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Abstract

State-machine replication is a general approach to ad-
dress the increasing importance of network-based ser-
vices by improving their availability and reliability via
replicated execution. If a service is deterministic, multi-
ple replicas will produce the same results, and faults can
be tolerated by means of agreement protocols.

Unfortunately, real-life services are often not deter-
ministic. One major source of non-determinism is multi-
threaded execution with shared data access in which the
thread execution order is determined by the run-time sys-
tem and the outcome may depend on which thread ac-
cesses data first.

We present Storyboard, an approach that ensures de-
terministic execution of multi-threaded programs. Sto-
ryboard achieves this by utilizing application-specific
knowledge to minimize costly inter-replica coordination
and to exploit concurrency in a similar way as non-
deterministic execution. This is accomplished by mak-
ing a forecast for a likely execution path, provided as an
ordered sequence of locks that protect critical sections.
If this forecast is correct, a request is executed in parallel
to other running requests without further actions. Only in
case of an incorrect forecast will an alternative execution
path be resolved by inter-replica coordination.

1 Introduction

Network-based services have constantly increased in im-
portance for our every-day life. Accordingly, there is a
trend to offer these services 24/7 by making them toler-
ate hard- and software faults ranging from plain crashes
to arbitrary faults. Besides providing a well-functioning
service, this requires additional measures such as state-
machine replication [14] to accomplish the demanded
degree of availability and reliability.

While in theory a service is a deterministic state ma-
chine, most real-world service implementations are not.

This is especially the case for modern services that are
implemented using concurrent execution (i.e., threads)
to use multiple cores for improving throughput and scal-
ability. In such systems, the execution environment of a
service (e.g., the operating system or a managed run-
time environment) determines the execution order of
threads independently of the service logic. Each re-
quest processed by such a service is executed by a ded-
icated thread. If different requests share data, locks
to prevent inconsistencies guard this data. While data
is well protected this way, the order in which requests
get processed and consequently modify data is not pre-
determined. Thus, the execution order is likely to differ
between multiple instances once replication is applied,
ultimately leading to state inconsistencies and divergent
client replies, as exemplified by a simple counter exam-
ple shown in Figure 1.
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Figure 1: A minimal example for non-determinism

caused by concurrency. On replica 1, thread T} first
clears a lock-protected counter. Then, thread 7% incre-
ments the counter by one. On replica 2, the operations
are performed in the opposite order. The final counter
state on replica 1 is 1, whereas on replica 2 it is 0.

In sum, state-machine replication and unrestricted
concurrent execution of state-sharing threads lead to seri-
ous problems. The latter has been recently demonstrated
in the course of a software migration testing infrastruc-
ture running an old and a new software instance in paral-
lel. It detected a high number of diverging replies that



turned out to be false positives that could be blamed
on unrestricted concurrency and other causes for non-
determinism [7].

A pragmatic approach is to enforce sequential exe-
cution by processing only one request at a time [4, 5],
which however leads to poor performance and can even
cause deadlocks [13]. Therefore, more sophisticated ap-
proaches are needed; for example, using some form of
lock-step replication [3, 6]. However, this is costly in
terms of inter-replica coordination and usually necessi-
tates hardware support. Other approaches settle for re-
stricted forms of parallel execution, but are less demand-
ing in terms of coordination and hardware requirements
[1,2,10,12,13]. While some of them enforce the or-
der of execution of critical sections purely based on the
request order as imposed by the replication infrastruc-
ture [1, 13], others employ a leader-follower approach in
which one leader process communicates the lock order
that the other replicas should follow [2, 11, 12]. None
of the solutions that handle multithreading comes close
to the performance of a non-deterministically—executed
variant in a distributed setting, either because of limited
parallelism or because of extended communication over-
head [8].

Kotla and Dahlin [10] avoid the problem of coordi-
nating shared-data access at the lock level altogether by
pre-processing requests via a special module that makes
use of application knowledge and restricts parallel exe-
cution to non-sharing requests. Domaschka et al. [9] aim
at relaxing this restriction by using static code analysis,
enabling reachability analysis of locks at runtime based
on the current execution path. However, the associated
runtime overhead cannot be neglected, and the approach
resorts to pessimistic algorithms where static analysis
reaches its limits.

