One-Round Secure Computation and Secure
Autonomous Mobile Agents
(Extended Abstract)

Christian Cachin', Jan Camenisch', Joe Kilian?, and Joy Miiller!

Abstract. This paper investigates one-round secure computation be-
tween two distrusting parties: Alice and Bob each have private inputs to
a common function, but only Alice, acting as the receiver, is to learn the
output; the protocol is limited to one message from Alice to Bob followed
by one message from Bob to Alice. A model in which Bob may be compu-
tationally unbounded is investigated, which corresponds to information-
theoretic security for Alice. It is shown that

1. for honest-but-curious behavior and unbounded Bob, any function
computable by a polynomial-size circuit can be computed securely
assuming the hardness of the decisional Diffie-Hellman problem:;

2. for malicious behavior by both (bounded) parties, any function com-
putable by a polynomial-size circuit can be computed securely, in a
public-key framework, assuming the hardness of the decisional Diffie-
Hellman problem.

The results are applied to secure autonomous mobile agents, which mi-
grate between several distrusting hosts before returning to their origina-
tor. A scheme is presented for protecting the agent’s secrets such that
only the originator learns the output of the computation.

1 Introduction

Suppose Alice has a secret input z, Bob has a secret input y, and they wish
to compute g(x,y) securely using one round of interaction: Alice should learn
g(z,y) but nothing else about y and Bob should learn nothing at all. Commu-
nication is restricted to one message from Alice to Bob followed by one message
from Bob to Alice. Without the restriction on the number of rounds, this is the
problem of secure function evaluation introduced by Yao [26] and Goldreich et
al. [17]. Tt is known that under cryptographic assumptions, every function can
be computed securely and using a (small) constant number of rounds.

The problem is closely related to the question of “computing with encrypted
data” [22]: Alice holds some input z, Bob holds a function f, and Alice should
learn f(x) in a one-round protocol, where Alice sends to Bob an “encryption”
of =, Bob computes f on the “encrypted” data x and sends the result to Alice,
who “decrypts” this to f(z).

The dual of this is “computing with encrypted functions,” where Alice holds
a function f, Bob holds an input y, and Alice should get f(y) in a one-round

L IBM Zurich Research Laboratory, CH-8803 Riischlikon, Switzerland, {cca, jca,
jmu}@zurich.ibm.com.
2 NEC Research Institute, Princeton, NJ 08540, USA, joe@research.nj.nec.com.

protocol. This scenario has received considerable attention recently because it
corresponds to protecting mobile code that is running on a potentially malicious
host, which might be spying on the secrets of the code [24, 25].

In the next paragraphs, honest-but-curious behavior is assumed before we
turn to arbitrary malicious behavior. Honest-but-curious behavior models a pas-
sively cheating party who follows the protocol, but might try to infer illegitimate
information later on.

Homomorphic Encryption and Computing with Encrypted Data. One popular
approach to “computing with encrypted data” is to search for a public-key en-
cryption scheme (E, D) with the following homomorphic property: given E(x)
and E(y) one can efficiently compute E(z + y) and E(zy). Now, if Alice knows
the private key D and sends Bob the public key E together with the encrypted
data E(x), then Bob can without interaction compute E(f(z)) and send it back
to Alice. Although this has been a prominent open problem for years [15], it is
still unknown whether such homomorphic encryption schemes exist. On the one
hand, Boneh and Lipton [7] have shown that all such deterministic encryption
schemes are insecure; on the other hand, Sander, Young, and Yung [25] propose a
scheme that allows the necessary operations on encrypted data, but comes at the
cost of a multiplicative blowup per gate, which limits the possible computations
to functions with log-depth circuits.

Computational Assumptions. Note that the above approach to “computing with
encrypted data” assumes a computationally bounded Bob, who cannot learn
anything about the encrypted values. Alice, however, knows all secrets involved
and seems not restricted in her computational power. Thus, the distinguishing
feature of “computing with encrypted data” seems to be that it remains se-
cure against an unbounded Alice. (In fact, the protocol of Sander et al. [25] is
information-theoretically secure for Bob.)

