time intervals can be used to construct a perfect(T−1, T ) key-insulated signature scheme, as defined by
Dodis et al. [11]. However, the two notions are not equivalent since the attack model for key-insulated
signatures is stronger. An adversary for a(T − 1, T ) key-insulated signature scheme is allowed to
compromise the signing keys for anyT − 1 time intervals out of the totalT time intervals. Further
differences between key-insulated signatures andSS-LR are that both the trusted entity and the user
update their internal state at the beginning of every time interval and that both parties jointly generate
the signing keys for each time interval.

6 Applications

In this section, we show how our cryptographic algorithms with lazy revocation can be applied to dis-
tributed cryptographic file systems, using the Plutus file system as an example. This also leads to an
efficiency improvement for the revocation mechanism in Plutus.

The Plutus architecture. Plutus [17] is a secure file system that uses an innovative decentralized key
management scheme. In Plutus, files are divided into filegroups, each of them managed by the owner of
its files. Blocks in a file are each encrypted with a different symmetricfile-block key. The encryptions of
the file-block keys for all blocks in a file are stored in alockbox, which is encrypted with afile-lockbox
key. The hash of the file is signed with afile-signing keyfor integrity protection and the signature can be
verified with afile-verification key. The file-lockbox, file-signing and file-verification keys are the same
for all files in a filegroup. Differentiation of readers and writers is done by distributing the appropriate
keys to the users. In particular, the group owner distributes the file-lockbox and file-verification keys
only to readers, and the file-lockbox and file-signing keys only to writers.

Plutus uses lazy revocation and a mechanism calledkey rotationfor efficient key management. The
file-lockbox and file-verification keys for previous time intervals can be derived from the most recent
keys. Our cryptographic primitives with lazy revocation generalize the key rotation mechanism because
we allow previous keys to be derived from our user key, which may be different from the actual key used
for cryptographic operations at the current time interval. This allows more flexibility in constructing
key-updating schemes.

We now recall the Plutus key rotation mechanisms for encryption and signing keys and demonstrate
in both cases how our cryptographic primitives with lazy revocation lead to more efficient solutions.

– For encryption, the group manager as the trusted entity uses the inverse of the RSA trapdoor
permutation to update the file-lockbox encryption key after every user revocation. Users derive
file-lockbox keys of previous time intervals using the public RSA trapdoor permutation. The
construction does not have a cryptographic security proof and cannot be generalized to arbitrary
trapdoor permutations because the output of the trapdoor permutation is not necessarily uniformly
distributed. But it could be fixed by applying a hash function to the output of the trapdoor per-
mutation for deriving the key, which makes the construction provably secure in the random oracle
model [2]. Indeed, this is ourtrapdoor permutationkey-updating scheme [2].

14



However, thebinary-tree key-updating scheme[2] is more efficient because it uses only symmet-
ric-key operations (e.g., a block cipher). Used in a symmetric encryption scheme with lazy revo-
cation according to Section 3, it improves the time for updating and deriving file-lockbox keys by
several orders of magnitude.

– For signatures, Plutus uses RSA in a slightly different method than for encryption. A different
public-key/secret-key pair is generated by the group owner after every revocation, and hence
the RSA moduli differ for all time intervals and need to be stored with the file meta-data. The
public verification exponent can be derived from the file-lockbox key by readers. An alternative
solution based on our signature schemes with lazy revocation according to Section 5 uses only one
verification key and achieves two distinct advantages: first, the storage space for the public keys
is reduced to a constant from linear in the number of revocations and, secondly, the expensive
operation of deriving the public verification exponent in Plutus does not need to be performed.
For example, using the Guillou-Quisquater IBS scheme, deriving the public key of a time interval
during verification takes only a few hash function applications.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. P. Wattenhofer, “FARSITE: Federated, available, and reliable storage
for an incompletely trusted environment,” inProc. 5th Symposium on Operating System Design
and Implementation (OSDI), Usenix, 2002.

[2] M. Backes, C. Cachin, and A. Oprea, “Secure key-updating for lazy revocation,” Technical Report
RZ 3627, IBM Research, Aug. 2005.

