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Abstract. This paper investigates one-round secure computation be-
tween two distrusting parties: Alice and Bob each have private inputs to
a common function, but only Alice, acting as the receiver, is to learn the
output; the protocol is limited to one message from Alice to Bob followed
by one message from Bob to Alice. A model in which Bob may be compu-
tationally unbounded is investigated, which corresponds to information-
theoretic security for Alice. It is shown that
1. for honest-but-curious behavior and unbounded Bob, any function

computable by a polynomial-size circuit can be computed securely
assuming the hardness of the decisional Diffie-Hellman problem;

2. for malicious behavior by both (bounded) parties, any function com-
putable by a polynomial-size circuit can be computed securely, in a
public-key framework, assuming the hardness of the decisional Diffie-
Hellman problem.

The results are applied to secure autonomous mobile agents, which mi-
grate between several distrusting hosts before returning to their origina-
tor. A scheme is presented for protecting the agent’s secrets such that
only the originator learns the output of the computation.

1 Introduction

Suppose Alice has a secret input x, Bob has a secret input y, and they wish
to compute g(x, y) securely using one round of interaction: Alice should learn
g(x, y) but nothing else about y and Bob should learn nothing at all. Commu-
nication is restricted to one message from Alice to Bob followed by one message
from Bob to Alice. Without the restriction on the number of rounds, this is the
problem of secure function evaluation introduced by Yao [26] and Goldreich et
al. [17]. It is known that under cryptographic assumptions, every function can
be computed securely and using a (small) constant number of rounds.

The problem is closely related to the question of “computing with encrypted
data” [22]: Alice holds some input x, Bob holds a function f , and Alice should
learn f(x) in a one-round protocol, where Alice sends to Bob an “encryption”
of x, Bob computes f on the “encrypted” data x and sends the result to Alice,
who “decrypts” this to f(x).

The dual of this is “computing with encrypted functions,” where Alice holds
a function f , Bob holds an input y, and Alice should get f(y) in a one-round
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protocol. This scenario has received considerable attention recently because it
corresponds to protecting mobile code that is running on a potentially malicious
host, which might be spying on the secrets of the code [24, 25].

In the next paragraphs, honest-but-curious behavior is assumed before we
turn to arbitrary malicious behavior. Honest-but-curious behavior models a pas-
sively cheating party who follows the protocol, but might try to infer illegitimate
information later on.

Homomorphic Encryption and Computing with Encrypted Data. One popular
approach to “computing with encrypted data” is to search for a public-key en-
cryption scheme (E,D) with the following homomorphic property: given E(x)
and E(y) one can efficiently compute E(x+ y) and E(xy). Now, if Alice knows
the private key D and sends Bob the public key E together with the encrypted
data E(x), then Bob can without interaction compute E(f(x)) and send it back
to Alice. Although this has been a prominent open problem for years [15], it is
still unknown whether such homomorphic encryption schemes exist. On the one
hand, Boneh and Lipton [7] have shown that all such deterministic encryption
schemes are insecure; on the other hand, Sander, Young, and Yung [25] propose a
scheme that allows the necessary operations on encrypted data, but comes at the
cost of a multiplicative blowup per gate, which limits the possible computations
to functions with log-depth circuits.

Computational Assumptions. Note that the above approach to “computing with
encrypted data” assumes a computationally bounded Bob, who cannot learn
anything about the encrypted values. Alice, however, knows all secrets involved
and seems not restricted in her computational power. Thus, the distinguishing
feature of “computing with encrypted data” seems to be that it remains se-
cure against an unbounded Alice. (In fact, the protocol of Sander et al. [25] is
information-theoretically secure for Bob.)

Assume instead that Alice, the receiver of the output, is bounded and Bob
is unbounded and consider the same question: is there a one-round secure com-
putation protocol for all efficiently computable functions? We give a positive
answer in Section 4.1: any function computable by a polynomial-sized circuit has
a one-round secure computation scheme in this model. The result is obtained by
combining Yao’s “encrypted circuit” method [26] for secure computation with a
one-round oblivious transfer protocol [4]. To our knowledge, this is the first one-
round secure computation protocol for arbitrary polynomial-time computations
and gives a partial answer to the long-standing open question of computing with
encrypted data mentioned above.