Assume instead that Alice, the receiver of the output, is bounded and Bob
is unbounded and consider the same question: is there a one-round secure com-
putation protocol for all efficiently computable functions? We give a positive
answer in Section 4.1: any function computable by a polynomial-sized circuit has
a one-round secure computation scheme in this model. The result is obtained by
combining Yao’s “encrypted circuit” method [26] for secure computation with a
one-round oblivious transfer protocol [4]. To our knowledge, this is the first one-
round secure computation protocol for arbitrary polynomial-time computations
and gives a partial answer to the long-standing open question of computing with
encrypted data mentioned above.

If both parties are bounded, the above solution applies as well (we can even
obtain stronger results, see below). Conversely, it is well known that secure com-
putation between two unbounded parties with “full information” is impossible
for arbitrary functions and limited to trivial functions g where g(z,y) gives full
information about y. The following table summarizes the current state of one-
round secure computation (both supply input, only Alice receives output):

Alice | Bob | securely computable functions ‘ reference

unbounded | unbounded | only trivial ones BGW [5]
unbounded | bounded log-depth circuits Sander et al. [25]
bounded unbounded | polynomial-size circuits this paper
bounded bounded polynomial-size circuits this paper

Malicious Parties. We also investigate the malicious model, where both parties
might be actively cheating. One cannot demand that Bob ever sends a second
message, but if he does, and Alice accepts, the model ensures that Alice obtains
g(z,y) for her input = and some y. We show that if Alice and Bob are both
computationally bounded, then a one-round protocol exists also in the malicious
model, provided they share a random string and that Alice has a public key for
which she is guaranteed to know the private key. This is a realistic model, which
is also used elsewhere (e.g., [10]).

These results seem essentially optimal because one round of communication
is needed to implement oblivious transfer [20].

Securing Autonomous Mobile Agents. One-round secure computation has been
recognized as the solution for keeping the privacy of mobile code intact [24]. Here,
a code originator O sends one message containing a protected description of the
mobile code to host H, which “runs” the program and sends some output back to
O, who decodes the output. (This is an instance of “computing with encrypted
functions.”) The results in this paper on one-round secure computation directly
yield mobile code privacy for all polynomial-time mobile computations. This is
a vast improvement over both the solutions of Sander and Tschudin [24] (which
works for functions representable as polynomials) and the one of Sander et al. [25]
(which works for functions computable by log-depth circuits).

In our solution the relative complexities of the computations by O and H are
similar; for example, if H runs a long, complex computation with a short output,
then O’s decoding work is proportional to the complex computation, despite the
output being short. We do not know if there are general schemes with “small”
decoding complexity for O.

The above models are limited to mobile code that visits only one host, how-
ever. In Section 5, a protocol is presented that allows an autonomous mobile
agent to visit several distrusting hosts, which need not be fixed ahead of time.
This flexibility is one of the main benefits of the mobile code paradigm. As with
an unencrypted autonomous agent, the communication flow must correspond to
a closed path starting and ending at O. The secure computation protocol involves
constructing a cascade of Yao-style circuits by the hosts and its evaluation by
O. No host learns anything about the agent’s or the other hosts’ secrets.

Related Work. Protocols for two-party secure function evaluation between a
bounded and an unbounded party have previously been proposed by Chaum,
Damgard, and van de Graaf [11] and by Abadi and Feigenbaum [1]. The former
hides the inputs of one party information-theoretically and the latter hides the
circuit information-theoretically from the other party (regardless of who receives

the output). Both protocols have round complexity proportional to the depth of
the circuit, however.

The work of Abadi, Feigenbaum, and Kilian [2] on information hiding from
an oracle assumes an all-powerful oracle that helps a user with insufficient re-
sources in computing f(x) for his input z; the approach is to transform z into
an encrypted instance y and have the oracle compute f(y) such that it learns
nothing about 2 but the user can infer f(z) from f(y). The two main differences
to our model are (1) that Bob may also provide an input and (2) that the oracle
is limited to computing f(-).

Feige, Kilian, and Naor [13] consider a related model in which two parties
perform secure computation by sending a single message each to a third party.

