Asynchronous Group Key Exchange with Failures

Christian Cachin

Reto Strobl

IBM Research
Zurich Research Laboratory
CH-8803 Ruschlikon, Switzerland
cca,rts@zurich.ibm.com

ABSTRACT

Group key exchange protocols allow a group of servers com-
municating over an asynchronous network of point-to-point

cannot learn this key. Such a session key can later be used to
achieve cryptographic goals like for example multicast mes-
sage confidentiality, or multicast data integrity. Hence, GKE

links to establish a common key, such that an adversary which protocols are essential for applications such as secure video-

fully controls the network links (but not the group members
cannot learn the key. Currently known group key exchange
protocols rely on the assumption that all group members par-
ticipate in the protocol and if a single server crashes, then no
server may terminate the protocol. In this paper, we propose

the first purely asynchronous group key exchange protocol that
tolerates a minority of servers to crash. Our solution uses a

constant number of rounds, which makes it suitable for use in
practice. Furthermore, we also investigate how to provide for-

ward secrecy with respect to an adversary that may break into

) or tele-conferencing, or other collaborative applications. To

model environments like the Internet, one assumes an asyn-
chronous network where the scheduling of messages is deter-
mined by an adversary, and where the servers do not have ac-
cess to a common clock.

The main goals of a GKE protocol are to ensure secrecy of
the session key, and to ensure that every member of the group
eventually terminates the protocol and computes the session
key. So far, GKE protocols have been designed to meet these
goals only as long as all members of the group follow the pro-

some servers and observe their internal state. We show thati0c0! specification [8, 26, 3, 7]. These solutions have the draw-

any group key exchange protocol amangervers that toler-
atest. > 0 servers to crash can only provide forward secrecy
if the adversary breaks into less than- 2¢. servers, and pro-
pose a group key exchange protocol that achieves this bound.

Keywords

Group Key Exchange, Group Communication, Provable Secu-
rity, Universal Composability

General Terms
Security, Reliability

Categories and Subject Descriptors

D.4.6 [Security and Protectior]: Cryptographic controls;
C.2.4 Distributed Systemg: Distributed applications

1. INTRODUCTION

Group Key Exchange (GKE) protocols allow a group of
servers communicating over a complete network of point-to-
point links to establish a commaession keguch that any-
one outside the group that can only observe the network traffic

back that if only a single server crashes, then no member of
the group will terminate the protocol. This makes such proto-
cols specifically vulnerable to denial of service attacks, as the
execution time of the protocol is determined by the slowest
member of the group.

One way to solve this problem, explored by Amir et al. [2],
is to base GKE on a view-based group communication system
(GCS), which provides the abstraction of the “currently live
nodes” to all servers in a consistent way (Chockler et al. [15]
provide a survey of GCS). Since the GCS can detect crashes
among the servers also during the execution of a GKE proto-
col, the protocol can react accordingly; as GCSs rely on time-
outs to detect crashed participants, the approach leads to so-
lutions that are not purely asynchronous and subject to timing
attacks, however.

In this paper we propose the first GKE protocol ipwely
asynchronousnodel that terminates for every member as long
as at least a majority of the participants remain up, which is
optimal for this model. Our solution is conceptually simple
and efficient, which makes it suitable for practice. In particu-
lar, it consists of the following two stages. In the first stage, the
group members exchange keying information using two com-
munication rounds and a total 6i(n?) messages, whene
denotes the size of the group. In the second stage, they ex-
ecute a consensus protocol to select the contributions from
the first stage from which the session key is computed. The
protocol may use randomized asynchronous consensus in the

Permission to make digital or hard copies of all or part of this work fedly asynchronous model or a consensus protocol in the asyn-
personal or classroom use is granted without fee provided that copieglaféenous model augmented with a failure detector [14]. In the
not made or distributed for profit or commercial advantage and that copie&r case. our approach yields a modular solution for GKE in
bear thls notice and the full citation on th_e first page. To copy othermsemFg same model as the GCS-based protocol mentioned above.
republish, to post on servers or to redistribute to lists, requires prior speci |& . - . .

omparing the efficiency of our construction with the most

permission and/or a fee. 7 : . -
PODC'04,July 25-28, 2004, St. Johns, Newfoundland, Canada. efficient solution for GKE without failures [8] shows that the

Copyright 2004 ACM 1-58113-802-4/04/00075.00.

price we pay for tolerating failures lies only in the consensus dress thedynamiccase of GKE, where servers may join or
protocol executed in the second stage. We also show that theleave the group and the session key must be updated when-
communication complexity of our construction is nearly op- ever this occurs. Recently, Amir et al. [1] showed how the
timal. In particular, we show that given an optimal solution dynamic join and leave protocols of Steiner et al. [26] can
for consensus, our construction yields a solution for GKE that be integrated with a view-based GCS to maintain a common
uses onlyO(n?) messages an@(1) communication rounds group key, which is later used to encrypt the communication
more on average than an optimal solution for GKE with fail- among the group. The group key has to be updated whenever
ures. the underlying GCS detects a change in the group structure.
Following the approach of Steiner [27], we analyze the se- This is accomplished as outlined in [2], i.e., by running the
curity of our protocol in the framework for asynchronous re- corresponding dynamic GKE protocol whenever servers join
active systems proposed by Pfitzmann and Waidner [23]. In or leave. In case that the GCS detemtsted leaves.e., de-
particular, we first specify the target behavior of a GKE pro- tects leaving serveduringthe execution of a (dynamic) GKE
tocol in terms of an idealized service, and then show that our protocol, this protocol is aborted and a basic GKE protocol is
protocol has the same input-output behavior as this idealized run from scratch among the remaining servers. Establishing a
service. This approach has the benefit of guaranteeing com-key in case of nested leaves can also be seen as crash-tolerant
posability, i.e., the security of any application relying on an GKE. Note that ift. servers crash one by one, this approach

ideal service for GKE remains the same when our real proto-
col is used to implement the ideal service.

We first prove the security of our construction in the so-
calledweak corruptiormodel with failures, where the adver-

leads tot. sequential executions of a basic GKE protocol. If
the basic GKE protocol of Steiner et al. [26] is used, this re-
sults inO(t.n) messages and(t.n) rounds. Furthermore, as
GCSs rely on timeouts to detect crashes, this approach is not

sary may schedule and observe the network, crash servers, bupurely asynchronous and subject to timing attacks.

not break into a server and observe its internal state. We show

that in this model, our protocol tolerates< n/2 servers that
crash, which is optimal for this setting.

