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Abstract

A complexity-theoretic model for public-key steganography with active attacks is introduced. The
notion of steganographic security against adaptive chosen-covertext attacks (SS-CCA)and a re-
laxation calledsteganographic security against replayable adaptive chosen-covertext attacks (SS-
RCCA)are formalized. These notions are closely related withCCA-securityandRCCA-security
for public-key cryptosystems. In particular, it is shown that any SS-(R)CCA stegosystem is an
(R)CCA-secure public-key cryptosystem and that an SS-RCCA stegosystem can be realized from
any RCCA-secure public-key cryptosystem with pseudorandom ciphertexts.

1 Introduction

Steganography is the art and science of hiding information by embedding messages within other, seem-
ingly harmless messages. As the goal of steganography is to hide thepresenceof a message, it can be
seen as the complement of cryptography, whose goal is to hide thecontentof a message.

Consider two parties linked by a public communications channel which is under the control of
an adversary. The parties are allowed to exchange messages as long as they are not adding a hidden
meaning to their conversation. A genuine communication message is calledcovertext; but if the sender
of a message has embedded hidden information in a message, it is calledstegotext. The adversary,
who also knows the distribution of the covertext, tries to detect whether a given message is covertext or
stegotext.

Steganography has a long history as surveyed by Anderson and Petitcolas [2], but formal models
for steganography have only recently been introduced. Several information-theoretic formalizations [4,
22, 13] and one complexity-theoretic model [11] have addressedprivate-keysteganography, where the
participants share a common secret key. These models are all limited to a passive adversary, however,
who can only read messages on the channel.

In this paper, we introduce a complexity-theoretic model for public-key steganography with active
attacks, where the participants a priori do not need shared secret information and the adversary may
write to the channel and mount a so-calledadaptive chosen-covertext attack. This attack seems to be
the most general attack conceivable against a public-key stegosystem. It allows the adversary to send an
arbitrary sequence of adaptively chosen covertext messages to a receiver and to learn the interpretation
of every message, i.e., if the receiver considers a message to be covertext or stegotext, plus the decoding
of the embedded message in the latter case. (Note that here and in the sequel, a message on the channel
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is also called a “covertext” whenever we do not want to distinguish stegotext and covertext in the proper
sense.)

We do not address denial-of-service attacks in this work, where the adversary tries to disrupt the
hidden communication among the participants. Although they also qualify as “active” attacks and are
very important in practice, we think that protection against them can be addressed orthogonally to the
methods presented here.

Our model is based on the intuition that a public-key stegosystem essentially is a public-key cryp-
tosystem with the additional requirement that its output conforms to a given covertext distribution.
As in the formalization of private-key steganography [4, 11, 15], the covertext distribution is publicly
known and accessible only through an oracle that samples the distribution. We introduce the notions
of steganographic security against adaptive chosen-covertext attacks (SS-CCA)andsteganographic se-
curity against replayable adaptive chosen-covertext attacks (SS-RCCA)and show that they are closely
linked to the analogous notions for public-key cryptosystems, calledsecurity against adaptive chosen-
ciphertext attacks(or CCA-security) [14] andsecurity against replayable adaptive chosen-ciphertext
attacks[5] (or RCCA-security), respectively. In particular, we show that stegosystems are related to
public-key cryptosystems in the following ways:

Theorem 1 (informal statement). Any SS-(R)CCA stegosystem is an (R)CCA-secure public-key cryp-
tosystem.

Theorem 2 (informal statement).An SS-RCCA stegosystem can be constructed from any RCCA-secure
public-key cryptosystem whose ciphertexts are pseudorandom (i.e., computationally indistinguishable
from a random bit string).

A corollary of Theorem 2 is that SS-RCCA stegosystems exist in the standard model and in the
random oracle model. The stegosystem constructed in the proof of Theorem 2 embeds more hidden bits
per stegotext than any previous system. It is not known if a result analogous to Theorem 2 holds for
CCA-security; finding an SS-CCA stegosystem remains an interesting open problem.

Our model for public-key steganography is introduced in Section 2, where also the relation to pre-
vious work is discussed. Section 3 recalls the definitions of CCA- and RCCA-security for public-key
cryptosystems, states our results formally, and presents the proof of Theorem 1. Section 4 gives the
construction of an SS-RCCA stegosystem and proves Theorem 2.

2 Definitions

2.1 Notation

A function f : N → R≥0 is callednegligibleif for every constantc ≥ 0 there existskc ∈ N such that
f(k) < 1

kc for all k > kc. A (randomized) algorithm is calledefficientif its running time is bounded by
a polynomial except with negligible probability (over the coin tosses of the algorithm).

Let x← y denote the algorithm that assigns a valuey to x. If A(·) is a (randomized) algorithm, the
notationx ← A(y) denotes the algorithm that assigns tox a randomly selected value according to the
probability distribution induced byA(·) with inputy over the set of its outputs.

If S is a probability distribution, then the notationx
R← S denotes the algorithm which assigns tox

an element randomly selected according toS. If S is a finite set, then the notationx
R← S denotes the

algorithm which assigns tox an element selected at random fromS with uniform distribution overS.
If p(·, ·, · · · ) is a predicate, the notation

Pr[x R← S; y R← T ; · · · : p(x, y, · · · )]
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denotes the probability thatp(x, y, · · · ) will be true after the ordered execution of the algorithmsx
R←

S, y
R← T, · · · . If X is a (randomized) algorithm, a distribution, or a set, thenPrX [x] is short for

Pr
x

R←X
[x], which is short forPr[s R← X : s = x].