If both parties are bounded, the above solution applies as well (we can even
obtain stronger results, see below). Conversely, it is well known that secure com-
putation between two unbounded parties with “full information” is impossible
for arbitrary functions and limited to trivial functions g where g(x, y) gives full
information about y. The following table summarizes the current state of one-
round secure computation (both supply input, only Alice receives output):



Alice Bob securely computable functions reference

unbounded unbounded only trivial ones BGW [5]
unbounded bounded log-depth circuits Sander et al. [25]
bounded unbounded polynomial-size circuits this paper
bounded bounded polynomial-size circuits this paper

Malicious Parties. We also investigate the malicious model, where both parties
might be actively cheating. One cannot demand that Bob ever sends a second
message, but if he does, and Alice accepts, the model ensures that Alice obtains
g(x, y) for her input x and some y. We show that if Alice and Bob are both
computationally bounded, then a one-round protocol exists also in the malicious
model, provided they share a random string and that Alice has a public key for
which she is guaranteed to know the private key. This is a realistic model, which
is also used elsewhere (e.g., [10]).

These results seem essentially optimal because one round of communication
is needed to implement oblivious transfer [20].

Securing Autonomous Mobile Agents. One-round secure computation has been
recognized as the solution for keeping the privacy of mobile code intact [24]. Here,
a code originator O sends one message containing a protected description of the
mobile code to host H, which “runs” the program and sends some output back to
O, who decodes the output. (This is an instance of “computing with encrypted
functions.”) The results in this paper on one-round secure computation directly
yield mobile code privacy for all polynomial-time mobile computations. This is
a vast improvement over both the solutions of Sander and Tschudin [24] (which
works for functions representable as polynomials) and the one of Sander et al. [25]
(which works for functions computable by log-depth circuits).

In our solution the relative complexities of the computations by O and H are
similar; for example, if H runs a long, complex computation with a short output,
then O’s decoding work is proportional to the complex computation, despite the
output being short. We do not know if there are general schemes with “small”
decoding complexity for O.

The above models are limited to mobile code that visits only one host, how-
ever. In Section 5, a protocol is presented that allows an autonomous mobile
agent to visit several distrusting hosts, which need not be fixed ahead of time.
This flexibility is one of the main benefits of the mobile code paradigm. As with
an unencrypted autonomous agent, the communication flow must correspond to
a closed path starting and ending at O. The secure computation protocol involves
constructing a cascade of Yao-style circuits by the hosts and its evaluation by
O. No host learns anything about the agent’s or the other hosts’ secrets.

Related Work. Protocols for two-party secure function evaluation between a
bounded and an unbounded party have previously been proposed by Chaum,
Damg̊ard, and van de Graaf [11] and by Abadi and Feigenbaum [1]. The former
hides the inputs of one party information-theoretically and the latter hides the
circuit information-theoretically from the other party (regardless of who receives



the output). Both protocols have round complexity proportional to the depth of
the circuit, however.

The work of Abadi, Feigenbaum, and Kilian [2] on information hiding from
an oracle assumes an all-powerful oracle that helps a user with insufficient re-
sources in computing f(x) for his input x; the approach is to transform x into
an encrypted instance y and have the oracle compute f(y) such that it learns
nothing about x but the user can infer f(x) from f(y). The two main differences
to our model are (1) that Bob may also provide an input and (2) that the oracle
is limited to computing f(·).

Feige, Kilian, and Naor [13] consider a related model in which two parties
perform secure computation by sending a single message each to a third party.

2 Definitions

Recall the three scenarios of one-round secure computation introduced above:
computing with encrypted functions, computing with encrypted data, and secure
function evaluation. Using a universal circuit for g in secure function evaluation,
it is straightforward to realize the first two scenarios from the third one by
supplying f as input (at the cost of a polynomial expansion). An equivalence in
the other directions is possible by letting f be g with one party’s inputs fixed.

The remainder of this section presents definitions for one-round secure com-
putation using secure function evaluation. Formal definitions may be constructed
using the methods in [3, 9, 18] and are provided in the full version of the paper.

The security parameter is denoted by k and a quantity εk is called negligible
(as a function of k) if for all c > 0 there exists a constant k0 such that εk < 1

kc

for all k > k0. Throughout we assume that the security parameter k, as well
as other system parameters, are always part of the input to all algorithms and
protocols.

Honest-but-Curious Model. This definition captures one-round secure computa-
tion if both parties follow the protocol. A scheme has to ensure correctness,
privacy for Alice, and privacy for Bob.