We then investigate how to providerward secrecyn the
strong corruptionmodel, where the adversary is additionally

allowed to break into some servers and to observe their internal
state. Such break-ins should only compromise the security of
the session keys that are being generated during the attack, bu
not the keys generated previously or afterwards. We first show

that if a GKE protocol toleratels > 0 servers that crash, then
it can tolerate strictly less tham — 2¢. break-ins. We then
show how to build a GKE protocol with this optimal resilience.

Organization. In the next section, we introduce our system
model and give the formal definitions for GKE and consen-
sus. In Section 3, we present our construction for GKE with
failures in the weak corruption model, and elaborate on its op-
timality. In Section 4, we first introduce the strong corruption
model and adjust the definition of GKE to this model. We then

Erove an upper bound on the number of break-ins one can tol-

rate for GKE with failures in the strong corruption model,
and finally show how to build a GKE protocol with this opti-
mal resilience.

Our construction is also practical: It uses one execution ofa 2. PRELIMINARIES

consensus protocol, and additionallyn?) messages in three
rounds.

Related Work. One can classify previous work on GKE along

2.1 The Framework
Our computational model is parameterized by a security pa-

two dimensions: The assumptions made on the communica- rameterk; a functione(k) is callednegligibleif for all ¢ > 0

tion links, and the framework used for proving security. Along
the first dimension, one can distinguish between GKE proto-

cols that assume an authentic network (as we do) [19, 8, 26,

24, 27], and GKE protocols that rely on a-priori distributed
public and private keys (as for example provided by a public-
key infrastructure) [20, 6, 3, 28]. A recent paper of Katz and

1

there exists & such thate(k) < &= forall k > ko. Two
ensembles{var;},, € N and {var},}ren of random vari-
ables (or probability distributions) are calledmputationally
indistinguishabldf for every algorithmD (the distinguisher)
that runs in probabilistic polynomial-time in its first input, the
following quantity is negligible: | Pr[D(1*, vary) 1] —

Yung [21] closes the bridge between these two approaches by| Pr[D(1*, vary,) = 1]|. Throughout the paper, we abbrevi-

showing how any GKE protocol built for an authentic network
can be “compiled” into a GKE protocol for an insecure net-
work with a-priori distributed public and private keys. The
compilation only adds one additional communication round
andO(n?) messages.

With respect to the framework used for proving security, one

ate this by saying that/ar; andvar,. are indistinguishable”,
and write “vary ~ vary:".

We will study our protocols in the framework for universally
composable asynchronous reactive systems of Pfitzmann and
Waidner [23]. We sketch a simplified version of the model.

Overview. We model a protocot as a collection of. prob-

can identify two approaches. One approach, taken by Bressongpjjisic polynomial-time (ink) interactive Turing machines

et al. [7] and by Katz and Yung [21], is to extend the frame-
work for modeling two-party key exchange proposed by Bel-
lare et al. [5] to thew-party case. Another approach, taken by
Steiner [27] and by this work, is to use a general framework for

modeling asynchronous reactive systems — such as the one of,

Pfitzmann and Waidner [23] or the one of Canetti [12] —

position.
Some of the above-mentioned works [3, 26, 24, 7] also ad-

(PPT ITM)MT, ..., M, called theservers which communi-
cate over an authentic netwoNET modeled as a PPT ITM.
We call the collectiof NET, MT, ..., M7} areal systenfor
rotocol = in network NET and denote it bySys""". We
odel protocol-specific input and output of a serkf in

: ! _ —and erms of messages that occuMi’s input and output connec-
define and prove security therein. The advantage of using suchiionsin. andout

a framework is that security is preserved under modular com-

i, respectively. We call the sétof the input-
output connections of all servers timterfacé of Sys™"™.

LFor readers familiar with [23]: The interface corresponds to
thespecified ports

We model an execution of a protocelin a networkNET
as a run of the real systeffys™"™ augmented with two PPT
ITMs: a userH and an adversarj™'. We call the collec-
tion {Sys™"™ H, A" areal configurationfor 7. Theuser
H represents a higher-level application that builds on top of
the servers. It may interact with the servers through the in-
terface (or a subset thereof), and may also communicate with
A" at arbitrary points during the protocoh™' may attack
the servers and schedule the network. We model attacks on
a serverM? in terms of special messages that may occur at
a designated input connectianr_in; of M7 (also part of the
interface). For now, we consider theeak corruption model
where the only available attack of the adversary isrisha
server; if this happens, the server halts, i.e., does not partici-
pate in the protocol anymore. In Section 4, we will discuss the
strong corruption modelwhere also break-ins are allowed.

We describe the security propertiesmofn terms of a ser-
vicef that the corresponding real systesps"™"™ should guar-
antee at its interface. Formally, we define the serfiogerms

Executing a Configuration: The execution of a configuration

is called arun and is defined as follow’s At the begin-
ning of the run, every machine is initialized with the
security parametek. Then, the run proceeds 8teps

In the first step, a designated machine calledrttees-

ter scheduleiis activated (for the configurations in this
paper, the master scheduler is the adversary). In every
step, the currently active machine may read its commu-
nication input tapes, perform some computation (possi-
bly involving random choices), and then write a mes-
sage to one of its communication output tapes. It then
eitherhalts or terminatesthe activation. In either case,
the machine which can read from the tape that has been
written to is activated and proceeds with the next step.
If this machine has halted before, or no message was
written to a tape, then the master scheduler is activated
instead. This process continues until the master sched-
uler halts.

of an ideal systenfys'®"f. This ideal system has the same The Network: The networkNET provides authentic commu-

interfacel as the real system, but comprises only a single PPT
ITM called thetrusted hostTH’, that serves the interface. It
also runs in a configuration with a usdrand an adversary
Ale® (hoth modeled as PPT ITM), whefé®e2' may communi-
cate withTHY, at arbitrary points during the protocol. This al-
lows to model the non-determinism in the ideal serviadnich
may be controlled by the adversary.

The security of the protocet is then defined by requiring
that whatever can happen to an arbitrary w$ér the real sys-
tem Sys'"™ could also happen to the same user in the ideal
systemSys'®2hf i.e., H cannot distinguish an ideal configu-
ration from a real one. In this case, we say thgs'™"" is
as secure asSys“"f. The standard argument how to prove
this notion of security is a constructive one. Specifically, one
shows how to construct for any ugérand any adversarg"'
an ideal adversanp®®' such thatH cannot distinguish the
corresponding real configuration from the ideal configuration.