Thestatistical distancebetween two distributionsX andY over the same setX is defined as‖X −
Y‖ = maxX0⊆X

∣∣∑
x∈X0

PrX (x)− PrY(x)
∣∣. Themin-entropyof a distributionX over an alphabetX

is defined asH∞(X ) =− log maxx∈X PrX [x]. (All logarithms are to the base 2.)

2.2 Public-key Stegosystems

We define a public-key stegosystem as a triple of algorithms for key generation, message encoding,
and message decoding, respectively. The notion corresponds to a public-key cryptosystem in which the
ciphertext should conform to a target covertext distribution.

For the scope of this work, the covertext is modeled by a distributionC over a given setC. The dis-
tribution is only available via an oracle; it samplesC upon request, with each sample being independent.
In other words, it outputs a sequence of independent and identically distributed covertexts. W.l.o.g.,
PrC [c] > 0 for all c ∈ C.

The restriction to independent repetitions is made here only to simplify the notation and to focus on
the contribution of this work. All our definitions and results can be extended in the canonical way to the
very general model of a covertextchannelas introduced by Hopper et al. [11]. They model a channel as
an unbounded sequence of values drawn from a setC whose distribution may depend in arbitrary ways
on past outputs; access to the channel is given only by an oracle that samples from the channel.

Such a channel underlies only one restriction: The sampling oracle must allow random access to
the channel distribution, i.e., the oracle can be queried with an arbitrary prefix of a possible channel
output and will return the next symbol according to the channel distribution. In other words, the channel
sampler cannot only be rewound to an earlier state of its execution but also restarted from a given state.
(Hence it may be difficult to use an email conversation among humans for a covertext channel since that
cannot easily be rewound.)

The sampling oracle for the covertext distribution is available to all users and to the adversary.
In order to avoid technical complications, assume w.l.o.g. that the sampling oracle is implemented by
a probabilistic polynomial-time algorithm and therefore does not help an adversary beyond its own
capabilities (for example, with solving a computationally hard problem).

Definition 1. [Public-Key Stegosystem] LetC be a distribution on a setC of covertexts. A public-key
stegosystemis a triple of probabilistic polynomial-time algorithms(SK, SE, SD) with the following
properties.

• Thekey generation algorithmSK takes as input the security parameterk and outputs a pair of bit
strings(spk, ssk), called the[stego] public keyand the[stego] secret key.

• The steganographic encoding algorithmSE takes as inputs the security parameterk, a public
keyspkand amessagem ∈ {0, 1}l and outputs acovertextc ∈ C. The plaintextm is often called
theembedded message.

• The steganographic decoding algorithmSD takes as inputs the security parameterk, a secret
key ssk, and a covertextc ∈ C and outputs either a messagem ∈ {0, 1}l or a special symbol⊥.
An output value of⊥ indicates a decoding error, for example, whenSD has determined that no
message is embedded inc.

We require that for all(spk, ssk) output bySK(1k) and for allm ∈ {0, 1}l, the probability that
SD(1k, ssk, SE(1k, spk,m)) 6= m is negligible ink.
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Note that except for the presence of the covertext distribution, this definition is equivalent to that
of a public-key cryptosystem. Although all algorithms have oracle access toC, only SE needs it in
the stegosystems considered in this paper. For ease of notation, the security parameter will be omitted
henceforth.

The probability that the decoding algorithm outputs the correct embedded message is referred to
as thereliability of the stegosystem. Although one might also allow a non-negligible decoding error
in the definition of a stegosystem (as done in previous work [11]), we require that the decoding error
probability is negligible in order to maintain the analogy between a stegosystem and a cryptosystem.

Security definition. Coming up with the “right” security definition for a cryptographic primitive has
always been a challenging task because the sufficiency of a security property cannot be demonstrated
by running the cryptosystem. Only its insufficiency can be shown by pointing out a specific attack,
but finding an attack is usually hard. Often, security definitions had to be strengthened when a primi-
tive was used as part of a larger system. Probably the most typical example is the security of public-
key cryptosystems: the original notion of semantic security [10], which considers only a passive or
eavesdropping adversary, was later augmented to security against adaptive chosen-ciphertext attacks or
non-malleability, which allows also for active attacks [14, 9, 3].

We introduce here the notion ofsteganographic security against adaptive chosen-covertext attacks,
abbreviatedSS-CCA, and its slightly relaxed variantsteganographic security against replayable chosen-
covertext attacks, abbreviatedSS-RCCA. Both notions are based on the intuition that a stegosystem is
essentially a cryptosystem with a prescribed ciphertext distribution.

SS-CCA and SS-RCCA are defined by the following experiment. Let an arbitrary distributionC on a
setC be given and consider a (stego-)adversary, defined by two arbitrary probabilistic polynomial-time
algorithmsSA1 andSA2. The experiment consists of five stages where both notions only differ in the
fourth stage.

Key generation: A key pair(spk, ssk) is generated by the key generation algorithmSK.

First decoding stage: Algorithm SA1 is run with the public keyspk as input and has access to the
sampling oracle forC and to a decoding oracleSO1. The decoding oracle knows the secret keyssk.
Whenever it receives a covertextc, it runsSD(ssk, c) and returns the result toSA1.

WhenSA1 finishes its execution, it outputs a tuple(m∗, s), wherem∗ ∈ {0, 1}l is a message and
s is some additional information which the algorithm wants to preserve.

Challenge: A bit b is chosen at random and achallenge covertextc∗ is determined depending on it: If
b = 0 thenc∗ ← SE(spk,m∗) elsec∗

R← C. c∗ is given to algorithmSA2, who should guess the
value ofb, i.e., determine whether the messagem∗ has been embedded inc∗ or whetherc∗ has
simply been chosen according toC.