More precisely, a one-round secure computation scheme in the honest-but-
curious model consists of three probabilistic polynomial-time algorithms A1(·),
A2(·, ·), and B(·, ·) such that (1) ∀x ∈ X , ∀y ∈ Y, if A1(x) outputs (s,m1)
and B(y,m1) outputs m2, then A2(s,m2) outputs g(x, y) with all but negligible
probability; (2) there exists a simulator simBob that outputs (s,m1) such that
∀x ∈ X , no efficient algorithm can distinguish between the distributions output
by simBob and the output of A1(x); (3) there exists a simulator simAlice that
outputs (s,m1) such that ∀x ∈ X and ∀y ∈ Y, if m1 is computed from A1(x)
and m2 from B(y,m1), then no efficient algorithm can distinguish between the
distributions on (x,m1,m2) induced by the real protocol and by simAlice.

We say that the scheme is secure for bounded Alice and unbounded Bob if the
distinguisher in (2) is an arbitrary algorithm and the one in (3) is polynomial-
time; similarly, we say it is secure for bounded Alice and bounded Bob if both
distinguishers are polynomial-time algorithms.



In the model above, A1 is Alice’s query generator that outputs a message
m1 sent to Bob and a secret s, B is Bob’s algorithm that outputs message m2

that is sent to Alice, and A2 is Alice’s decoding algorithm that interprets Bob’s
answer using s. (All algorithms are for a fixed function g.)

Malicious Model. The malicious model allows arbitrary behavior for (bounded)
Alice and Bob. We must ensure that for every strategy of Alice, Bob’s reply
does not reveal more to her about y than what follows from the function output
g(x, y) on a particular x. Bob, on the other hand, must be bound to compute
m2 such that Alice can recover g(x, y) for her x and on some legal y, chosen
independently from x, or have Alice reject. Intuitively, this can be solved by
having both parties supply a zero-knowledge proof with their message that it is
well-formed. However, a formal proof of security requires that these proofs are
proofs of knowledge. To this end, we use a public-key model [21], where each
party has registered a public key and a public source of randomness is available
(see Section 4.3).

3 Tools

3.1 Oblivious Transfer

A ubiquitous tool in secure computation is oblivious transfer. We use a one-
out-of-two oblivious transfer also known as ANDOS (all-or-nothing-disclosure-
of-secrets [8]): a sender S has two input values a0 and a1, which are strings of
arbitrary known length, and a receiver R has a bit c; R obtains ac, but should
not learn anything about ac⊕1 and S should not learn c.

Let G be a group of large prime order q (of length polynomial in k) such
that p = 2q + 1 is prime and G ⊂ Zp and let g ∈ G be a generator. (Note
that this allows efficient sampling from G with uniform distribution.) Consider
two distributions D0 and D1 over G4, where D0 = (g, gα, gβ , gγ) with g

R← G

and α, β, γ
R← Zq and D1 = (g, gα, gβ , gαβ) with g

R← G and α, β
R← Zq. The

Decisional Diffie-Hellman (DDH) assumption is that there exists no probabilis-
tic polynomial-time algorithm that distinguishes with non-negligible probability
between D0 and D1.

The following is a sketch of the ANDOS protocol between a sender Bob and
a receiver Alice [4], denoted OT(c)(a0, a1). Alice’s private input is a bit c and
Bob’s private inputs are a0, a1 ∈ G. Common inputs are p and g.

1. Bob chooses δ R← G and sends δ to Alice.
2. Alice chooses α R← Zq, computes βc = gα, βc⊕1 = δ/βc, and sends β0, β1 to

Bob.
3. Bob verifies that β0β1 = δ and aborts if not. Otherwise, he chooses r0, r1

R←
Zq, computes (e0, f0) = (gr0 , a0β0

r0) and (e1, f1) = (gr1 , a1β1
r1), and sends

(e0, f0, e1, f1) to Alice.
4. Alice obtains ac by computing fc/ecα.



It is easy to see that if both parties follow the protocol, Alice obtains ac. Con-
sider security for Alice: c is perfectly hidden from Bob, i.e., in an information-
theoretic sense, because β0 and β1 are uniformly random among all group ele-
ments with product δ. Thus the protocol is secure for Alice against an arbitrarily
behaving unbounded Bob.