The framework also allows modular composition of proto-
cols by describing a protocal that runs on top of an ideal ser-

vice g. We model this as hybrid systensys.’ "™ consist-
ing of the real systensys™"™ for = with an ideal sub-system
Sys'2"€_ In such a hybrid system, the servaf§, ... M7
have access t6ys'¢"¢ as if they were the user of this sys-
tem. An important property of the framework is that if a real

systemSys'="* is as secure aSys“*"€, then the real system

real, 7,

Sysn (where the servers have accessSis™"* instead

i . hybrid
of Sys'®2€) is as secure aSys,. . Below, we add a few
more details. For a more elaborate treatment of the framework

we refer to [23].

Ideal and Real Configurations.On an abstract level, a real or

an ideal configuration can be seen as a set of PPT ITM called
machinesthat are connected with each other through commu-
nication tapes [18] and may interact. For every communication
tape there is exactly one machine that can write to the tape, and
another machine that can read from the tape. We also call such
a communication tape@nnection Figure 1 shows an exam-

nication among the servers with scheduling determined
by the adversary. It connects to every seMérthrough
connectionset_out; andnet_in;, and connects to the
adversaryA™ through the connections_Adv,,., and
from_Adv,,.,, and works as follows. A servévlT can
send a message to M7 by sending the messag@e, j)
on the connectiomet_out; to NET. If this happens,
NET stores(m, i, j) in a collectionM, and sends the
tuple (m, 7, j) on the connectiono_Adv,,.; to the ad-
versary. Similarly, A" can schedule a messageto
be delivered fromM7 to M7 by sending(m,, j) on
the connectionfrom_Adv,,.,. If this happens, and if
(m,4,j) € M, thenNET removes(m, 1, j) from M,
and outputgm, i) to M7 ; we also sayM7 receivesm
from M7. We say that the adversadglivers all mes-
sages amon®1? and M7, if at the end of the run, the
collection M does not contain any tupldsn, i, j) or
(m, j,4) for any messagen.

The Interface: The interface of a real and an ideal system

comprises the connectiois, out,, andcor_in; for i €

[1,n]. The first two connections are used to invoke the
service(s) provided by the systems, and to receive service-
specific output from the systems, respectively. The con-
nectionscor_in; for i € [1, n] are used to model attacks

of the adversary on a server These connections have

to be part of the interface because attacks on the servers
will affect the service that a system provides. For now,
we describe theveak corruptionrmodel, where the ad-
versary may onlgrasha servei, modeled as a message
(crash) sent on the connectiotor_in; (see Section 4

for the strong corruption modelwhere also break-ins
are allowed). If this happens in a real configuration,
then M7 outputs(crash) at cor_out; and halts. If this
happens in an ideal configuration, th@’, outputs
(crash, ¢) atto-Adv,,.

ple of a configuration of the real and the ideal system for a Other Connections: The trusted hosTH!, also connects to

protocolw and a servicé, respectively; it shows the connec-
tions (denoted by arrows) and the interface (the connections
that cross the dashed lines) of the configurations.

A% through connectionso_Adv,, and from_Adv,,.
These connections are used to model the non-determinism

2The model of execution described here is not as general as
the model described in the original work [23], but will be suf-
ficient for our purpose.

out

' .
n_y corin

cor_in

cor_out
=

Areal

—'n

from_Adve

—
H e———

==
1 oull"- in | ouln 1 cor_in,

ideal, £ l y oo, Adeal
Sys |
| to_Advg, 1 from,Advlh]_T—

Figure 1: Configurations of the real and ideal systems for protocok and servicef, respectively.

in the ideal servicé, which may be controlled by the ad-
versary. Furthermore, every serddf connects ta\"
through connectionsor_out;. These connections are
used to model effects of an attack, e.g., in Section 4 we
will use these connections for revealing server internal
data to the adversary as a result of a break-in.

We are now ready to state the definition for a real system
Sys™™ to beas secure aan ideal systensys“"f, For this

purpose, Ievffi;j\,ea, (k) denote the probability distribution of
the view ofH (the internal state ofl and all messages thHit
sees) in a run obys'"™ with security parametek, config-
ured withH andA™', and letv'**",_ (k) be defined analo-

H, Aideal
gously. '

Definition 1 We say thatSys™"™ is as secure asys9e"f,

if for all usersH, and all real adversarieA™, there exists
an ideal adversanA“?' such that the distribution ensembles
{V:i"’lrea,(k)}keN and {V:,ef,ly’,:idm (k)}ren are computation-
ally indistinguishable.

Composition. The framework allows to describe protocols in
amodular way, i.e., a protocelmay build on a sub-protocel
Such a composition is modeled as a real systys ™
comprising the two systemSys™™ and Sys""*, where the
servers ofSys™"™ have access to the sub-systéips'"* as

if they were the user of this system. To ensure that an attack
on a serveM7 also affects the sub-system, we assume that the
connectiorcor_out; of a serveM? is linked to the connection
cor_in; of serverM?, i.e., if M outputs(crash) on cor_out;,
thenM? receivegcrash) oncor_in;. The sub-system may also
be an ideal system, in which case we call the entire system
hybrid. The following composition theorens an important
property of the framework [23].

Theorem 1 (Composition Theorem [23])If a hybrid system
Sysy’™"*"™ consisting of a real systefys'*"™ with sub-system
Sys'2'e is as secure as an ideal systesys'®"’, and if a

Ip ; ideal,
real systenbys;-*"* is as secure as the ideal systéys. <2,

then the real systerftys;""™ consisting ofSys'*" with sub-
systemSys'e"* is at least as secure the ideal syst&ys =",

Complexity Measures.We will measure the complexity of a
protocolr in terms of itsexpected message compledtyr),

and itsexpected round complexifg(7). The first measure
represents the bandwidth required by the protocol, and is de-
fined as follows. LetM), o (7) denote an upper bound on

the expected number of messages that the servers send across

the network in a run ofys™*"™ configured withH and A™',
where the expectation is taken over the random choices of the
servers. ThenM(r) is the maximum ofM, yea () over all
usersH and adversarieA™'.

The round complexity measures the running time of the pro-
tocol. To define it, we assign round numbers to the messages
sent by servers across the network as follows. Note that a
server only sends a messageacross the network in response
to an input from the user or in response to a messagom
the network. In the first case, we assign round nunilderm,
and in the second case, we assign round numberl to m,
wherer is the round number ofy’. Let Ry, sl () denote an
upper bound on the expected highest round number assigned
to a message in a run 6fys™"™ configured withH and A",
where the expectation is taken over the random choices of the
servers. ThenR(w) is the maximum ofRy s () over all

usersH and adversariea™ .