Second decoding stage:SA2 is run on inputm∗, c∗, ands, i.e., it knows the message which is poten-
tially embedded, the challenge covertext, and the state provided bySA1.

For SS-CCA,SA2 may access a decoding oracleSOcca
2 , which is analogous toSO1 except that

upon receiving queryc∗, oracleSOcca
2 returnsnot-allowed .

For SS-RCCA,SA2 has access to a decoding oracleSOrcca
2 , which is identical toSOcca

2 except that
SOrcca

2 also knowsm∗ and does not allow certain additional queries to be asked. In particular,
upon receiving queryc, oracleSOrcca

2 computesm ← SD(ssk, c), checks ifm ∈ {m∗,⊥} and
returnsnot-allowed if yes; otherwise, it returnsm.
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Guessing stage:WhenSA2 finishes its execution, it outputs a bitb′.

The stego-adversary succeeds in distinguishing stegotext from covertext ifb′ = b in the above
experiment. We require that for a secure stegosystem, no efficient adversary can distinguish stegotext
from covertext except with negligible probability over random guessing.

Definition 2. [Steganographic Security against Active Attacks] LetC be a distribution on a covertext
setC and letΣ = (SK, SE, SD) be a stegosystem. We say thatΣ is steganographically secure against
adaptive chosen-covertext attacks (SS-CCA)with respect toC if for all probabilistic polynomial-time
adversaries(SA1, SA2), there exists a negligible functionε such that

Pr
[
(spk, ssk)← SK; (m∗, s)← SASO1

1 (spk); b
R← {0, 1};

if b = 0 then c∗ ← SE(spk,m∗) elsec∗
R← C : SA

SOcca
2

2 (spk,m∗, c∗, s) = b
]

=
1
2

+ ε(k).

Similarly, we say thatΣ is steganographically secure against replayable adaptive chosen-covertext
attacks (SS-RCCA)with respect toC if for all probabilistic polynomial-time adversaries(SA1, SA2),
there exists a negligible functionε such that the above equation holds withSOcca

2 replaced bySOrcca
2 .

Note that this leaves the adversary free to query the decoding oracle with any element of the covertext
spacebeforethe challenge is issued. By definition, an SS-CCA stegosystem is also SS-RCCA.

2.3 Discussion

The relation to public-key cryptosystems. A stegosystem should allow for two parties to communi-
cate over a public channel in such a way that the presence of a message in the conversation cannot be
detected by an adversary. It seems natural to conclude from this that the adversary must not learn any
useful information about an embedded message, should there be one. The latter property is the subject
of cryptography: hiding the content of a message transmitted over a public channel. This motivates our
approach of modeling a public-key stegosystem after a public-key cryptosystem in which the ciphertext
conforms to a particular covertext distribution.

The most widely accepted formal notion of a public-key cryptosystem secure against an active
adversary isindistinguishability of encryptions against an adaptive chosen-ciphertext attack(CCA-
security) [14] and is equivalent tonon-malleability of ciphertextsin the same attack model [9, 3]. CCA-
security is defined by an experiment with almost the same stages as above, except that the first part of
the adversary outputstwo messagesm0 andm1, of which one is chosen at random and then encrypted.
The resulting valuec∗, also called thetarget ciphertext, is returned to the adversary and the adversary
has to guess what has been encrypted. In the second query stage, the adversary is allowed to obtain
decryptions ofanyciphertext except forc∗.

This appears to the minimal requirement to make the definition of a cryptosystem meaningful, but it
has turned out to be overly restrictive in some cases. For example, consider a CCA-secure cryptosystem
where a useless bit is appended to each ciphertext during encryption and that is ignored during decryp-
tion. Although this clearly does not affect the security of the cryptosystem, the modified scheme is no
longer CCA-secure.

Several authors have relaxed CCA-security to allow for such changes [17, 1, 5]; the weakest one
among the relaxed notions is calledreplayable CCA-securityor RCCA-security[5]. The only difference
to CCA-security is that in the second query stage, the adversary is more restricted and does not allow any
query that decrypts to either one of the messagesm0 or m1. The intuition is that such a cryptosystem
allows anyone to modify a ciphertext into an equivalent one and therefore “replay” the target ciphertext.
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Our notion of an SS-CCA stegosystem is analogous to a CCA-secure cryptosystem, in that it only
excludes the target covertext from the queries to the second decoding oracle. Likewise, our notion of an
SS-RCCA stegosystem contains a restriction that is reminiscent of an RCCA-secure cryptosystem, by
not allowing queries that decode either to the test message or to⊥. These similarities are no coincidence:
We show in Section 3 that any SS-CCA stegosystem is an CCA-secure public-key cryptosystem, and
similarly for their replayable counterparts.

Previous models for steganography. The first published model of a steganographic system is the
“Prisoners’ Problem” by Simmons [19]. This work addresses the particular situation of message au-
thentication among two communicating parties, where a so-calledsubliminal channelmight be used to
transport a hidden message in the view of an adversary who tries to detect the presence of a hidden
message. Although a subliminal channel in that sense is only made possible by the existence of message
authentication in the model, it can be seen as the first formulation of a general model for steganography.

Cachin [4] presented an information-theoretic model for steganography, which was the first to ex-
plicitly require that the stegotext distribution is indistinguishable from the covertext distribution to an
adversary. Since the model is unconditional, a statistical information measure is used.

Hopper et al. [11] give the first complexity-theoretic model for private-key steganography with pas-
sive attacks; they point out that a stegosystem is similar to a cryptosystem whose ciphertext is indistin-
guishable from a given covertext. In Section 3 we establish such an equivalence formally for public-key
systems.