In this paper, we present Storyboard, an approach that
utilizes application knowledge to heuristically predict the
execution path of a request. In case of a correct forecast,
this enables parallel execution at a similar degree as in
an unreplicated scenario. If the predicted execution path
turns out to be wrong, a replica establishes a determinis-
tic execution order in cooperation with other replicas. As
predictions do not have to be correct, Storyboard can op-
timistically bet on the most likely outcome in those cases
where the execution path heavily depends on the service
state or is too complex for a correct prediction. In sum,
Storyboard utilizes application knowledge to minimize
costly inter-replica coordination and exploit concurrency
at a similar level as offered by a non-deterministic exe-
cution. This makes it superior to approaches that restrict
concurrency in favor of avoiding inter-replica coordina-
tion as well as approaches that enable high concurrency
but heavily rely on coordination.

Our approach integrates well with a standard repli-

cation architecture that consists of an agreement stage
and an execution stage. The agreement stage orders the
requests and forwards them to a predictor component,
which in turn makes a forecast on a per-request basis;
such a forecast comprises an ordered sequence of locks
that are assumed to be taken during request execution.
This prediction is based on application knowledge that
can be either static or dynamic, but does not need to be
totally correct. Before a request is executed, the predic-
tion is handed over to our Storyboard component that
is part of the execution stage of each replica; this com-
ponent monitors the order in which locks are acquired
during request execution. If the request advances as pre-
dicted, it can be executed straight to completion, and Sto-
ryboard enforces that concurrent requests are executed in
a deterministic order across all replicas. If a prediction
turns out to be wrong, this is detected by Storyboard and
resolved by inter-replica coordination, thereby avoiding
costly rollback mechanisms.

In the remainder of the paper, we first give a brief
overview of the system model. Second, we outline how
to predict the execution path of a request and proceed by
detailing the subsequent processing. Third, we outline
how to handle wrong execution-path predictions. Fourth,
we present initial results and finally draw conclusions.

2 System Model

Replicas have to implement a deterministic state ma-
chine [14] to ensure consistency. The state machine con-
sists of a set of variables encoding its state and a set of
commands operating on them. The execution of a com-
mand leads to an arbitrary number of variables being read
and/or modified and, as a result of the execution, an out-
put being provided to the environment. For the same se-
quence of inputs, every non-faulty replica must produce
the same sequence of outputs.

To model today’s multithreaded high-performance ser-
vice implementations, we assume a concurrent state ma-
chine that is able to execute multiple commands in paral-
lel. Each command is processed in an associated thread.
Commands are allowed to access overlapping sets of
variables. Such shared variable sets are protected by
locks that guarantee that only one command at a time
operates on them; other commands that try to access the
variable set are blocked temporarily. Depending on the
interleaving of threads, there is a set of valid results for a
given command. To preserve determinism, the same or-
der has to be imposed across all replicas. For simplicity,
we assume that each command is executed by a single
thread that is not allowed to spawn further threads, and
that the use of non-blocking or wait-free synchronization
is not permitted.
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Figure 2: System architecture of Storyboard

3 General Approach

Figure 2 outlines a general replicated state-machine ar-
chitecture which comprises an agreement stage that en-
forces an order on the commands issued by one or more
clients and an execution stage that represents the service
replicas.! It is enhanced by Storyboard as follows: In be-
tween the agreement stage and the execution stage, there
is a predictor component that executes a predict ()
function on every ordered command. This function is
deterministic and utilizes knowledge about the service
and its state. Depending on a given command, it out-
puts a forecast, that is, an ordered sequence of locks that
the command presumably acquires to access and modify
subsets of the service state during its execution. The fore-
cast is forwarded to our Storyboard component via a sep-
arate channel. Based on the forecast, Storyboard ensures
a deterministic execution order among multiple concur-
rently executed commands by monitoring and managing
their access to locks.