2.2 The Ideal System for Group Key Ex-
change

Our ideal systensys <" for group key exchange models
hown servers repeatedly establish a session key. In particular,
we say a servef starts a session with tagD when an in-
put (start, ID) occurs afin; (ID is an arbitrary bit string and
represents a unique identifier for the session). Similarly, we
say a servef finishes a session with tafD when an output
(finish, ID, key) occurs abut;.

Our trusted hosTH&* models the traditional security prop-
erties that one expects from a GKE protocol. In particular, it
guarantees that the session key of every sesHbis gener-
ated independently at random; this property is sometimes also
called key freshness Furthermore, it guaranteesutual key
authentication which means that every server computes the
same key in a sessiafD. Definition 2 below captures these
ideas more formally. We do not yet addréssvard secrecy
as this becomes only an issue if the adversary can break into
a server and learn its internal state (we discuss this model in
Section 4).

Definition 2 The ideal systenSys"¢< for group key ex-
changeconsists of the trusted ho¥HE" given by the follow-
ing transition rules:

Init: At system initialization, it setS[i] — @, F[i] — 0 for
i € [1,n], k[ID] «— L forall ID.

Start: When a servet starts a session with tafD, the trusted
host adds/D to the setS[i], and outputs the message
(started, ID,i) to the adversary.

Finish: When the adversary inputéinish, ID.,i) wherelD €

S[i]\ F[i], thenTHEk first addsID to the setF[i]. Next,

if x[ID] = L, it chooses:[ID] at random ovef0, 1}*.
Finally, it outputs(deliver, ID, k[ID]) at out;.

Recall that our goal is to build a GKE protocelthat is not

The best-known randomized asynchronausesilient con-
sensus protocol can be derived from the protocol of Canetti
and Rabin [13], which actually solves the harder problem of
Byzantine agreemenwhere the servers may not only crash

only secure, but also guarantees to terminate for every serverpyt pehave arbitrarily, and is unconditionally secure. A con-

even if up tot. servers crash. This is captured by the following
definition of at.-resilient group key exchange protocol.

Definition 3 We call a protocolr a t.-resilient group key ex-
change protocoiif Sys™"™ is as secure asys'9"¢< and if

for every run of a configuration ofys""™ where at most.
servers crash, the following holds: If all non-crashed servers
start a session/D, then they all finish sessiofD, provided

sensus protocol can be derived from this as described in [4,
Section 14.3.2]. It uses an expected numbe©o6f*) mes-
sages, proceeds in expect®dl1) rounds, and has resilience

te < m/3. Assuming a trusted dealer that initializes the sys-
tem and working in a realistic model with a computationally
bounded adversary, there exist cryptographic protocols due to
Cachin et al. [10, 9] and to Nielsen [22], which u€&n?)
messages an@(1) rounds on average, and have optimal re-

that the adversary delivers all messages among non-crashedsiliencet,. < n/2.

Servers.

2.3 The Ideal System for Consensus

In aconsensugrotocol, every server receives as input a bit
string of some lengtli(k), and produces as output some bit
string of lengthl(k). The goal is that all servers output the
same bit string, and that this bit string corresponds to the input
of at least one server.

Below we give the ideal system for consensus, which will
serve as building block in our construction for a GKE pro-
tocol. It models hown servers repeatedly and concurrently
agree on bit strings of some lenditk), where every consen-
sus instance is identified by a tdp. We model that a server
starts a consensus instance with fagand inputv by a mes-
sage(propose, ID, v) that occurs atn;. If this happens, we
also sayserveri proposes for ID. Similarly, we model that
a server terminates a consensus with#Agand valuev’ by a
messagédecide, ID, v") that occurs abut;. In this case, we
sayserveri decides)’ in ID.

Definition 4 The ideal systenfys¢c="<"s for consensuson-
sists of the trusted hoJtH;>™ given by the following transi-
tion rules:

Init: At system initialization,TH;>" sets P[ID] « @ and
0[ID] « L forall ID.

Propose: If a serveri proposesv; for ID, THS™ adds the
tuple (¢, v;) to the setP[ID], and outputgpropose,ID,
1,v) to the adversary.

Decide: WhenTH: ™ receives(decide, ID,i,v) from the ad-
versary, it verifies (by consulting[ID] and4[ID]) that

e server; has proposed some value fbD
e at least one server proposedor 1D
e no other server has decided another value fbr

If all checks succeed, it set$/D] — v, and outputs
(decide, ID, v) to the user abut;.

We will need a consensus protoeothat is not only secure,
but also guarantees to terminate for every server even if up to
t. servers crash. The following definition captures this more
formally.

Definition 5 We call a protocoir at.-resilient consensyso-
tocol, if Sys™"™ is as secure asys'9"<", and if for every
run of a configuration ofSys™"™ where at most. servers
crash, the following holds: If all non-crashed servers propose
a value for somdD, then they all decide some value fop,
provided that the adversary delivers all messages among non-

crashed servers.

As mentioned in the introduction, it is also possible to im-
plement consensus in thailure-detector mode]14], where
some very efficient protocols exist. A failure detector is a local
module available to every server that periodically outputs a list
of servers that it suspects to have crashed and is usually based
on a timing assumption. We do not pursue this further and
focus on the fully asynchronous model, but note that in cer-
tain practical settings, such protocols might actually be more
efficient than the fully asynchronous protocols mentioned.

3. IMPLEMENTATION

3.1 Protocolw for GKE

We now describe our protocal for GKE. It builds on a
sub-system for consensus, and on a semantically secure en-
cryption scheme [17{K, £, D) for elements of{ 0, 1}* with
key-generation algorithnfC, encryption algorithn€, and de-
cryption algorithmD. In the following, all computations are
done ovefF, if not indicated otherwise.

When a server starts a session with tad, it first chooses
a contributiony; randomly from{0, 1}*; the goal is to com-
pute the session key ak = Zjec y; for some se@ of n—t.
servers. It then runk to generate a pair of public key/private
key (pi, s;), and sendp; to every other server.

When server; receives such a public kay, from another
serverj, it sends the contribution valug encrypted under
p; to serverj. Once it has received the contribution values

Yugs- -+ Yu,_,, Of n —t. servers like this, it computes the
differencesii «— Yu, — Yus, d2 “— Yus — Yugs - - -, An—t, —
Yun_, — Yuy,» @Nd proposes the sequences, . . ., un—z,)

and(di,...,dn—¢.) for ID|cs in the consensus sub-system,
wherecs is an arbitrary constant string. Note that the differ-
ence between any pair of contribution values may be leaked to
the adversary through this, but since no other information is
revealed, all contribution values remain secret.