2 Definitions

Recall the three scenarios of one-round secure computation introduced above:
computing with encrypted functions, computing with encrypted data, and secure
function evaluation. Using a universal circuit for g in secure function evaluation,
it is straightforward to realize the first two scenarios from the third one by
supplying f as input (at the cost of a polynomial expansion). An equivalence in
the other directions is possible by letting f be g with one party’s inputs fixed.

The remainder of this section presents definitions for one-round secure com-
putation using secure function evaluation. Formal definitions may be constructed
using the methods in [3,9, 18] and are provided in the full version of the paper.

The security parameter is denoted by k£ and a quantity ¢ is called negligible
(as a function of k) if for all ¢ > 0 there exists a constant kg such that e, < k—lp
for all £k > ko. Throughout we assume that the security parameter k, as well
as other system parameters, are always part of the input to all algorithms and
protocols.

Honest-but-Curious Model. This definition captures one-round secure computa-
tion if both parties follow the protocol. A scheme has to ensure correctness,
privacy for Alice, and privacy for Bob.

More precisely, a one-round secure computation scheme in the honest-but-
curious model consists of three probabilistic polynomial-time algorithms A (-),
As(+,), and B(-,-) such that (1) Vo € X, Yy € Y, if Ai(z) outputs (s,m;)
and B(y, m1) outputs ma, then As(s, ms) outputs g(z,y) with all but negligible
probability; (2) there exists a simulator simge, that outputs (s,mq) such that
Va € X, no efficient algorithm can distinguish between the distributions output
by simpop and the output of Aj(z); (3) there exists a simulator simajc that
outputs (s,mq) such that Vz € X and Vy € Y, if my is computed from A;(x)
and my from B(y,m;), then no efficient algorithm can distinguish between the
distributions on (z,m1,ms) induced by the real protocol and by simajice.

We say that the scheme is secure for bounded Alice and unbounded Bob if the
distinguisher in (2) is an arbitrary algorithm and the one in (3) is polynomial-
time; similarly, we say it is secure for bounded Alice and bounded Bob if both
distinguishers are polynomial-time algorithms.

In the model above, A; is Alice’s query generator that outputs a message
my sent to Bob and a secret s, B is Bob’s algorithm that outputs message mo
that is sent to Alice, and A, is Alice’s decoding algorithm that interprets Bob’s
answer using s. (All algorithms are for a fixed function g.)

Malicious Model. The malicious model allows arbitrary behavior for (bounded)
Alice and Bob. We must ensure that for every strategy of Alice, Bob’s reply
does not reveal more to her about y than what follows from the function output
g(z,y) on a particular x. Bob, on the other hand, must be bound to compute
mg such that Alice can recover g(z,y) for her and on some legal y, chosen
independently from x, or have Alice reject. Intuitively, this can be solved by
having both parties supply a zero-knowledge proof with their message that it is
well-formed. However, a formal proof of security requires that these proofs are
proofs of knowledge. To this end, we use a public-key model [21], where each
party has registered a public key and a public source of randomness is available
(see Section 4.3).

3 Tools

3.1 Oblivious Transfer

A ubiquitous tool in secure computation is oblivious transfer. We use a one-
out-of-two oblivious transfer also known as ANDOS (all-or-nothing-disclosure-
of-secrets [8]): a sender S has two input values ag and a;, which are strings of
arbitrary known length, and a receiver R has a bit ¢; R obtains a., but should
not learn anything about a.g1 and S should not learn c.

Let G be a group of large prime order ¢ (of length polynomial in k) such
that p = 2¢ + 1 is prime and G C Z, and let ¢ € G be a generator. (Note
that this allows efficient sampling from G with uniform distribution.) Consider
two distributions Dy and D; over G*, where Dy = (g,9%, 4% ¢g7) with g e
and a, 8,7 < Z, and Dy = (g,9%, 9", 9%") with g & Gand o, 8 & Zg4. The
Decisional Diffie-Hellman (DDH) assumption is that there exists no probabilis-
tic polynomial-time algorithm that distinguishes with non-negligible probability
between Do and D;.

The following is a sketch of the ANDOS protocol between a sender Bob and
a receiver Alice [4], denoted OT(c)(ao,a1). Alice’s private input is a bit ¢ and
Bob’s private inputs are ag,a; € G. Common inputs are p and g.