Recently, von Ahn and Hopper [20] have formalized public-key steganography with a passive ad-
versary, i.e., one who can mount a chosen-message attack. The resulting notion is the analogue of a
cryptosystem with security against chosen-plaintext attacks (i.e., a cryptosystem with semantic secu-
rity). They also formalized the notion of a stegosystem that offers security against “attacker-specific”
chosen-stegotext attacks; this means that the decoder must know the identity of the encoder, however,
and restricts the usefulness of their notion compared to SS-CCA and SS-RCCA.

No satisfying formal model for public-key steganography with active attacks has been published so
far, although the subject was discussed by several authors, and some systems with heuristic security have
been proposed [8, 2]. A crucial element that seems to make our formalizations useful is the restriction
of the stage-two decoding oracle depending on the challenge covertext.

3 Results

This section investigates the relation between SS-(R)CCA stegosystems and (R)CCA-secure public-key
cryptosystems. Two results are presented:

1. Any SS-CCA stegosystem is a CCA-secure public-key cryptosystem and, similarly, any SS-
RCCA stegosystem is an RCCA-secure public-key cryptosystem.

2. An SS-RCCA stegosystem can be constructed from any RCCA-secure public-key cryptosystem
whose ciphertexts are pseudorandom.

We first recall the formal definitions for public-key encryption with CCA- and RCCA-security, re-
spectively. Apublic-key cryptosystemis a triple(K, E, D) of probabilistic polynomial-time algorithms.
Algorithm K, on input the security parameterk, generates a pair of keys(sk, pk). The encryption and
decryption algorithms,E andD, have the property that for any pair(sk, pk) generated byK and for
any plaintext messagem ∈ {0, 1}l, the probability thatD(1k, sk, E(1k, pk,m)) 6= m is negligible ink.
(The security parameter is omitted henceforth.)
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CCA-security and RCCA-security for a public-key encryption scheme are defined by the following
experiment. Consider an adversary defined by two arbitrary polynomial-time algorithmsA1 andA2.
First, a key pair(pk, sk) is generated byK. Next,A1 is run on input the public keypk and may access
a decryption oracleO1. OracleO1 knows the secret keysk, and whenever it receives a ciphertextc,
it appliesD with key sk to c and returns the result toA1. WhenA1 finishes its execution, it outputs a
triple (m0,m1, s), wherem0,m1 ∈ {0, 1}l are two arbitrary messages ands is some additional state
information. Now a bitb is chosen at random andmb is encrypted usingE under keypk, resulting in a
ciphertextc∗. Algorithm A2 is givenm0 andm1, ciphertextc∗, and states, and has to guess the value
of b, i.e., whetherm0 or m1 has been encrypted. For CCA-security,A2 may access a decryption oracle
Occa

2 , which is analogous toO1 and knowssk, but returnsnot-allowed upon receiving queryc∗.
For RCCA-security,A2 may access a decryption oracleOrcca

2 , which is identical toOcca
1 except that any

query that decrypts to one of the messagesm0 andm1 are answered bynot-allowed . Finally, A2

outputs a bitb′ as its guess forb.
A secure cryptosystem requires that no efficient adversary can distinguish an encryption ofm0 from

an encryption ofm1 except with negligible probability.

Definition 3. [(R)CCA-Security for Public-Key Cryptosystems [3, 5]] LetΩ = (K, E, D) be a public-
key cryptosystem. We say thatΩ is CCA-secureif for all polynomial-time adversariesA = (A1, A2),
there exists a negligible functionε such that

Pr
[
(pk, sk)← K; (m0,m1, s)← AO1

1 (pk); b
R← {0, 1};

c∗ ← E(pk, mb); A
Occa

2
2 (pk,m0,m1, c

∗, s) = b
]

=
1
2

+ ε(k).

We say thatΩ is RCCA-secureif the same holds withOcca
2 replacedOrcca

2 .

The following is our first main result.

Theorem 1. LetΣ = (SK, SE, SD) denote a public-key stegosystem. IfΣ is SS-CCA (SS-RCCA) with
respect to some distributionC, thenΣ is an CCA-secure (RCCA-secure) public-key cryptosystem.

Proof. Note first thatΣ satisfies the definition of a public-key cryptosystem. We prove thatΣ is
(R)CCA-secure by a reduction argument. Assume thatΣ is not an (R)CCA-secure cryptosystem and
hence there exists an (encryption-)adversary(A1, A2) that breaks the (R)CCA-security ofΣ, i.e., it wins
in the experiment of Definition 3 with probability12 + δ(k) for some non-negligible functionδ. LetC be
an arbitrary distribution. We construct a (stego-)adversary(SA1, SA2) againstΣ as a stegosystem with
respect toC that has black-box access to(A1, A2) as follows.

Key generation: WhenSA1 receives a public-key, it invokesA1 with this key.

First decoding stage: WheneverA1 queries its decryption oracleO1 with a ciphertextc, SA1 passesc
on to its decoding oracleSO1, waits for the response and forwards the response toA1.

WhenA1 halts and outputs(m0,m1, s), the stego-adversarySA1 chooses a random bitb′, and
outputs(mb′ , (m0,m1, b

′, s)).

Challenge: A challenge covertextc∗ is computed according to the definition of a stegosystem and given
to SA2.

Second decoding stage:SA2 receives inputsmb′ , c∗, and (m0,m1, b
′, s) and invokesA2 on inputs

m0, m1, c∗, ands. Otherwise,SA2 behaves in the same way asSA1 during first decoding stage,
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forwarding the decryption requests thatA2 makes toO2 to the respective decoding oracleSOcca
2 or

SOrcca
2 . If the distinction betweenSOcca

2 andSOrcca
2 is irrelevant, we simply writeSO2, similarly

for the decryption oracleO2.