When a servet decides two sequencesii, ..., dn—t.)
and(ds,...,dn_:.) in the consensus instané® |cs, it com-
putes the session key as follows. It first chooses an arbitrary
indexm € [1,n—t.] suchthatit has received;,, before (no-
tice that such am exists, as it has received at least ¢. val-
uesy; at this point, and it holds that < n/2). It then com-
putes the session k¥t = (372" jdm+5)+(n—tc)ya,.»
whered; = d;_ () forn —t. <1< 2(n —t.). The de-
tailed protocol is given in Algorithm 1. In this description, we
make the convention tha = d;_(,,—.) andw; = w;_ (s,
forn —t. <1< 2(n—tc).

It is easy to see that every server terminates. It is also easy
to verify that every server computes the same sessionkey

upon initialization:
y— Lforl e [1,n]; um «— Lform e [1,n —
pi— L,si— L, ctr <0
upon input (start, ID):
choosey; uniformly at random fron{0, 1}*
(p’iv Si) —K
send(enc_key, ID, p;) to every server

te);

upon receiving(enc_key, ID, p;) from server j:
send(key_part, ID, z;;) to serverj, wherez;; «— &, (y:)
upon receiving(key_part, ID, z;;) from server j:
ctr — ctr + 1, uer — 5595 — Ds, (25:)
if ctr =n — t. then
d; — Yuj = Yujpr forj € [Ln - tc];
propose((u, . .., un—t.), (di,...,dn—t.)) fOr ID|cs
upon deciding({@1, . . . , Gn—z.), {d1, ..., dn—z.)) iN ID]cs:
choosen € [1,n — t.] such thatys,, # L
sk = S0 gy + (0= te)gan,

output(deliver, ID, sk)

Algorithm 1: Protocokv for serveri, implementing GKE with
crashes.

n—te

ijl ya;, regardless of whichn it chooses. Finally, since
all contribution values remain secret (as argued above), the
same holds for the session key.

This technique is a fault-tolerant abstraction of the GKE
protocol of Burmester and Desmedt [8]. In their protocol the
public-key encryption scheme is instantiated with the ElGa-
mal scheme. The servers chogseén the same way, and then
jointly compute the valueg® = g¥i¥%i-1=%Yi+1 for j €
[1,n] (here,g is a generator of a multiplicative group of prime
orderq). The session key is then derived from these values
(and one contribution valug) assk = gviv2tyzvsttunyi
We prove the following theorem in the next section.

Theorem 2 If k is at.-resilient consensus protocol, then the
real systemSys™"“= consisting ofSys™"* with sub-system
Sys™" is at.-resilient group key exchange protocol.

Further Improvements. For repeatedly generating session
keys, there is a faster way than running protaedbr every
session. The idea is to use a family. = {v:};c 0,13+ Of
pseudorandom functior{i6], where a function);, maps bit
strings used for the session ta@® to bit strings of length

k. Pseudorandom function families have the property that one
cannot distinguisky; (D) from a value randomly chosen from
{0, 1}* without knowing the index. This allows the servers

to repeatedly generate session keys by running the pratocol
only once to get a secret index The session key for a ses-
sion with tag/D can then simply be computed @s(/D). We
remark that this construction is only secure in the weak cor-
ruption model, where the adversary cannot break into a server
and learn the index.

3.2 Security Analysis

To establish Theorem 2 and prove the security of Proto-
col w, we have to show that for &-resilient consensus pro-
tocol k, Sys™“~ is as secure as the ideal systéipsdeae e,
and thatS'ys;fa"“’“" is live, i.e., that if all server$/ that do not
crash during a run oBys™“~ start a sessiodD, then all

serversU finish sessionD, provided that at most, servers
crash and all messages among non-crashed servers are deliv-
ered.

To show liveness ofys"™"“~, we argue as follows. By the
assumption that at most servers crash, it follows that every
server inU receivesn — t. contribution valuesy; and pro-
poses some values fdD|cs. By the assumption that is a
t.-resilient consensus protocol, every server therefore also de-
cides some sequencés,, ..., un—¢.) and(di,...,dn—¢.)
for ID|cs. By construction, every server knows at that step
n — t. different values{y;}. By t. < n/2 it follows that for
every server there exists at least one index [1,n—t.] such
that it knows the contribution valug;,, . Hence, all servers in
U will be able to compute the key and finish the sesdibn

To show security oys' = we consider the hybrid sys-
tem Sys"Ybridwens consisting of the real systesys™ with
the ideal sub-systerfiys“=*"" for consensus. Note that it
suffices to show tha$ys"™ ¢~ js as secure aSys'de-e-e,
since the security osys;fa'vw then follows by the composi-
tion theorem and the assumption thais a secure consensus
protocol.

We now show thalys">ridwens ig as secure aSys'deaheke,
using a constructive argument. In particular, we provide for
every useH, and every adversark™"™ against the hybrid
systemSys™bridweens the construction of an adversapf e
against the ideal system such that the viewid af a run of the
ideal and hybrid system configured with A4 and A"rid,
respectively, are computationally indistinguishable.

Recall that the view oH in a run of the hybrid system also
comprises messages that it exchanges ith™. In order to
ensure that these messages have the same distribution as the
messages that exchanges withA®? in a run of the ideal
system, we construé&t®®' using a technique calldalack-box
simulation Specifically, we assume that we are given the hy-
brid adversanA™™ as a black-box, and then constrééts
out of a simulatoiSIM and the given black-boA™"™, The
idea is that the simulator feeds the black b&%*™ with a
simulated view of a run of the hybrid system, wh&t#&l must
compute this view based on the information it receives from
THE. If the simulated view is indistinguishable from what
the hybrid adversary would see in a corresponding hybrid run,
we can use the outputs of the black-b&X®™ to simulate the
messages exchanged with The construction is illustrated in
Figure 2 (w.l.o.g. we only show how to buili®*' for a con-
figuration whereH interacts with the ideal system through the
entire interface).