1. Bob chooses 6§ <~ G and sends 6 to Alice.

2. Alice chooses o <= Zg4, computes . = g%, Bea1 = §/0., and sends Sy, f1 to
Bob.

3. Bob verifies that 8y3; = & and aborts if not. Otherwise, he chooses 7,71 <
Z,, computes (eg, fo) = (9™, aoBo™) and (e1, f1) = (¢, a1/1"™), and sends
(60, fo, €1, fl) to Alice.

4. Alice obtains a. by computing f./e.*.

It is easy to see that if both parties follow the protocol, Alice obtains a.. Con-
sider security for Alice: ¢ is perfectly hidden from Bob, i.e., in an information-
theoretic sense, because By and ; are uniformly random among all group ele-
ments with product §. Thus the protocol is secure for Alice against an arbitrarily
behaving unbounded Bob.

Consider security for Bob. In the honest-but-curious model, Alice chooses 3y
and f; honest, i.e., such that (.q1 is a random public key and, under the DDH
assumption, (e.q1, fe@1) 18 a semantically secure encryption of a.q1. Hence the
protocol is secure for Bob against a bounded Alice. Furthermore, Step 1 of the
protocol is not even needed and Alice may compute § <~ G herself in Step 2. The
resulting protocol, denoted by OT-1(c)(ao, a1), has only one round of interaction.

Assuming malicious behavior, a one-round version is also possible in the
public-key model using shared random information o; this version is denoted
by OT-2(c¢)(ag, a1). Here, Step 1 can again be omitted and Alice chooses ¢ her-
self, using the sampling algorithm in G with ¢ as random source. Intuitively,
she then sends ¢ along with (y, 31 to Bob, who verifies that the choice of §
is correct according to o. However, Alice must also supply a “non-interactive
proof of knowledge” of «, the discrete logarithm of either 5y or 81 (we refer to
Section 4.3 for how this can be done). With these changes, the protocol can be
proved secure for Bob against an arbitrarily behaving bounded Alice.

3.2 Encrypted Circuit Construction

Yao’s encrypted circuit construction implements secure function evaluation be-
tween Alice and Bob such that Alice receives the output z = g(z,y) [26].

We give an abstract version of Yao’s construction describing only those
properties essential to our analysis. A more detailed treatment of Yao’s pro-
tocol is found in the literature (e.g., [23]). Let (z1,...,2n,), (1,--+,¥n,), and
(#1,...,2n.) denote the binary representation of x, y, and z, respectively, and let
C' denote a polynomial-sized circuit computing ¢(-,-). Yao’s construction con-
sists of three procedures: (1) an algorithm construct that Bob uses to construct
an encrypted circuit, (2) an interactive protocol transfer between Alice and Bob,
and (3) an algorithm evaluate allowing Alice to retrieve g(x, y). Additionally, the
proof of security requires a simulation result.

More precisely, the probabilistic algorithm construct(C, y) outputs the values
C, (Kl’o, K1’1)7 ey (an’o, Kn1,1)7 (ULO’ Ul,l)a ey (Unz,Oa Unz,l)o The first part
C is a representation for C, with input y hardwired in. It may be viewed as an
encrypted version of the n -input circuit C(-,y). In order to compute C(z,y),
one needs a k-bit key for each input bit x;; the key K;; corresponds to the key
used for the input z; = b. The pairs (U, o, U; 1) represent the output bits, i.e., if
decryption of the circuit produces U, 5, then the output bit z; is set to b.

The transfer protocol consists of n, parallel executions of ANDOS. In the
i-th execution, Bob has input (K; o, K;1) and Alice has input z;. That is, Alice
learns K1 4y, ..., Kp, z,, , but nothing more, whereas Bob learns nothing about
T1,...,Tp,. Bob also sends C and (U1,0,U1,1); .-, (Un,,0,Un. 1) to Alice.

The algorithm evaluate(C, K14, , - - ., Ky, 2,) outputs either a special symbol
reject or Uy ..., Uy, -, . From the latter Alice can recover z, and if Alice
and Bob obey the protocol, then z = g(z,y).