[3] M. Bellare, R. Canetti, and H. Krawczyk, “Keyed hash functions for message authentication,” in
Proc. Crypto 1996, vol. 1109 ofLecture Notes in Computer Science, pp. 1–15, Springer-Verlag,
1996.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric
encryption,” inProc. 38th Symposium on Foundations of Computer Science (FOCS), pp. 394–403,
IEEE, 1997.

[5] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chaining message authen-
tication code,” inProc. Crypto 1994, vol. 839 ofLecture Notes in Computer Science, pp. 341–358,
Springer-Verlag, 1994.

[6] M. Bellare, C. Namprempre, and G. Neven, “Security proofs for identity-based identification and
signature schemes,” inProc. Eurocrypt 2004, vol. 3027 ofLecture Notes in Computer Science,
pp. 268–286, Springer-Verlag, 2004.

[7] M. Blaze, “A cryptographic file system for Unix,” inProc. First ACM Conference on Computer
and Communication Security (CCS), pp. 9–16, 1993.

[8] M. Blaze, “Key management in an encrypting file system,” inProc. Summer 1994 USENIX Tech-
nical Conference, pp. 28–35, 1994.

[9] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption scheme,” inProc.
Eurocrypt 2003, vol. 2656 ofLecture Notes in Computer Science, pp. 255–271, Springer-Verlag,
2003.

15



[10] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano, “The design and implementation of a
transparent cryptographic file system for Unix,” inProc. USENIX Annual Technical Conference
2001, Freenix Track, pp. 199–212, 2001.

[11] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Strong key-insulated signature schemes,” inProc. 6th
International Workshop on Theory and Practice in Public Key Cryptography (PKC), vol. 2567 of
Lecture Notes in Computer Science, pp. 130–144, Springer-Verlag, 2003.

[12] K. Fu, “Group sharing and random access in cryptographic storage file systems,” Master’s thesis,
Massachusetts Institute of Technology, 1999.

[13] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted storage,”
in Proc. Network and Distributed Systems Security (NDSS) Symposium 2003, pp. 131–145, ISOC,
2003.

[14] S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme secure against adaptive
chosen-message attacks,”SIAM Journal of Computing, vol. 17, no. 2, pp. 281–308, 1988.

[15] L. Guillou and J. Quisquater, “A “paradoxical” identity-based signature scheme resulting from
zero-knowledge,” inProc. Crypto 1988, vol. 403 ofLecture Notes in Computer Science, pp. 216–
231, Springer-Verlag, 1988.

[16] S. Halevi and P. Rogaway, “A tweakable enciphering mode,” inProc. Crypto 2003, vol. 2729 of
Lecture Notes in Computer Science, pp. 482–499, Springer-Verlag, 2003.

[17] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure file shar-
ing on untrusted storage,” inProc. Second USENIX Conference on File and Storage Technologies
(FAST), 2003.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-
scale persistent storage,” inProc. 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pp. 190–201, ACM, 2000.

[19] J. Li, M. Krohn, D. Mazieres, and D. Shasha, “Secure untrusted data repository,” inProc. 6th
Symposium on Operating System Design and Implementation (OSDI), pp. 121–136, Usenix, 2004.

[20] M. Liskov, R. Rivest, and D. Wagner, “Tweakable block ciphers,” inProc. Crypto 2002, vol. 2442
of Lecture Notes in Computer Science, pp. 31–46, Springer-Verlag, 2002.

[21] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of Applied Cryptography. Boca
Raton, FL: CRC Press, 1997.

[22] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong security for distributed file systems,” in
Proc. First USENIX Conference on File and Storage Technologies (FAST), pp. 1–13, 2002.

[23] E. Riedel, M. Kallahalla, and R. Swaminathan, “A framework for evaluating storage system se-
curity,” in Proc. First USENIX Conference on File and Storage Technologies (FAST), pp. 15–30,
2002.

[24] A. Shamir, “Identity-based cryptosystems and signature schemes,” inProc. Crypto 1984, vol. 196
of Lecture Notes in Computer Science, pp. 47–53, Springer-Verlag, 1985.

16