H |
in [fout,[eee in |lout cor_out
cor_in cor_in,
. .
cor_out, | Ahybri
SIM to_Adv “3}?"5
THE-
n from_Advgons
[omAdy, T AWy T [Adyet from Adv, 7 T
Alideal

Figure 2: The Construction of A® with Black Box Access
to Ahybrid

The Simulator. As usual in black-box simulations, we con-
struct the simulatoSIM as the combination of a simulated

userH and a simulated hybrid systeﬂisﬁlyb”d’“”"s. H inter-

acts withTH%* throughto_Adv,, andfrom_Adv,,, and with
the simulated hybrid systersiys™™'*“" through its entire
interface. Sys™™ =" interacts withA™" through connec-

n

tions to_Adv,,.;, from_Adv,,,., to,AdvTHc"ons7 from,AdvTH%ons,
andcor_out; for j € [1,n]. H provides the same inputs to
Sys™ << asH provides toTHE and, moreover, sched-

ules TH&* such that whenever a servigl’" outputs a ses-
sion key forID, thenTHE also outputs a session key fabP

atout,. More preciselyH works as follows.

upon receiving(started, ID, i) from THE:
send(start, ID) to M=

upon receiving(deliver, ID, k) from My<r:
send(finish, ID, 1) to THe®

upon receiving(crash, i) from THE:
send(crash) to M=

Comparing the Views. To show that for everyd and A",

the view ofH in a run of the hybrid systerfiys""rid-«ens con-
figured withH and A™* is indistinguishable from the view
of H in a run of the ideal systerfys'= e configured with
the adversarp'®®® | it suffices to show that thieint view of H
andA™" in a hybrid and an ideal run, respectively, are indis-
tinguishable (note that by construction&fe!, this joint view

is well-defined in the ideal run).

We argue inductively over the steps of the runs. The base
case, i.e., indistinguishability of the initial states, follows by
construction. It remains to show that if the joint viewtbfind
AP in & hybrid run up to a step> 0 is indistinguishable
from their view in an ideal run up to stéginduction hypoth-
esis), then the same holds for sfep 1 (inductive step).

First note that the joint view ofl and A™"" only changes

if one of them either sends a message, or receives a message.

In the first case, the inductive step follows directly by the in-
duction hypothesis. In the second case, we argue as follows.
By the protocol specification, the messages receivedl by
and A™Y"d for different sessions are statistically independent
of each other. Hence, it suffices to show that the probability

distributions of the received messages associated vsitingge
session in an ideal and a hybrid run, respectively, are indis-
tinguishable. We first investigate the distribution in an ideal
run. Lety;,ps,s;, andz;; for j € [1,n] denote the values
computed byM¢=" during the run. Then, the values con-
tained in messages received Byand A" up to and includ-
ing stepl + 1 of the run are a subset §f{a1, ..., 4n—¢.)} U
{sk,pi,z; | 1,7 € [1,n]}, and a subset of any linear com-
bination of the valueg1 — y2,92 — s, ..., yn — y1. We
denote these values by the random varialifé¢?'. Notice that
we may ignore the index vecto(s, . . . , un—¢.) proposed by
the servers, as they are determined by the scheduliafy®F,

and thus, identically distributed in an ideal and a hybrid run.
The distribution ofvi¢*®' is as follows:

Yi (E {07 1}k7 (pi>si) — ’szi.i — gpj (yl) for 1,J € [1,77/];

Ahybrid

(@1, tne) = [1,n]" "t sk & {0, 1}

ideal <y Znny 5k7
Vk = _
oy Un—t,

In a hybrid run,H and A" receive the same messages,
but with a different distribution. In particular, the session key
is not drawn at random fromj0, 1}* but is the sum of the

P1,.--3Pn; 211, - - -

Y1 —Y2,Y2 — Y3, .-

y Rln, -

yYn —

«.2nly .-

yhalv'

n — t. valuesys,. Specifically, the distributiov}”*™ of the
received messages in a hybrid run is as follows:

Yi i {07 1}k7 (p’ia Si) — K:7Zij — 8Pj (yl) for i,J € [1,71];

n—te

<ﬂ17 s [Ln}n_tc; sk — Z Yuy
=1

Vhybrid _ sy Znn, Ska
k - _
ey Un—t,

Let Uy, denote the uniform distribution ovei0, 1}*. To
show thatVi¢e® ~ V™ it is sufficient to show that from

Videal one can compute valugs, . . . , 7, such that the follow-
ing holds:

Ahybrid

7ﬂn—tc —

P1y.--3Pn, 211, - -

Y —Y2,Y2 —Ys3,...

.y R1lny -

yYn —

. Znl, -

Y1, U1,

'gi - g(z mod n)+1 — Yi — y(z mod n)+1 for ¢ S [17{”’} (1)

sk =Gay + -+ Ya,_,)
Ui = Uy for i € [1,n] 3)
5Pj (gl) ~ 5Pj (yl) for i,j € [17’”} (4)

The valuesy; can be computed as follows. Fore [1,n],
let 6; denote the valug: — ¥ mod n)+1 from vf,;‘ea'J and let
Un—t.+1 = u1. Furthermore, foi € [1,n — t.], letd; denote
the valueya, — ya,,,. Note that every such valug can be
computed as follows:

n—te

One can now computgs, as(sk — > "'t mém)(n—t.) ™"
The remaining valueg; for i € [1,n]\ {@:1} can be computed
as follows:

{

It is easy to verify that the computed valugssatisfy (1) and
(2). Furthermore, (3) holds becauggefor i € [1,n] and sk
are uniformly distributed ovef0,1}*. Finally, (4) holds by
the semantic security of the encryption scheme uséd.

3.3 Efficiency Analysis

We now analyze the expected message and round complex-
ities of our construction for generating a single session key. In
the first paragraph, we give the complexities for two concrete
instantiations of consensus protocols found in the literature. In
the second paragraph we show that our construction is almost
optimal in the sense that given an optimal consensus protocol,
our construction yields an almost optimal GKE protocol.

if u; < Uit1,
otherwise.

ba; +0a;+1+ -+ 5ai+1—1

5 =
)

i1~ O +1 — 0 — Oay 1

if w1 > 7,
if w1 < 1.

Yay + 0 +0it1 + -+ + a1
Yuy _6111

P =

—day41— - — i1

Concrete Efficiency.Letw, denote our GKE protoca) with
sub-protocolx for consensus. Recall th&(7) and M()
denote the expected round and message complexities, respec-
tively, of a protocolr (cf. Section 2.1). It is easy to see that
R(ws) = 2 + R(x) andM(w.) = 2n® + M(k). The best
known solution (in terms of round complexity) for GKE with-

out failures [8] proceeds in two rounds and uges n% mes-
sages; hence, the price we pay for tolerating crashes is essen-
tially a single consensus execution.