A key element of the security analysis is the existence of a polynomial-
time simulator simv,o(C, x, g(,y)) that outputs a tuple C, K1 4,,..., Kn, 2,
(U1,0,U11),--.,(Un, 0,Un, 1); the distribution of the simulator’s output is com-
putationally indistinguishable from that induced on these same variables by
construct(C,y) and z. Intuitively, given = and g(z,y), the simulator can simu-
late Alice’s view obtained by running Yao’s protocol with an ideal (information-
theoretically secure) ANDOS.

The existence of construct, evaluate, and simy,, may be based on the existence
of pseudo-random functions [16]; efficient implementations of pseudo-random
functions can be based on the DDH assumption [19].

4 One-round Secure Computation for Polynomial-Size
Circuits

The basic idea of our one-round secure computation protocols is to combine the
one-round oblivious transfer protocols with the encrypted circuit construction.

4.1 Honest Behavior

In the honest case, we use the one-round oblivious transfer protocol OT-1 and
send Bob’s reply in OT-1 along with the encrypted circuit computing g. The
resulting scheme consists of the three following algorithms A;, A, and B (using
the notation above).

Aj(z): Compute the first messages of Alice for n, parallel oblivious transfer

protocols: Let (5“%56”,5@) be computed as in Step 2 of protocol OT-1
with input x; of Alice for i = 1,...,n,. Output s = (a®,..., (™)) and
m1 = ((6(1)7 ﬁ(()l)v gl))’) (5(7@)7 ﬁ(()nz)’ ﬁ£nz)))

B(y,m1): Invoke construct(C,y) to obtain (C,(K1,0,K11),-..; (Kn,,0, Kn, 1),
(U10,U11),.--,(Un.,0,Un, 1)). Next, for each i = 1,...,n,, execute Step 3
of protocol OT-1 using (5(i),ﬁéi),ﬁ§i)) (taken from m;) and with Bob’s in-
puts (ao,a1) set to (K0, K;1). (Provided |G| is sufficiently large, such an
encoding of binary strings in G is possible.) Denote the output of this step
by ma; = (e, £ el

: 7<Unz,07 Unz,1)>‘

As(s,mo): For i = 1,...,n, execute Step 4 of protocol OT-1 using z; as ¢,
(e(z?7 QE”) (taken from my) as (e, f.), and a(?) (taken from s) as «, hence
recovering Ky z,, ..., Kn, o, . Finally, invoke evaluate(C, Ky 4, ..., Kn, z,,)
to obtain Uy ;,, ..., Uy, -, and output z. '

1(i))~ Output my = (C,ma,1,...,m2.n,, (U1,0,U1,1),

4.2 Analysis of the Honest-party Case

Our description of Yao’s protocol assumed an ideal implementation of ANDOS.
We now analyze the above protocol using the oblivious transfer protocol OT-1.
When both parties are honest, the combined protocol’s correctness follows easily
from the correctness of Yao’s protocol and the oblivious transfer protocol. To
show privacy, we construct simulators for Alice’s and Bob’s views. Note that
this separation of privacy and correctness is not valid for parties with arbitrary
behavior.

Let View jice(x,y) and Viewpop(2,y) denote Alice’s and Bob’s view of the
protocol (C' is always a fixed common input, and is dropped for notational con-
venience). We must simulate each player’s view given only the information they
are supposed to learn. That is, Bob is allowed to learn y, and Alice is allowed to
learn z and g(z,y).

To simulate View gop(,y), we define simulator simgyp(y) as follows:

1. Choose Alice’s input x = 0"=.

2. Engage in the secure function evaluation protocol with Bob where the simu-
lated Alice plays as she would be given x. Return the view obtained by Bob
during the execution of this protocol.

Lemma 1. For all values of (C,y), simgop(y) and Viewpey(y) are identically
distributed.

The proof follows from the fact that in every execution of the OT-1 sub-protocol,
Alice’s message is independent of her input.
Next, we simulate View ajice(2,y). Define simajice(, g(2,y)) as follows:

1. The simulator invokes the simulator simvyao(C,z,g(z,y)) so as to obtain
C,Kigyso o Knpzn,, (U,0,Ur1), -+, (Un,0,Un_ 1)-

2. For i =1,...,n,, the simulator chooses K; 5,41 = 0k,

3. The simulator engages in the protocol transfer with Alice exactly as would
Bob, given input pairs (K1,0,K1,1),- .., (Kn, 0, Kn,,1) and encrypted circuit
C. The simulator returns Alice’s view of this protocol.