The Storyboard component controls the processing of
commands in such a way that two commands sharing
state-variable sets never overtake each other regarding
the order in which they acquire shared locks. More for-
mally, for every pair of commands C; and C; with ¢ < j
(i.e., according to the total order imposed by the agree-
ment stage, C; is executed before ), every lock that
is shared between C; and C; must first be acquired by
C; and then by C;. Apart from this constraint, an arbi-
trary number of commands can be executed in parallel,
each command at its own speed. In Sections 5 and 6 we
discuss some limited relaxations that allow commands to
overtake each other in a way that preserves determinism.

In the optimal case, the forecast made by the pre-
dictor exactly matches the execution path of a com-

IFor now, we assume a crash-stop fault model but will discuss how
to relax this assumption in Section 7.

mand. In order to always produce a correct forecast, the
predict () function has to be optimal; for example,
for the shared counter presented in Figure 1, an optimal
predict () function predicts the lock that protects the
counter for all commands accessing the counter. This
counter is a simple example, but we expect optimal fore-
casts to be feasible also for much more complex services.
This can be achieved, for example, by making a careful
code analysis to build the predict () function.

However, as the lock sequence of a command may
heavily depend on the internal service state, a rather com-
plex logic might be needed to correctly predict the exe-
cution. On the other hand, predict () should be as
simple and fast as possible to compute, as otherwise the
benefits of concurrent execution would be degraded. Ac-
cordingly, simple heuristic predict () functions that
might fail to provide a correct forecast for rare cor-
ner cases are an attractive alternative; for example, lock
traces of common workloads may help to identify the
most likely lock sequence for each command type.

In the remainder of the paper we will therefore refrain
from a perfect forecast. In fact, Storyboard can handle
mispredictions that are completely wrong. The Story-
board component detects a misprediction when a com-
mand unexpectedly aims to acquire a lock Ly, that
is not the next lock according to the forecast or when a
command finishes prematurely (i. e., the command does
not acquire all locks included in the forecast); in the lat-
ter case, no further actions besides removing the forecast
from the system are required.

In general, upon the detection of a misprediction, the
Storyboard component does not immediately grant the
lock in question to the command that unexpectedly de-
mands it: as there is no specified lock order, such a pro-
cedure could introduce inconsistencies. Instead, Story-
board blocks the execution of the command and instructs
the predictor to repredict the command’s execution path.
The predictor reacts by sending a repredict com-
mand through the agreement stage in order to deter-
mine a consistent point in the execution order across
all replicas at which the reprediction can be safely per-
formed?. Upon receiving the command, a reprediction
for the blocked command is performed; this reprediction
will at least contain the lock which the command cur-
rently seeks to acquire, but possibly also further locks.
Finally, Storyboard components on all replicas continue
the execution of the command according to the new fore-
cast. In case of further mispredictions, the cycle of exe-
cution and reprediction repeats until the command finally
completes.

2Depending on the implementation, there might be either one dedi-
cated predictor component that is responsible for reprediction, typically
co-located with the leader of the agreement layer, or all predictor com-
ponents can initiate repredictions and duplicates have to be suppressed.



4 Normal Operation

For every command, the predictor forwards a forecast to
the Storyboard component, which in turn updates a fore-
cast store. This store is a list® that has a slot for every
lock protecting parts of the service state; each slot of
the list contains a F/FO-ordered list. For every predicted
lock, Storyboard inserts a tuple comprising the command
identifier and the forecast index into the lock’s FIFO list
(see Figure 2). Note that updating the forecast store is
done sequentially to implement the command order im-
posed by the agreement stage.

After the forecast store update, the command is exe-
cuted. At this point, we can relinquish sequential exe-
cution, and all commands are processed concurrently at
the speed of their associated thread. Thereby, we assume
that the thread running on behalf of a command can be
identified. Storyboard associates a counter to each com-
mand, which is increased every time the thread takes a
lock while executing the command.

When a thread wants to enter a critical section, it first
has to acquire the associated lock. This procedure is in-
tercepted by the Storyboard component and the forecast
store is consulted. In particular, the slot assigned to the
lock requested is selected, and it is checked whether the
identity of the command matches the first element of the
list and whether the counter of the command matches
the position in the forecast history. If this is the case,
the thread is allowed to enter the critical section. When
the thread has finished the critical section, the command
identifier is removed from the FIFO list of the lock and
the counter is increased by one.