Consider security for Bob. In the honest-but-curious model, Alice chooses β0

and β1 honest, i.e., such that βc⊕1 is a random public key and, under the DDH
assumption, (ec⊕1, fc⊕1) is a semantically secure encryption of ac⊕1. Hence the
protocol is secure for Bob against a bounded Alice. Furthermore, Step 1 of the
protocol is not even needed and Alice may compute δ R← G herself in Step 2. The
resulting protocol, denoted by OT-1(c)(a0, a1), has only one round of interaction.

Assuming malicious behavior, a one-round version is also possible in the
public-key model using shared random information σ; this version is denoted
by OT-2(c)(a0, a1). Here, Step 1 can again be omitted and Alice chooses δ her-
self, using the sampling algorithm in G with σ as random source. Intuitively,
she then sends δ along with β0, β1 to Bob, who verifies that the choice of δ
is correct according to σ. However, Alice must also supply a “non-interactive
proof of knowledge” of α, the discrete logarithm of either β0 or β1 (we refer to
Section 4.3 for how this can be done). With these changes, the protocol can be
proved secure for Bob against an arbitrarily behaving bounded Alice.

3.2 Encrypted Circuit Construction

Yao’s encrypted circuit construction implements secure function evaluation be-
tween Alice and Bob such that Alice receives the output z = g(x, y) [26].

We give an abstract version of Yao’s construction describing only those
properties essential to our analysis. A more detailed treatment of Yao’s pro-
tocol is found in the literature (e.g., [23]). Let (x1, . . . , xnx), (y1, . . . , yny ), and
(z1, . . . , znz ) denote the binary representation of x, y, and z, respectively, and let
C denote a polynomial-sized circuit computing g(·, ·). Yao’s construction con-
sists of three procedures: (1) an algorithm construct that Bob uses to construct
an encrypted circuit, (2) an interactive protocol transfer between Alice and Bob,
and (3) an algorithm evaluate allowing Alice to retrieve g(x, y). Additionally, the
proof of security requires a simulation result.

More precisely, the probabilistic algorithm construct(C, y) outputs the values
C, (K1,0,K1,1), . . . , (Knx,0,Knx,1), (U1,0, U1,1), . . . , (Unz,0, Unz,1). The first part
C is a representation for C, with input y hardwired in. It may be viewed as an
encrypted version of the nx-input circuit C(·, y). In order to compute C(x, y),
one needs a k-bit key for each input bit xi; the key Ki,b corresponds to the key
used for the input xi = b. The pairs (Ui,0, Ui,1) represent the output bits, i.e., if
decryption of the circuit produces Ui,b, then the output bit zi is set to b.

The transfer protocol consists of nx parallel executions of ANDOS. In the
i-th execution, Bob has input (Ki,0,Ki,1) and Alice has input xi. That is, Alice
learns K1,x1 , . . . ,Knx,xnx , but nothing more, whereas Bob learns nothing about
x1, . . . , xnx . Bob also sends C and (U1,0, U1,1), . . . , (Unz,0, Unz,1) to Alice.



The algorithm evaluate(C,K1,x1 , . . . ,Knx,xnx ) outputs either a special symbol
reject or U1,z1 , . . . , Unz,znz . From the latter Alice can recover z, and if Alice
and Bob obey the protocol, then z = g(x, y).

A key element of the security analysis is the existence of a polynomial-
time simulator simYao(C, x, g(x, y)) that outputs a tuple C,K1,x1 , . . . ,Knx,xnx ,
(U1,0, U1,1), . . . , (Unz,0, Unz,1); the distribution of the simulator’s output is com-
putationally indistinguishable from that induced on these same variables by
construct(C, y) and x. Intuitively, given x and g(x, y), the simulator can simu-
late Alice’s view obtained by running Yao’s protocol with an ideal (information-
theoretically secure) ANDOS.

The existence of construct, evaluate, and simYao may be based on the existence
of pseudo-random functions [16]; efficient implementations of pseudo-random
functions can be based on the DDH assumption [19].

4 One-round Secure Computation for Polynomial-Size
Circuits

The basic idea of our one-round secure computation protocols is to combine the
one-round oblivious transfer protocols with the encrypted circuit construction.

4.1 Honest Behavior

In the honest case, we use the one-round oblivious transfer protocol OT-1 and
send Bob’s reply in OT-1 along with the encrypted circuit computing g. The
resulting scheme consists of the three following algorithms A1, A2, and B (using
the notation above).