Guessing stage:WhenA2 outputs a bitb∗, the stego-adversarySA2 tests ifb∗ = b′ and outputs 0 if
true, and 1 otherwise.

We now analyze the environment simulated by the stego-adversary(SA1, SA2) to the encryption-
adversary(A1, A2), and the probability that the stego-adversary can distinguish stegotext from cover-
text.

Clearly, key generation and the first decoding stage perfectly simulate the decryption oracle to ad-
versaryA1. During the challenge, a random bitb is chosen and a challenge covertextc∗ ← SE(pk, mb′)
is computed in caseb = 0 andc

R← C otherwise.
Note that whenb = 1, algorithmA2 and its final outputb∗ are independent ofb′. Hence, we have

Pr[b′ = b∗|b = 1] = 1
2 and the stego-adversary has no advantage over randomly guessingb′ in that case.

Whenb = 0, we show that during the second decoding phase,SA2 emulates the decryption oracle
O2 to A2 except with negligible probability. We only have to show thatA2 never queries any value
that is permitted for decryption oracleO2 but forbidden for decoding oracleSO2. Apart from this, the
emulation is perfect by definition.

For SS-CCA, a queryc′ to SOcca
2 is not allowed ifc′ = c∗, which means that the queryc′ is also not

allowed for the decryption oracleOcca
2 andA2 will receive the correct answernot-allowed , except

with negligible probability. For SS-RCCA, a queryc′ toSOrcca
2 is not allowed ifSD(ssk, c′) ∈ {mb′ ,⊥}.

However, sinceD(sk, c′) = mb′ except with negligible probability by the definition of a public-key
cryptosystem, the queryc′ is also not allowed for the decryption oracleOrcca

2 andA2 will receive the
correct answernot-allowed , except with negligible probability.

BecauseA2 makes at most a polynomial number of queries to the decryption oracleO2, the prob-
ability that at least one of them is allowed for decryption but not allowed for the decoding oracleSO2

is also negligible. Hence,SA2 correctly simulates the decryption oracleO2 to A2 except with some
negligible probabilityε∗(k).

Since the encryption-adversaryA2 by assumption breaks the (R)CCA-security of the cryptosystem,
andA2 is independent ofb′ whenb = 1 as argued above, we havePr[b′ = b∗|b = 0] = 1

2+2δ(k)−ε∗(k).
By the definition ofSA2, this is also the probability that the stego-adversary guessesb correctly when
b = 0. Hence, the overall probability thatSA2 guessesb correctly is1

2 + δ(k)− ε∗(k)
2 , which exceeds12

by a non-negligible quantity and shows thatΣ is not SS-(R)CCA with respect to anyC.

Theorem 1 shows that an SS-CCA stegosystem is a special case of a CCA-secure public-key cryp-
tosystem, and similarly for their replayable variants. In the converse direction, we show now that some
RCCA-secure public-key cryptosystems, namely those with “pseudorandom ciphertexts,” can also be
used to construct SS-RCCA stegosystems. Constructing an SS-CCA stegosystem from a CCA-secure
public-key cryptosystem — or from other assumptions, for that matter — remains an open problem.

In a cryptosystem with pseudorandom ciphertexts, the encryption algorithm outputs a bit string
that is indistinguishable from a random string of the same length for any efficient distinguisher that has
knowledge of the public key. We make the usual assumption that the encryption of a plaintext of lengthl
always results in a ciphertext of length`(l).

Definition 4. [Public-key Cryptosystem with Pseudorandom Ciphertexts [20]] A public-key cryptosys-
tem(K, E, D) is said to havepseudorandom ciphertextsif for any key pair(sk, pk) generated byK, any
m ∈ {0, 1}l, and all probabilistic polynomial-time distinguishersA, there exists a negligible functionε
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such that

Pr
[
c0 ← E(pk, m); c1

R← {0, 1}`(l); b
R← {0, 1}; A(pk,m, cb) = b

]
=

1
2

+ ε(k).

It seems difficult to construct SS-(R)CCA stegosystems forany covertext distribution. We show
that it is possible for covertexts whose distribution conforms to a sequence of independently repeated
experiments. (According to the remark in Section 2.2, this result generalizes to an arbitrary covertext
channel.) Given a covertext distributionC and positivet, let Ct denote the probability distribution
consisting of a sequence oft independent repetitions ofC.

The next theorem is our second main result. Its proof is the subject of Section 4.

Theorem 2. SS-RCCA stegosystems with respect to a covertext distributionCt for anyC with sufficiently
large min-entropy can be efficiently constructed from any RCCA-secure cryptosystem with pseudoran-
dom ciphertexts.

Theorem 2 leaves us with the task of finding an RCCA-secure cryptosystem with pseudorandom
ciphertexts. Such cryptosystems exist under a variety of standard assumptions if one asks for security
against apassiveadversary only, i.e., security againstchosen-plaintext attacks (CPA). For example, von
Ahn and Hopper [20] demonstrate a scheme that is as secure as RSA and one that is secure under the De-
cisional Diffie-Hellman (DDH) assumption. It is also straightforward to verify that the generic method
of encrypting a single bit by xoring it with the hard-core predicate of a trapdoor one-way permutation
has pseudorandom ciphertexts.

But any RCCA-secure cryptosystem can be turned into one with pseudorandom ciphertexts using
the following method, suggested by Lindell [12]: Take the ciphertext output by the RCCA-secure en-
cryption algorithm and encrypt it again, using a second cryptosystem with pseudorandom ciphertexts,
which is secure against chosen-plaintext attacks. Decryption proceeds analogously, by first applying the
decryption operation of the second cryptosystem and then the decryption operation of the RCCA-secure
cryptosystem. It can be verified that the composed cryptosystem retains RCCA-security because the
stage-two decryption oracle knows both secret keys. This method yields SS-RCCA stegosystems in
several models as follows.