If the command is not in the first position of the FIFO
list of the lock, but somewhere else, the thread will be
suspended until the command is in the first position. In
this way, we enforce the order of execution as determined
by the agreement stage. If a lock was not foreseen to
be taken by a command, the output of the predict ()
function or the command lock counter do not match the
position in the forecast history, the predictor guessed
wrong. In this case, we have an out-of-order execution
path which requires special actions as outlined next.

5 Handling Mispredictions

There might be cases in which the predict () function
returns an execution path, but the path taken by a thread
will differ, for example, because of an internal service
state influencing the execution. In this case, a thread de-
mands to acquire a lock, and likely in the future a se-
quence of locks, that diverge from what is stored in the
forecast store.

3For simplicity, we assume a static set of locks, but locks could be
added at runtime to the forecast store to match more dynamic scenarios.

We cannot let the thread acquire the lock directly, as
this would introduce the same inconsistencies as if we
never interfered. Thus, we re-schedule/repredict the re-
quest execution path based on the new input in a deter-
ministic way. To do so, we send a repredict com-
mand via the agreement stage. Once this message has
been received, we have a deterministic point in the ex-
ecution order across all replicas from which we can re-
plan the further processing of the original command.

Independent Locks If a mispredicted lock is indepen-
dent of all other locks and simply protects some subset of
the service state from concurrent access, we can treat the
ordered repredict command as if it were an entirely
new command. Thus, we remove the missed forecast
from the forecast store and then feed all the information
into the predict () function, including the previously
requested lock. Depending on the input and the lock re-
quested, predict () offers a new forecast that at least
includes this lock in the first position.

Nested Locks Handling of nested locks requires fur-
ther actions. Assume a command C; tries to acquire
a lock Ly, not included in its forecast while holding
locks. Imagine there is another command C; that needs
a subset of these locks held by the previous request and
lock Lypeq follows in C;’s forecast. Next, the repredic-
tion is performed, and the new forecast for C;, includ-
ing Lynes, is added to the forecast store. The result is a
deadlock. Command C; cannot proceed with L, as
it was first predicted for C';, whereas C; cannot continue
execution as it has to wait for locks held by C;.

We solve this order inversion problem by carefully en-
queuing repredicted locks in the forecast store so cross-
ing of nested lock chains of dependent commands is
avoided. This is achieved by extending the information
stored in the forecast store by a list of nested locks held
by a command while acquiring a next lock and a list of
locks that will be acquired while holding this lock. In
terms of nested locks, we are now able to search in the
past and in the future for a certain command at a certain
point in its execution path. In case of a misprediction, the
reprediction request of a command will be attributed by
the list of already acquired locks (past). This information
together with the new prediction enable a safe way to in-
sert the command into the forecast store; prior to that, we
remove the missed forecast from the forecast store.

For every lock in a prediction, we insert the command
information into the list associated to the lock as before.
However, in this case, we cannot simply stick with the
FIFO order, but have to insert the command at a certain
position in the order in which a lock is assumed to be
accessed. To find the right spot, we start at the begin-
ning of the list with the logically oldest command request



and work consecutively to the end. For each element in
the list, we check whether a command shares locks of
its prediction (future) with the history of the repredicted
command (past). If this is the case, we have to place
the repredicted command before the command it is com-
pared with. If the repredicted command does not share
locks with any of the commands in the list, it is placed at
the end of the list.

6 Condition Variables

Condition variables per se need no special treatment as
locks protect them. However, condition variables are
used for coordination amongst threads, and this can lead
to problems. Imagine that a thread executing on behalf of
a command C; checks some condition that is not fulfilled
and waits until the condition is true. The command C;,
however, has a prediction for a set of forthcoming locks.
Further, we assume there is a command C); that at some
point in its execution will enable the condition C; is wait-
ing for and then notify command C;. In a normal system,
this is no problem. However, in the context of Story-
board, C; might share some forthcoming locks in its pre-
diction with command C); that have to be acquired by C;
before enabling the condition. In this case, we have a
deadlock, because C is not allowed to overtake C;, and
C; waits for notification by C}.