Lemma 2. For all values of x and y, View ajice(x,y) and simajice(x, g(x,y)) are
computationally indistinguishable.

The proof works by a hybrid argument (omitted). Our first result follows.

Theorem 1. Under the DDH assumption, (A1, As, B) are a one-round secure
computation scheme in the honest-but-curious model, with perfect security against

unbounded Bob.
4.3 Allowing Malicious Behavior

For polynomially bounded, arbitrarily malicious parties, we obtain secure one-
round computation in a model with certified public-keys and public randomness.

First, because we can no longer trust Alice to choose § at random, we replace
protocol OT-1 by protocol OT-2 (using public randomness) in the above con-
struction. Then Bob must prove that his messages in OT-2 are consistent with a
correct construction of C, {(K; 0, K;1)} and Alice must prove that she knows the

discrete logarithm for one element of each pair ((()i), ﬁli)) (e.g., using a result
by Cramer et al. [12]). In the security proof for protocol OT-2 one extracts the
discrete logarithms from Alice and thereby obtains her input = (z; corresponds

to the element of (((JZ), ﬁll)) of which Alice knows the discrete logarithm).

A fallacious step would be to use a public random string to implement non-
interactive zero-knowledge proofs (NIZKP) [6, 14] that each player’s message is
well formed. The formal complication to this method is that “standard” NIZKP
are not proofs of knowledge. Instead, we use the “public-key” scenario for non-
interactive proofs of knowledge, put forth by Simon and Rackoff [21], as follows.
Each player has a public-key P that is certified by some trusted center once and
forever. The player convinces the center, via a standard zero-knowledge proof
of knowledge, that he knows the corresponding secret key S for P. Henceforth,
the secret key is assumed available to the simulator/extractor. To make a non-
interactive proof of knowledge of the solution to some problem in NP, the player
simply encrypts, using P, whatever it is he wishes to show knowledge of, and
then non-interactively prove (using standard NIZKP) that the encryption, if
decrypted, would yield a solution to the problem. The extractor, who knows S,
can then recover the solution as well. Details are omitted from this extended
abstract.

5 Securing Autonomous Mobile Agents

The mobile agent paradigm has several attractive features. One of them is the
flexibility of delegating a task to an autonomous agent, who roams the net, visits
different sites, collects information, computes intermediate results, and returns
to the originator only when the computation is finished. No interaction with the
originator is needed in-between.

Sander and Tschudin [24] recognized that mobile code can be protected
against a curious host using the approach of “computing with encrypted func-
tions.” However, their solution addresses only the case of agents who return
home after visiting one host. We consider autonomous agents here that leave
the originator without a fixed list of hosts to visit in mind and consider the
question: How does the agent migrate securely from one host to another?

5.1 Model

More formally, there is the agent’s originator O and ¢ hosts Hy, ..., H,; that run
the agent. The state of the agent is represented by some x € X. The initial
state is chosen by O. All that is known about the computation is represented by
g; + X x Y — X associated with H;, which updates the agent’s state according

to H;’s secret input y;. This models arbitrary polynomial-time computations
provided the functions g; are representable by polynomial-size circuits.

A novel feature of our protocol is that neither the hosts nor the path taken
by the agent need to be fixed or known beforehand. Only for the simplicity of
description do we assume that the agent travels from O to host H;, then from
host H; to host Hj;q for j = 1,...,£ — 1 and then from H, back to O; the
generalization can be derived easily. The agent is autonomous because either a
host may decide where to send the agent next or because the agent, besides the
encrypted part, consists also of conventional code that computes where to go
next based on non-private information. (Note that migration decisions cannot
depend on the private state of the computation, as they would be observable by
the hosts and thereby leak information about the internal state!)