By applying the generic construction of a CPA-secure cryptosystem with pseudorandom ciphertexts
to a generic non-malleable cryptosystem [9, 16], we conclude that SS-RCCA stegosystems exist under
general assumptions.

Corollary 3. Provided that trapdoor one-way permutations exist, there is an SS-RCCA stegosystem in
the common random string model.

Using the mentioned DDH-based cryptosystem with pseudorandom ciphertexts combined with the
Cramer-Shoup cryptosystem [7], we obtain also an efficient SS-RCCA stegosystem in the standard
model.

Corollary 4. Under the Decisional Diffie-Hellman assumption, there is an SS-RCCA stegosystem.

A more practical cryptosystem with pseudorandom ciphertexts exists also in the random oracle
model: the OAEP+ scheme of Shoup [18]. OAEP+ is a CCA-secure cryptosystem based on an arbitrary
trapdoor one-way permutation.

Corollary 5. Provided that trapdoor one-way permutations exist, there is an SS-RCCA stegosystem in
the random oracle model.
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Figure 1: The encoding process of the stegosystem: a message is first encrypted and then embedded
using Algorithmsample. The decoding process works analogously in the reverse direction.

4 An SS-RCCA Stegosystem

In this section, we propose a stegosystem that is steganographically secure against replayable adaptive
chosen-covertext attacks.

This stegosystem works for any covertext distribution that consists of a sequence of independent
repetitions of a base-covertext distribution. Deviating from the notation of Section 2, we denote the
base-covertext distribution byC and the covertext distribution used by the stegosystem byCt = Πt

i=1C.
As noted in Section 2.2, through the introduction of a history, our construction also generalizes to
arbitrary covertext channels.

Let (K, E, D) be an RCCA-secure public-key cryptosystem with pseudorandom ciphertexts. Sup-
pose its cleartexts arel-bit strings and its ciphertexts aren-bit strings.

A classG of functionsX → Y is calledstrongly2-universal[21] if, for all distinct x1, x2 ∈ X and
all (not necessarily distinct)y1, y2 ∈ Y , exactly|G|/|Y |2 functions fromG takex1 to y1 andx2 to y2.
Such a function family is sometimes simply called astrongly 2-universal hash functionfor brevity.

4.1 Description

The SS-RCCA stegosystem consists of a triple of algorithms(keygen, encode, decode). The idea
behind it is to encrypt a message using the public-key cryptosystem first and to embed the resulting
ciphertext into a covertext sequence, as shown in Figure 1.

The encoding method is based on the following algorithmsample, which samples a base-covertext
according toC such that a givenf -bit stringb is embedded in it. Under the name “rejection sampler,” this
algorithm has been suggested previously for steganography [2, 11, 15], but was restricted to embedding
single-bit messages only.

Algorithm sample

Input: security parameterk, a functiong : C → {0, 1}f , and a valueb ∈ {0, 1}f
Output: a covertextx

1: j ← 0
2: repeat
3: x

R← C
4: j ← j + 1
5: until g(x ) = b or j = k
6: returnx

Intuitively, algorithmsample returns a covertext chosen from distributionC, but restricted to that
subset ofC which is mapped to the givenb by g. sample may also fail and return a covertextc with
g(c) 6= b, but this happens only with negligible probability ink. As will be shown in Section 4.2, when
b is a randomf -bit string,g is chosen randomly from a 2-universal hash function, andC has sufficient
min-entropy, then the output distribution ofsample is statistically close toC.
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We now turn to the description of the stegosystem. Letf ≤ γ log k for a positive constantγ < 1
and letG : C → {0, 1}f denote a strongly 2-universal hash function.

Algorithm keygen chooses a randomg
R← G and computes a tuple(sk , pk) ← K, by running

the key generation algorithm of the cryptosystem. The output ofkeygen is the tuple(spk , ssk) =
((pk , g), sk).

Algorithm encode first encrypts an input messagem using the given encryption algorithmE, which
outputs in a ciphertexty. Assuming w.l.o.g. thaty is ann-bit string such thatn is polynomial ink and
n = tf , encode then repeatedly invokessample to embedy in pieces off bits a time into a sequence
of t covertext symbols. Formally:

Algorithm encode

Input: security parameterk, a public keyspk= (pk, g), and a messagem ∈ {0, 1}l to encode
Output: a covertext(c1, . . . , ct)

1: y ← E(pk, m)
2: parsey asy1‖y2‖ · · · ‖yt, whereyi ∈ {0, 1}f
3: for i = 1 to t do
4: ci ← sample(k, g, yi)
5: return(c1, . . . , ct)

Algorithm decode proceeds analogously. From each of thet symbols in the covertext, a string of
f bits is extracted byg; then the concatenation of these bit strings is decrypted byD, and the resulting
value is returned (this is either anl-bit message or the symbol⊥):

Algorithm decode
Input: security parameterk, a secret keyssk= (sk, g), and a covertext(c1, . . . , ct) ∈ Ct to decode
Output: a decodedl-bit message or⊥

1: for i = 1 to t do
2: yi ← g(ci)
3: y ← y1‖y2‖ · · · ‖yt

4: x← D(sk, y)
5: returnx

4.2 Analysis

This section is devoted to an analysis of the above stegosystem. Theorems 6 and 10 below together
imply Theorem 2.

Theorem 6. (keygen, encode, decode) is a valid stegosystem.