The problem can be addressed by restricting the pre-
diction of a command to the point where it locks the crit-
ical section of the condition variable even if we know
more about the command. In this case, after the condi-
tion has become true, the command will continue exe-
cution and acquire a lock that was not foreseen by the
prediction, and consequently a reprediciton is necessary.
However, this is only necessary in the special cases out-
lined. Furthermore, there might be time-bound condition
variables where a service only waits for a timeout to ex-
pire before execution is continued regardless of whether
the condition is fulfilled or not. Because of different ex-
ecution speeds, there might be replicas in which a con-
dition becomes true before the timeout expires and vice
versa. We handle such a non-deterministic timeout by
masking it as a reprediction request that is received by
all replicas in the same order.

7 Arbitrary Faults

So far, we only considered systems that are subject to
crash stop failures. However, Storyboard can be ex-
tended to tolerate arbitrary faults using a Byzantine fault-
tolerant agreement protocol [4] and some limited exten-
sions. The actual processing of commands does not need
to be changed, and the same applies to handling forecasts

provided by the predict () function. However, ex-
tensions are necessary when it comes to mispredictions.
In this case, it is not enough to wait for the first indi-
cation of a misprediction of a replica, as this might be
provided by a malicious node, but until at least f + 1
nodes have signaled it, f being the maximum number of
faults to tolerate. This ensures at least one correct indi-
cation of a misprediction. If this requirement is fulfilled,
the workflow outlined for reprediction can be performed.
Due to the higher protocol overhead of Byzantine fault-
tolerant agreement compared to fail-stop protocols, mis-
predictions should be avoided; that is, the predict ()
function needs to provide almost optimal results in order
to gain benefits from using Storyboard.

8 Preliminary Results

As an initial evaluation, we investigated whether the lock
order can be predicted for a realistic network-based ser-
vice. Therefore, we analyzed the management of shared
data in CBASE-FS [10], which implements a network
file system (NFS) service. For NFS, command types are
limited and every command type can be determined by
its header. These are prerequisites for implementing a
lean and fast predictor component. We ran some initial
benchmarks in which we traced the lock access and the
variability of lock order for the various command types.

In the context of the PostMark benchmark, we de-
tected at most three different orders of lock access for
the same command type. The number of different locks
accessed varied between one and eight, some of them
were accessed multiple times. After careful examination
of the code, it turned out that the number of locks that
have to be considered by the predictor component can be
reduced to between one and three, as some locks only
protect system-internal buffers that do not directly con-
tribute to the visible service state and therefore can be
ignored. This confirms the results gained by Pool et al.
for other services [12] and narrows down the number of
command types with a variable lock history to only one
command type (i.e., lookup). Here, we traced exactly
two possible execution paths that are taken depending on
whether a queried file exists or not. Taking these facts
into account, a predictor can be implemented that is al-
most optimal for CBASE-FS that builds a conformance
wrapper for standard NFS implementations.

We implement Storyboard as a customized POSIX
Threads (pthreads) library that can be pre-loaded to any
pthreads-based service and are in the process of build-
ing the predictor component for CBASE-FS, which then
will be integrated with an agreement stage. Thereby, we
aim at evaluating Storyboard in the context of fail-stop
as well as Byzantine faults by using, for example, Spread
and SmartBFT.



9 Conclusion and Future Work

We outlined Storyboard, an approach that supports deter-
ministic multithreaded execution. In contrast to related
approaches, it utilizes application-specific knowledge to
improve concurrency and avoids inter-replica coordina-
tion if possible. Thereby, we chose a predictive approach
that does not need to be exact because mispredictions
will be resolved at runtime.

Our evaluation results indicate that prediction can have
a high success rate for moderate complex services like a
remote file system. Accordingly, we are confident that
Storyboard will increase throughput of replicated mul-
tithreaded services in the context of fail-stop as well as
Byzantine fault-tolerance.
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