Below we give the asymptotic complexitieswf for some
known protocolsx for consensus. Specifically, we consider
the consensus protocekres of Canetti and Rabin [13] and
the consensus protocetksoo Of Cachin et al. [10], simplified
according to the remark in Section 2.3.

5 || M(wx) | R(ws) | resilience| dealer
KCR93 ‘ on®) ‘ o(1) ‘ te<mn/3 ‘ no
KCKS00 O(n2) O(l) te < n/2 yes

Optimality of the Construction. We now investigate the op-
timality of our protocol in terms of the round and message
complexities. In particular, let,,; denote an optimal proto-
col for GKE and lets,,; denote an optimal protocol for con-
sensus — optimal either in round complexity or in message
complexity, respectively, depending on the context. d.gf,,
denote our GKE protocal with sub-protocolk,,; for con-
sensus. We want to know how close the efficiencwgf, is

to the efficiency otv,,:. We show that

R(@ro) < Rlwopr) +8 (5)
M(@rp) < M(wopr) +8n° (©)

We argue as follows. By construction of Protocglwe have
R(Wrop) = 2 4 R(Kopt) andM(we,,,) = 212 + M(Kopt).
Substituting this in (5) and (6) gives

R(kopt) < R(wopt) +6

< O
M(Kopt) < M(wopt) 4 6n°.

®)

Hence, it suffices to show that an optimal consensus protocol
Kopt USES at most 6 rounds al@? messages more on aver-
age than an optimal solutian,,; for GKE. We show this by

a constructive argument. Specifically, we show how to build
from any given GKE protocal’ a consensus protocel,. that

uses an average of 6 communication roundséarfdnessages
more than a single execution of. By the assumption that
Kopt 1S round-optimal, it follows thaR(kopt) < R(k.r) =
6+ R(w’) and by the assumption that,; is message-optimal,
it follows M(kopt) < M(k,r) = 6n% + M(w'), respectively.
Because this holds fany GKE protocolw’, it also holds for
wopt, Which implies (7) and (8).

We derive the protocok,s from the protocolk,,,, pro-
posed by Cachin et al. [10], which is based on a protacgl,
for a common coinsuch a common coin protocol provides
every server with a random bit that is unpredictable by the ad-
versary. The consensus protoegl, . invokesm ., twice on
average, proceeds in expected 2 - R(mc0in) rounds, and has
an expected message complexitysaf + 2 - M (7 coin).

The main idea behind our protocel, is to modify k.,
as follows. At the beginning, the servers execute GKE pro-
tocol w’ once to get a secret key:. Then, they follow the
original protocols,,, , except that instead of invoking.o»
to get thei'th random bitc;, they use the'th bit of sk (if more
thank random bits are used, the servers can alsoskises the

observe their internal state. We first formally describe such
attacks and the desired security requirements of GKE in this
model. We then prove an upper bound on the number of break-
ins that a GKE protocol can tolerate, and describe an imple-
mentation of a protocol with optimal resilience.

4.1 Modeling Break-ins and Forward Se-
cure GKE

We model a break-in as a messd@esak_in, s) sent on a
connectioncor_in;, wheres represents an arbitrary bit string.
If in a real systemSys™"™ for a protocolr, a serverM?
receives such a message, it computes a varighle] and
sends(done, statel) on cor_out; to A™'. When this hap-
pens we also say the adverséngaks intoM?. The variable
state] comprises all internal data that has not explicitly been
erased, including the stringreceived with thebreak_in mes-
sage. This ensures that if the protoeois built on a sub-
protocol p, then the adversary learns the internal stat&6f
and M/, asM? receives (by the system model) oor_in; ev-
ery messagébreak_in, state]) thatM] outputs orcor_out,,
and hence, outputs the internal statévjf andM? to the ad-
versary.

The desired security requirement of a GKE protocol in this
model is calledorward secrecyand means that breaking into
a server reveals only the session keys being currently com-
puted by this server, but nothing about previously computed
session keys. Here, we define a threshold version of forward
secrecy, i.e., we require a GKE protocol to be forward-secure
only as long as the adversary does not break into more than
t, different servers. Formally, we capture this notion of se-
curity in terms of an ideal systeyss ¥ containing the
trusted hosTH; %, This trusted host works exactly @&
(cf., Definition 2), except for maintaining an additional gt
containing the indices of broken-into servers (initialize@}o
and for the following additional transition rule:

Break-in: When the adversary breaks into a seryarH®

adds: to the setB, and chooses for eveiD € S[i| the
key [ID] at random ovef0, 1}*, if this key is not de-
fined yet. It then computes a gétof keys to be revealed

as follows:
K Urpespjury IUD, 6[ID]) if |B] > ts,
U ID,k[ID]) otherwise.

Finally, it outputs(keys, K) to the adversary.

IDES[i]\F[i](

Note that the adversary églaptivein the sense that she may
break into a server any point during a run, and not only at
the beginning of the computation. The definition of a secure

seed to a pseudorandom generator, and derive the random bit$SKE protocol in this model is as follows.

¢; thereof).

It remains to show that i, is at.-resilient consensus
protocol, then the same holds feg,. The result will follow
from the composition theorem if we can show that the com-
mon coins derived from’ are unpredictable by the adversary
(as the same holds for the common coins derived from,).
But this follows directly from the definition of H&*, which
guarantees that the adversary cannot predict a single bit of the
session key, even after seeing all other bits of the key.

4. THE STRONG CORRUPTION MODEL

In this section, we investigate GKE in the presence of a
stronger adversary that may also break into the servers and

Definition 6 We call a protocotr a (t., ¢)-resilient group key
exchange protocol, iSys'"™ is as secure asys, G, &
and if for every run of a configuration dfys™"™ where at
mostt. servers crash, the following holds: If all non-crashed
servers start a sessiofiD, then they all finish/D, provided

that the adversary delivers all messages among non-crashed
servers.

4.2 An Upper Bound on the Number of
Break-ins

Given a GKE protocol that tolerates servers that crash,
we now investigate for how many break-ins one can prove this

protocol as secure a'EHiﬁﬁze. For proving that a protocol
7 IS as secure as an ideal serviceone has to show how to
construct for every used and every adversar™ against
Sys™™ an adversanh®®? againstSys'e2"f, such that can-
not distinguish the corresponding ideal configuration from the
real one. The difficulty in constructing®®® is to ensure that
it communicates wittH in the same way ad™ does. Cur-
rently, the only known way how this can be done is by con-
structingA™®' using the technique dflack-box simulatioras
in Section 3.2.