Proof (Sketch).According to Definition 1, the only non-trivial steps are to show that the algorithms are
efficient and that

decode(1k, ssk, encode(1k, spk,m)) = m

for all m ∈ {0, 1}l except with negligible probability.
Efficiency follows immediately from the construction, the assumptionf ≤ γ log k, and the effi-

ciency of the public-key cryptosystem.
For reliability, it suffices to analyze the output ofencode because the decoding operation is deter-

ministic.

11



Consider iterationi in Algorithm encode, in which Algorithmsample tries to find a covertextx
that is mapped toyi by g. Becauseg is chosen from a strongly 2-universal class of hash functions, the
probability that in any particular iteration ofsample, anx is chosen withg(x) 6= yi, is 1− 2−f .

Thus, since thek iterations insample are independent,sample returnsc with g(c) 6= yi only with
some negligible probabilityε(k) provided thatf ≤ γ log k.

Hence, by the union bound, the probability that any iteration of Algorithmencode fails to embed
the correct value is at mosttε(k), which is negligible.

Before we can analyze the security of the stegosystem(keygen, encode, decode), we investigate
the output distribution of Algorithmsample and derive the following result that may be of independent
interest. It shows that the distribution of the output from Algorithmsample is statistically close toC
whensample is run with uniformly chosen inputs. The result also generalizes a theorem of Reyzin and
Russell [15].

Let sample be run with independently chosenb
R← {0, 1}f andg

R← G, and denote byS(k) the
distribution of its output.

Proposition 7. If the min-entropy of the covertext distributionC is large enough compared tof , then
the statistical distance betweenS(k) andC is negligible; in particular, there exists a positive constant
λ < 1 such that for all sufficiently largek

‖S(k)− C‖ < 2f−H∞(C) + λk.

The proof of this result is based on Lemmas 8 and 9 below. Given a functiong used by Algorithm
sample and a valueb, define

γ(g, b) = Pr[x R← C : g(x) = b].

Let ε(g, b) = 1− γ(g, b).

Lemma 8. For a given functiong and a valueb, the probability that Algorithmsample outputs a par-
ticular c is

Pr[sample(C, g, b, k) = c] =

{(
1− ε(g, b)k

)PrC [c]
γ(g,b) if g(c) = b

ε(g, b)k PrC [c]
ε(g,b) otherwise

Proof. The probability of a valuec under distributionC conditioned on the eventg(C) = b is equal
to PrC [c]/γ(g, b) if g(c) = b and 0 otherwise; similarly, the probability ofc under the conditional
distribution ofC given g(C) 6= b is PrC [c]/ε(g, b) if g(c) 6= b and0 otherwise. By construction, the
second case, i.e.,sample outputsc with g(c) 6= b, occurs if and only if the loop terminated withj = k;
this happens with probabilityε(g, b)k because the realizations ofC are independent. The first case covers
any other outcome of the algorithm.

Lemma 9. For every distributionC, there exists0 < λ < 1 such that for all sufficiently largek and all
c ∈ C,

2−f
(
1− λk

) PrC [c]
|G|

∑
g∈G

1
γ(g, g(c))

< PrS(k)[c] < 2−f
(
1 + λk

) PrC [c]
|G|

∑
g∈G

1
γ(g, g(c))

. (1)
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Proof.

PrS(k)[c] = Pr[b R← B; g R← G;x R← sample(C, b, g, k) : x = c]

= 2−f
∑
b∈B

1
|G|

∑
g∈G

Pr[x R← sample(C, b, g, k) : x = c]

= 2−f 1
|G|

∑
b∈B

( ∑
g:g(c)=b

(
1− ε(g, b)k

) PrC [c]
γ(g, b)

+
∑

g:g(c) 6=b

ε(g, b)k PrC [c]
ε(g, b)

)
(2)

= 2−f PrC [c]
|G|

∑
g∈G

( ∑
b:b=g(c)

1− ε(g, b)k

γ(g, b)
+

∑
b:b6=g(c)

ε(g, b)k−1

)
(3)

= 2−f PrC [c]
|G|

∑
g∈G

(
1− ε(g, g(c))k

γ(g, g(c))
+

∑
b:b6=g(c)

ε(g, b)k−1

)
(4)

where(2) follows from Lemma 8,(3) from switching the order of summation, and(4) from noting that
the first sum contains only the termb = g(c).

Recall thatPrC [c] > 0 for all c ∈ C and that2f < k. Hence,0 < ε(g, b) < 1 and there exists
0 < λ < 1 such that for all sufficiently largek,∣∣∣ε(g, g(c))k + γ(g, g(c))

∑
b:b6=g(c)

ε(g, g(c))k−1
∣∣∣ < λk.

The lemma follows from combining this with (4).

Proof of Proposition 7.For a particular functiong and a covertextc, defineAc(g) = γ(g, g(c)) and
considerAc(g) as a random variable induced by the random choice with uniform distribution ofg from
G. The expectation ofAc(g) is

E[Ac(g)] =
∑
g∈G

PrG[g]γ(g, g(c))

= Pr[g R← G;x R← C : g(x) = g(c)]

= Pr[x R← C : x = c] + Pr
[
g

R← G;x R← C|C\{c} : g(x) = g(c)
](

1− Pr[x R← C : x = c]
)

≤ pmax(C) + 2−f = 2−H∞(C) + 2−f , (5)

whereC|C\{c} denotes the conditional distribution ofC restricted toC \ {c} and the inequality follows
from the definition ofpmax and from the 2-universality ofG.