A1(x): Compute the first messages of Alice for nx parallel oblivious transfer
protocols: Let (δ(i), β

(i)
0 , β

(i)
1 ) be computed as in Step 2 of protocol OT-1

with input xi of Alice for i = 1, . . . , nx. Output s = (α(1), . . . , α(nx)) and
m1 = ((δ(1), β

(1)
0 , β

(1)
1 ), . . . , (δ(nx), β

(nx)
0 , β

(nx)
1 )).

B(y,m1): Invoke construct(C, y) to obtain (C, (K1,0,K1,1), . . . , (Knx,0,Knx,1),
(U1,0, U1,1), . . . , (Unz,0, Unz,1)). Next, for each i = 1, . . . , nx, execute Step 3
of protocol OT-1 using (δ(i), β

(i)
0 , β

(i)
1 ) (taken from m1) and with Bob’s in-

puts (a0, a1) set to (Ki,0,Ki,1). (Provided |G| is sufficiently large, such an
encoding of binary strings in G is possible.) Denote the output of this step
by m2,i = (e(i)

0 , f
(i)
0 , e

(i)
1 , f

(i)
1 ). Output m2 = (C,m2,1, . . . ,m2,nx , (U1,0, U1,1),

. . . ,(Unz,0, Unz,1)).
A2(s,m2): For i = 1, . . . , nx execute Step 4 of protocol OT-1 using xi as c,

(e(i)
xi , f

(i)
xi ) (taken from m2) as (ec, fc), and α(i) (taken from s) as α, hence

recoveringK1,x1 , . . . ,Knx,xnx . Finally, invoke evaluate(C,K1,x1 , . . . ,Knx,xnx )
to obtain U1,z1 , . . . , Unz,znz and output z.



4.2 Analysis of the Honest-party Case

Our description of Yao’s protocol assumed an ideal implementation of ANDOS.
We now analyze the above protocol using the oblivious transfer protocol OT-1.
When both parties are honest, the combined protocol’s correctness follows easily
from the correctness of Yao’s protocol and the oblivious transfer protocol. To
show privacy, we construct simulators for Alice’s and Bob’s views. Note that
this separation of privacy and correctness is not valid for parties with arbitrary
behavior.

Let ViewAlice(x, y) and ViewBob(x, y) denote Alice’s and Bob’s view of the
protocol (C is always a fixed common input, and is dropped for notational con-
venience). We must simulate each player’s view given only the information they
are supposed to learn. That is, Bob is allowed to learn y, and Alice is allowed to
learn x and g(x, y).

To simulate ViewBob(x, y), we define simulator simBob(y) as follows:

1. Choose Alice’s input x = 0nx .
2. Engage in the secure function evaluation protocol with Bob where the simu-

lated Alice plays as she would be given x. Return the view obtained by Bob
during the execution of this protocol.

Lemma 1. For all values of (C, y), simBob(y) and ViewBob(y) are identically
distributed.

The proof follows from the fact that in every execution of the OT-1 sub-protocol,
Alice’s message is independent of her input.

Next, we simulate ViewAlice(x, y). Define simAlice(x, g(x, y)) as follows:

1. The simulator invokes the simulator simYao(C, x, g(x, y)) so as to obtain
C,K1,x1 , . . . ,Knx,xnx , (U1,0, U1,1), . . . , (Unz,0, Unz,1).

2. For i = 1, . . . , nx, the simulator chooses Ki,xi⊕1 = 0k.
3. The simulator engages in the protocol transfer with Alice exactly as would

Bob, given input pairs (K1,0,K1,1), . . . , (Knx,0,Knx,1) and encrypted circuit
C. The simulator returns Alice’s view of this protocol.

Lemma 2. For all values of x and y, ViewAlice(x, y) and simAlice(x, g(x, y)) are
computationally indistinguishable.

The proof works by a hybrid argument (omitted). Our first result follows.

Theorem 1. Under the DDH assumption, (A1, A2, B) are a one-round secure
computation scheme in the honest-but-curious model, with perfect security against
unbounded Bob.

4.3 Allowing Malicious Behavior

For polynomially bounded, arbitrarily malicious parties, we obtain secure one-
round computation in a model with certified public-keys and public randomness.