A scheme for secure computation by autonomous mobile agents consists of
efficient algorithms Ay (+), Aa(-,-), B1(-,*), ..., Be(-,-). The agent’s computation
proceeds as follows: first, O runs A;(x) on input and thereby obtains a secret
s and a message mg, which O sends to Hy; likewise, for j = 1,...,¢, H; runs
Bj(y;,m;_1) on input y;, message m,_; and obtains m;, which it sends to H, 41
(with the exception that Hp sends my to O). Finally, upon receiving mg, O
obtains the desired result by invoking As(s,my). We require:

Correctness: Yx € X and Vy; € Y, the decoding algorithm As(s,m,) outputs
z2=go(-- g2(g1(@,91),52) -+, ye);

Privacy: (1) the inputs and computations of the visited hosts remain hidden
from the other hosts: for all j, message m; does not give information about
x and yj; for j° < j; (2) the originator should learn only the output of
the computation, but nothing else about the inputs of the hosts: Vx € X
and Yy; € Y, (j = 1,...,¥), given only =z, s, and z (as above), m; can be
simulated efficiently.

Honest-but-curious behavior is assumed on behalf of all parties throughout this
section (dishonest behavior can be prevented analogously to the two-party case).

5.2 Protocol

Our protocol for secure computation by autonomous mobile agents is an ex-
tension of the one-round secure computation protocol in Section 4.1 to multiple
hosts, which take over the part of Bob. O proceeds as Alice, sending the first mes-
sage and receiving the encrypted circuit computing ge(- - - (g1(x,y1),y2) - -, Ye)-
Each host H; contributes the part of encrypted circuit representing its function
g;; thus the resulting encrypted circuit is a cascade of sub-circuits. H; generates
the key pairs representing O’s input and computes the answers for the oblivious
transfer protocol; these are attached to the computation and reach O with the
message from H,. To extend the cascade of sub-circuits, H; encrypts each input
key of its sub-circuit with the corresponding output key from the preceding sub-
circuit. This is done using a symmetric encryption algorithm encg (), realized
in the same way as the encryptions for single gates in Yao’s construction; in

particular, this scheme has the property that given a key K, one can efficiently
check if a ciphertext represents an encryption under key K.
We describe algorithms A, Ay, and By, ..., By using notation from above.

A1 (z): Compute the first message (of Alice) for n, parallel oblivious transfer
protocols. This results in s = (aM,...,a()) and my = ((6(1) 501), 1),
, (5(”w),5é”w)7ﬂ§nm))) computed as in OT-1. Output s and mg = (Mg, 0).
Bj(y;, m;—1): Invoke construct(C},y;) to obtain
Co (K0 K. (1) 0. K2 0. (UFQ, UP)). - (U0, U,
If 7 = 1, then execute Step 3 of protocol OT-1 using (ﬁ“,ﬁéi),ﬁli)) (taken
from myp) and with Bob’s input set to (K i(710), K 1(11)) Denote the output of the
OT-1 step by m@ = (e, £9 (£, Set my = (m®V,... m"=),C;) and
output my = (i, (Ul(O),U(l)) @, Ut).

Ng,1

If 1 < j <4, then the outputs of C;_; are recoded as inputs to C;. To
this end, for ¢ = 1,...,n,; do the following: choose a random bit ¢; and, for

b € {0,1}, encrypt key Kl(Jé)) under U(j_l) (taken from mj_l) as V({)%acl =
ency G- (KZ(b)) Next, set m; = (m;—1,Cj, (Vl(o)7 Vl(J)) e (Véi?w V,fi)l)) and

then output m; = (m;, (U1 0,Ul 1) (U(J U (4))).

Ng,l
As(s,mg): Run Step 4 of protocol OT-1 and Obtam input keys Kﬁzl e, K&),rnm
of C;. Now, run algorithm evaluate(Cy, 11;1, e K,(Li),xw) to obtain the out-

put keys of C;. Each one of these decrypts one ciphertext V;(g) to an input
key of Cy, which can then be evaluated and then will allow to decrypt the in-

put keys of C3. Proceeding similarly for all circuits Cs, ... ,C,; will eventually
reveal U ©) Ur(ti),zn from which the result z can be retrieved.

1,200 "

As for the security of the protocol, note that each host sees an encrypted
circuit representing the computation so far, like Alice in the original protocol
but lacking the secrets to decrypt the oblivious transfers. A simulator for each
host’s view is straightforward. When the encrypted circuit reaches O, it consists
only of information that has been constructed using the same method as in the
original protocol; thus, the security follows from the original argument.