Note that the bound of Lemma 9 involves the expected value of(Ac(g))−1 (over the random choice
of g). The Jensen inequality [6] states that for any convex functionf applied to a random variableX, the
expected value off(X) is at least as big asf applied to the expected value ofX. Thus,E

[
(Ac(g))−1

]
≥
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(
E[Ac(g)]

)−1
for all c ∈ C. We get

‖C − S(k)‖ =
∑

c:PrC [c]>PrS(k)[c]

PrC [c]− PrS(k)[c]

<
∑

c:PrC [c]>PrS(k)[c]

(
PrC [c]

(
1− 1− λk

2f |G|
∑
g∈G

1
γ(g, g(c))

))
(6)

≤
∑

c:PrC [c]>PrS(k)[c]

(
PrC [c]

(
1− 1− λk

2f
E

[
(Ac(g))−1

]))
(7)

≤
∑

c:PrC [c]>PrS(k)[c]

(
PrC [c]

(
1− 1− λk

2f (2−f + 2−H∞(C))

))
(8)

≤ 1− 1− λk

1 + 2f−H∞(C)

≤ 2f−H∞(C) + λk,

where (6) follows from Lemma 9, (7) from the Jensen inequality and from the definition ofAc(g),
and (8) from (5).

Theorem 10. For a covertext distributionCt such thatC has sufficiently large min-entropy and pro-
vided that(K, E, D) is an RCCA-secure public-key cryptosystem with pseudorandom ciphertexts, the
stegosystem(keygen, encode, decode) is SS-RCCA.

Proof (Sketch).We prove that the stegosystem(keygen, encode, decode) is SS-RCCA by a reduction
argument. Assume that it is not SS-RCCA and and hence there exists a (stego-)adversary(SA1, SA2) that
succeeds in the experiment of Definition 2 with probability1

2 + δ(k) for some non-negligible function
δ. We construct an (encryption-)adversary(A1, A2) that has black-box access to(SA1, SA2) and breaks
the RCCA-security of(K, E, D) as follows.

Key generation: WhenA1 receives a public-keypk generated byK, it choosesg
R← G, computes

spk← (pk, g), and invokesSA1 with spk.

First decryption stage: WhenSA1 sends a query(c1, . . . , ct) to its decoding oracleSO1, thenA1 com-
putesy ← y1‖y2‖ · · · ‖yt for yi ← g(ci), givesy to its decryption oracleO1, waits for the
response and forwards the response toSA1.

Challenge: When SA1 halts and outputs(m∗, s), the encryption-adversaryA1 chooses an arbitrary
plaintext messagem′ ∈ {0, 1}l and outputs(m∗,m′, g). According to the definition of a public-
key cryptosystem, a challenge ciphertexty∗ is computed. NowA2 is invoked with inputspk,
m∗, m′, y∗, andg. It parsesy∗ as a sequencey∗1‖y∗2‖ · · · ‖y∗t of f -bit strings, computesc∗i ←
sample(k, g, y∗i ) for i = 1, . . . , t, and invokesSA2 with inputs(pk, g), m∗, (c∗1, . . . , c

∗
t ), ands.

Second decryption stage:A2 behaves in the same way asA1 during first decryption stage: It computes
a ciphertexty from any decoding request thatSA2 makes as above, submitsy to the decryption
oracleO2, and returns the answer toSA2.

Guessing stage:WhenSA2 outputs a bitb∗, indicating its guess as to whether messagem∗ is contained
in the challenge covertext(c∗1, . . . , c

∗
t ), the encryption-adversaryA2 returnsb∗ as its own guess of

whetherm∗ or m′ is encrypted iny∗.
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We now analyze the environment simulated by the encryption-adversary(A1, A2) to the stego-
adversary(SA1, SA2) and the probability that the encryption-adversary can distinguish the encrypted
messages.

Clearly, during key generation and the first decoding stage, the simulation for the stego-adversary
SA1 is perfect. During the encoding stage, a random bitb is chosen according to Definition 3 and the
challenge ciphertext is computed asy∗ ← E(pk, m∗) if b = 0 andy∗ ← E(pk, m′) if b = 1.

Whenb = 0, then, according to the definition ofA1, the challenge covertextc∗ is computed in the
same way as expected by the stego-adversary in the experiment of Definition 2 and the simulation is
perfect.

Whenb = 1, however,SA2 expects(c∗1, . . . , c
∗
t ) to be a random covertext drawn according toCt,

but receivesc∗i = sample(k, g, y∗i ) for i = 1, . . . , t instead, where the concatenation of they∗i is an
encryption ofm′ under keypk with E.

Proposition 7 implies that for everyi ∈ {1, . . . , t}, the statistical distance betweenC and the dis-
tribution of c∗i as computed by Algorithmsample when run with input auniformly chosenf -bit string
is bounded by a negligible quantityε∗1(k). Furthermore, since the cryptosystem(K, E, D) has pseu-
dorandom ciphertexts, for every distinguisherSA2 there exists a negligible quantityε∗2(k) such that its
advantage (over guessing randomly) in distinguishing betweeny∗i as used byA2 and the uniform distri-
bution onf -bit strings is at mostε∗2(k).

By combining these two facts, it follows that the behavior of the stego-adversarySA2 who observes
(c∗1, . . . , c

∗
t ) in the simulation whenb = 1 does not differ from its behavior in experiment of Definition 2,

where it observes covertextCt, with more than probabilityε∗(k) = t
(
ε∗1(k) + ε∗2(k)

)
.

By definition, the output of the encryption-adversaryA2 is the same as that of the stego-adversary
SA2. SinceSA2 succeeds with probability12 + δ(k) in attacking the stegosystem and since the simulated
view of SA2 is correct except with probabilityε∗(k) when b = 1, the probability thatSA2 breaks
RCCA-security is1

2 + δ(k) − ε∗(k)
2 , which exceeds12 by a non-negligible quantity and establishes the

theorem.
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