First, because we can no longer trust Alice to choose δ at random, we replace
protocol OT-1 by protocol OT-2 (using public randomness) in the above con-
struction. Then Bob must prove that his messages in OT-2 are consistent with a
correct construction of C, {(Ki,0,Ki,1)} and Alice must prove that she knows the
discrete logarithm for one element of each pair (β(i)

0 , β
(i)
1 ) (e.g., using a result

by Cramer et al. [12]). In the security proof for protocol OT-2 one extracts the
discrete logarithms from Alice and thereby obtains her input x (xi corresponds
to the element of (β(i)

0 , β
(i)
1 ) of which Alice knows the discrete logarithm).

A fallacious step would be to use a public random string to implement non-
interactive zero-knowledge proofs (NIZKP) [6, 14] that each player’s message is
well formed. The formal complication to this method is that “standard” NIZKP
are not proofs of knowledge. Instead, we use the “public-key” scenario for non-
interactive proofs of knowledge, put forth by Simon and Rackoff [21], as follows.
Each player has a public-key P that is certified by some trusted center once and
forever. The player convinces the center, via a standard zero-knowledge proof
of knowledge, that he knows the corresponding secret key S for P . Henceforth,
the secret key is assumed available to the simulator/extractor. To make a non-
interactive proof of knowledge of the solution to some problem in NP, the player
simply encrypts, using P , whatever it is he wishes to show knowledge of, and
then non-interactively prove (using standard NIZKP) that the encryption, if
decrypted, would yield a solution to the problem. The extractor, who knows S,
can then recover the solution as well. Details are omitted from this extended
abstract.

5 Securing Autonomous Mobile Agents

The mobile agent paradigm has several attractive features. One of them is the
flexibility of delegating a task to an autonomous agent, who roams the net, visits
different sites, collects information, computes intermediate results, and returns
to the originator only when the computation is finished. No interaction with the
originator is needed in-between.

Sander and Tschudin [24] recognized that mobile code can be protected
against a curious host using the approach of “computing with encrypted func-
tions.” However, their solution addresses only the case of agents who return
home after visiting one host. We consider autonomous agents here that leave
the originator without a fixed list of hosts to visit in mind and consider the
question: How does the agent migrate securely from one host to another?

5.1 Model

More formally, there is the agent’s originator O and ` hosts H1, . . . ,H` that run
the agent. The state of the agent is represented by some x ∈ X . The initial
state is chosen by O. All that is known about the computation is represented by
gj : X × Y → X associated with Hj , which updates the agent’s state according



to Hj ’s secret input yj . This models arbitrary polynomial-time computations
provided the functions gj are representable by polynomial-size circuits.

A novel feature of our protocol is that neither the hosts nor the path taken
by the agent need to be fixed or known beforehand. Only for the simplicity of
description do we assume that the agent travels from O to host H1, then from
host Hj to host Hj+1 for j = 1, . . . , ` − 1 and then from H` back to O; the
generalization can be derived easily. The agent is autonomous because either a
host may decide where to send the agent next or because the agent, besides the
encrypted part, consists also of conventional code that computes where to go
next based on non-private information. (Note that migration decisions cannot
depend on the private state of the computation, as they would be observable by
the hosts and thereby leak information about the internal state!)

A scheme for secure computation by autonomous mobile agents consists of
efficient algorithms A1(·), A2(·, ·), B1(·, ·), . . . , B`(·, ·). The agent’s computation
proceeds as follows: first, O runs A1(x) on input x and thereby obtains a secret
s and a message m0, which O sends to H1; likewise, for j = 1, . . . , `, Hj runs
Bj(yj ,mj−1) on input yj , message mj−1 and obtains mj , which it sends to Hj+1

(with the exception that H` sends m` to O). Finally, upon receiving m`, O
obtains the desired result by invoking A2(s,m`). We require:

Correctness: ∀x ∈ X and ∀yj ∈ Y, the decoding algorithm A2(s,m`) outputs
z = g`(· · · g2(g1(x, y1), y2) · · · , y`);

Privacy: (1) the inputs and computations of the visited hosts remain hidden
from the other hosts: for all j, message mj does not give information about
x and yj′ for j′ ≤ j; (2) the originator should learn only the output of
the computation, but nothing else about the inputs of the hosts: ∀x ∈ X
and ∀yj ∈ Y, (j = 1, . . . , `), given only x, s, and z (as above), m` can be
simulated efficiently.