References

1. M. Abadi and J. Feigenbaum, “Secure circuit evaluation: A protocol based on
hiding information from an oracle,” Journal of Cryptology, vol. 2, pp. 1-12, 1990.

2. M. Abadi, J. Feigenbaum, and J. Kilian, “On hiding information from an oracle,”
Journal of Computer and System Sciences, vol. 39, pp. 21-50, 1989.

3. D. Beaver, “Foundations of secure interactive computing,” in Proc. CRYPTO 91
(J. Feigenbaum, ed.), LNCS 576, 1992.

4. M. Bellare and S. Micali, “Non-interactive oblivious transfer and applications,” in
Proc. CRYPTO 89 (G. Brassard, ed.), LNCS 435, pp. 547-557, 1990.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

26.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proc. 20th STOC, pp. 1—
10, 1988.

M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge proof sys-
tems and its applications,” in Proc. 20th STOC, pp. 103-112, 1988.

D. Boneh and R. J. Lipton, “Searching for elements in black box fields and appli-
cations,” in Proc. CRYPTO 96, LNCS 1109, 1996.

G. Brassard, C. Crépeau, and J.-M. Robert, “Information theoretic reductions
among disclosure problems,” in Proc. 27th FOCS, 1986.

R. Canetti, “Security and composition of multi-party cryptographic protocols,”
Journal of Cryptology, vol. 13, no. 1, pp. 143—-202, 2000.

R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali, “Resettable zero-
knowledge,” in Proc. 32nd STOC, 2000.

D. Chaum, I. Damgard, and J. van de Graaf, “Multiparty computations ensuring
privacy of each party’s input and correctness of the result,” in Proc. CRYPTO 87
(C. Pomerance, ed.), LNCS 293, 1988.

R. Cramer, I. Damgard, and B. Schoemakers, “Proofs of partial knowledge and sim-
plified design of witness hiding protocols,” in Proc. CRYPTO 94 (Y. G. Desmedst,
ed.), LNCS 839, 1994.

U. Feige, J. Kilian, and M. Naor, “A minimal model for secure computation (ex-
tended abstract),” in Proc. 26th STOC, pp. 554-563, 1994.

U. Feige, D. Lapidot, and A. Shamir, “Multiple noninteractive zero knowledge
proofs under general assumptions,” SIAM Journal on Computing, vol. 29, no. 1,
pp. 1-28, 1999.

J. Feigenbaum and M. Merritt, “Open questions, talk abstracts, and summary of
discussions,” in Distributed Computing and Cryptography, AMS, 1991.

O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
Journal of the ACM, vol. 33, pp. 792-807, Oct. 1986.

O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or a
completeness theorem for protocols with honest majority,” in Proc. 19th STOC,
pp- 218-229, 1987.

S. Micali and P. Rogaway, “Secure computation,” in Proc. CRYPTO 91 (J. Feigen-
baum, ed.), LNCS 576, pp. 392-404, 1992.

M. Naor and O. Reingold, “Number-theoretic constructions of efficient pseudo-
random functions,” in Proc. 38th FOCS, 1997.

R. Ostrovsky, R. Venkatesan, and M. Yung, “Fair games against an all-powerful
adversary,” in Advances in Computational Complexity Theory, AMS, 1993.

C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack,” in Proc. CRYPTO ’91 (J. Feigenbaum, ed.), LNCS
576, pp. 433-444, 1992.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy
homomorphisms,” in Foundations of Secure Computation (R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, eds.), pp. 169177, Academic Press, 1978.
P. Rogaway, The Round Complexity of Secure Protocols. PhD thesis, MIT, 1991.
T. Sander and C. F. Tschudin, “Protecting mobile agents against malicious hosts,”
in Mobile Agents and Security (G. Vigna, ed.), LNCS 1419, 1998.

T. Sander, A. Young, and M. Yung, “Non-interactive CryptoComputing for NC*,”
in Proc. 40th FOCS, 1999.

A. C. Yao, “How to generate and exchange secrets,” in Proc. 27th FOCS, pp. 162—
167, 1986.