Honest-but-curious behavior is assumed on behalf of all parties throughout this
section (dishonest behavior can be prevented analogously to the two-party case).

5.2 Protocol

Our protocol for secure computation by autonomous mobile agents is an ex-
tension of the one-round secure computation protocol in Section 4.1 to multiple
hosts, which take over the part of Bob. O proceeds as Alice, sending the first mes-
sage and receiving the encrypted circuit computing g`(· · · (g1(x, y1), y2) · · · , y`).
Each host Hj contributes the part of encrypted circuit representing its function
gj ; thus the resulting encrypted circuit is a cascade of sub-circuits. H1 generates
the key pairs representing O’s input and computes the answers for the oblivious
transfer protocol; these are attached to the computation and reach O with the
message from H`. To extend the cascade of sub-circuits, Hj encrypts each input
key of its sub-circuit with the corresponding output key from the preceding sub-
circuit. This is done using a symmetric encryption algorithm encK(·), realized
in the same way as the encryptions for single gates in Yao’s construction; in



particular, this scheme has the property that given a key K, one can efficiently
check if a ciphertext represents an encryption under key K.

We describe algorithms A1, A2, and B1, . . . , B` using notation from above.

A1(x): Compute the first message (of Alice) for nx parallel oblivious transfer
protocols. This results in s = (α(1), . . . , α(nx)) and m̃0 =

(
(δ(1), β

(1)
0 , β

(1)
1 ),

. . . , (δ(nx), β
(nx)
0 , β

(nx)
1 )

)
computed as in OT-1. Output s and m0 = (m̃0, ∅).

Bj(yj ,mj−1): Invoke construct(Cj , yj) to obtain

Cj , (K(j)
1,0 ,K

(j)
1,1), . . . , (K(j)

nx,0
,K

(j)
nx,1

), (U (j)
1,0 , U

(j)
1,1 ), . . . , (U (j)

nx,0
, U

(j)
nx,1

).

If j = 1, then execute Step 3 of protocol OT-1 using (δ(i), β
(i)
0 , β

(i)
1 ) (taken

from m̃0) and with Bob’s input set to (K(1)
i,0 ,K

(1)
i,1 ). Denote the output of the

OT-1 step by m̃(i) = (e(i)
0 , f

(i)
0 , e

(i)
1 , f

(i)
1 ). Set m̃1 = (m̃(1), . . . , m̃(nx), C1) and

output m1 = (m̃1, (U
(1)
1,0 , U

(1)
1,1 ), . . . , (U (1)

nx,0
, U

(1)
nx,1

)).
If 1 < j ≤ `, then the outputs of Cj−1 are recoded as inputs to Cj . To
this end, for i = 1, . . . , nx do the following: choose a random bit ci and, for
b ∈ {0, 1}, encrypt key K

(j)
i,b under U (j−1)

i,b (taken from mj−1) as V (j)
i,b⊕ci =

enc
U

(j−1)
i,b

(K(j)
i,b ) Next, set m̃j = (m̃j−1, Cj , (V (j)

1,0 , V
(j)
1,1 ), . . . , (V (j)

nx,0
, V

(j)
nx,1

)) and

then output mj = (m̃j , (U
(j)
1,0 , U

(j)
1,1 ), . . . , (U (j)

nx,0
, U

(j)
nx,1

)).

A2(s,m`): Run Step 4 of protocol OT-1 and obtain input keysK(1)
1,x1

, . . . ,K
(1)
nx,xnx

of C1. Now, run algorithm evaluate(C1,K(1)
1,x1

, . . . ,K
(1)
nx,xnx ) to obtain the out-

put keys of C1. Each one of these decrypts one ciphertext V (2)
i,b to an input

key of C2, which can then be evaluated and then will allow to decrypt the in-
put keys of C3. Proceeding similarly for all circuits C3, . . . , C` will eventually
reveal U (`)

1,z1
, . . . , U

(`)
nx,znx from which the result z can be retrieved.

As for the security of the protocol, note that each host sees an encrypted
circuit representing the computation so far, like Alice in the original protocol
but lacking the secrets to decrypt the oblivious transfers. A simulator for each
host’s view is straightforward. When the encrypted circuit reaches O, it consists
only of information that has been constructed using the same method as in the
original protocol; thus, the security follows from the original argument.
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