We now argue that for. > 0, no protocoko can be proven
to be a(t., t»)-resilient GKE protocol using black-box simula-
tionif ¢, > n—2t.. In other words, we show that— 2. is an

this information is always equal to the key that the user re-
ceives. We conclude that the joint viewstdndA™ in a run

of an ideal and a real configuration, respectively, are efficiently
distinguishable.

4.3 An Implementation with Optimal Re-
silience

We now describe &t., t,)-resilient GKE protocol.™ de-
rived fromw. We first explain whyw is not forward-secure
and then describe the necessary modifications to defive

In protocolw, a server continues to participate in the pro-
tocol after outputting the session kek. Specifically, it still

upper bound on the number of break-ins that one can tolerate responds to arrivingnc_key messages by sending back its en-

when building forward-secure GKE.

crypted contributiony;. This is necessary to ensure that every

To see this, assume toward a contradiction that there exists anon-crashed server eventually computes the session key. As a

(te, ty)-resilient GKE protocoty for t. > 0 andt, = n — 2t..
We show how to build for a particular uskra real adversary
A" againsty such that fomnyideal adversarp®® based on
black-box access ta™, the following holds: The joint view
of H andA™ in a run of the real configuration is efficiently
distinguishable from the joint view dfl andA™ in a run of
the ideal configuration. This contradicts the initial assumption
that~ is a(t., t»)-resilient GKE protocol.

We constructA™® for a user that invokes a single session
ID as follows. The adversa®/® runs- in two stages: In the
first stage, it chooses an arbitrary aétof n — ¢. servers, and
runs the protocol in an arbitrary way, but ensuring that:

¢ all messages sent among serverd/frare delivered,

e no message is delivered which is either sent by or sent
to a server not inl/, and

e no server is crashed or broken into.

When every server ifi/ has finished the sessidi, the first
stage ends. In the second sta§yé®' crashes. arbitrary servers

in M and breaks into the remaining— 2¢. servers ofM. It
then continues to run the protocol in an arbitrary way, but en-
suring that no server is crashed or broken into, and that all

result, an adversary that breaks into a sef\after this server
has outputsk has access to the server’s contributignand
may compute the keyk. This contradicts forward secrecy,
which requires that the adversary must not learn any informa-
tion on sk when breaking int@, servers after they have output
the keysk.

To ensure forward secrecy, a server could simgrseall
local data after outputting the key. However, the resulting pro-
tocol would not be live anymore, as the slowest servers might
never receive enough contributions from other servers to com-
pute the key. To ensure forward secrecy without compromis-
ing liveness, we extend as follows. In addition to computing
the session keyk, every servei also computes shares; of
sk such that any set of at most shares do not reveal any in-
formation onsk, whereas any set df + 1 shares allows to
efficiently computesk. Once a server has computed its share
and the session key, it outputs the key, and erases all local data
except for the share (this ensures forward secrecy). It then
continues to send its share to every server that requests it. This
ensures that every server eventually receives enough informa-
tion to compute the session key, and hence, ensures liveness.

To compute the shares &f, we use polynomial secret shar-

messages sent among non-crashed servers are delivered. Ondag as proposed by Shamir [25], where the sharesf a se-

every non-crashed server has finished the sedéipthe sec-

cret sk are computed by first choosing a random polynomial

ond stage ends, and the adversary halts. Notice that by the f(-) of degreet, with f(0) = sk, and then computing every

assumption that is a (¢, tp)-resilient GKE protocol, both

share as; = f(i). This technique requires that every serier

stages terminate, and moreover, every server that finishes sesderives its share; of the session keyk using the same poly-

sion ID outputs the same key.
Let sk denote this key, lettate; denote the internal state
ofa serven\/lj. at the end of stage one, and Jet denote the

nomial f(-). This can be ensured by generatipgt 1 session
keyssko, ..., sk, in parallel, and then defining the polyno-
mial asf(z) = sko + >.2%_, skma™ (the session keyk is

set of all messages sent (but not yet delivered) to servers notthen defined ask = sko). Generating, + 1 session keys

in M during the first stage. The fact that the serverdfrdo
not interact during the first stage with a server that is ndtfin
implies that the session key: is efficiently computable from
M and the state§state; } of all servers inM; otherwise, a
server not inM could not computesk and output the key at
the and of the second stage.

Suppose now we want to build an adversal¥®, i.e., we
want to build a simulator that provides a black-box adver-
sary A™® the (simulated) information seen in a real run of
v, based on the information received B %, By defi-
nition of TH}; % andA™, the simulator will not receive any
information on the session key:’ that the trusted host out-
puts to the user. Hence, the information that the simulator
feeds toA™' (comprising M and {state,}) is statistically
independent ofk’, and therefore defines a kay such that
Pr[sk’ = sk] = 1/2". Butin areal run, the keyk defined by

in parallel can be done by modifying protocel such that

a server; does not only choose a single contribution value
yi € {0,1}*, but a contribution vectoy; € ({O,l}’“)t”+1

and using this vector instead gfthroughout the protocol (op-
erations such as additions or encryptions are simply applied
component-wise). As a result, the servers compute the desired

t, + 1 session keys in form of a vectsk € ({0, 1}’“)“’“.

We could also have used a single session #ejyn conjunc-

tion with a pseudorandom functidi; } ;¢ o 1+ to derive the
coefficients of the polynomial ast,,, — ¢ (m) form €

[0, t], but this could not be proven secure against an adaptive
adversary.

For the same reason, one has to adjustich that a server
sends the contributiop; to another serverin a non-committing
way [11]. This can be done as follows. When servezceives
serveri’s public keyp;, it chooses a random vectey; over

{o, 1}’“)tb+1, encrypts it (component-wise) undey to get
c;j, and sends;; to serveri. Upon receivinge;;, server: de-
rivesr;; and sends;; < r;; +y; to serverj. Upon receiving
this message, servg¢rromputesy; «— z;; — ri;.

Modifying protocolw as outlined above yields our desired
forward-secure protocal®. It uses one execution of a consen-
sus protocol, and additionall$p? messages i communica-
tion rounds. A security proof for protocal® can be derived
by modifying our proof for protocab accordingly.

5. REFERENCES
[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,
and G. Tsudik, “Secure group communication using
robust contributory key agreement,” iBEE
Transaction on Parallel and Distributed Systernts
appear, 2004.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,
and G. Tsudik, “Exploring robustness in group key
agreement,” irfProc. 21st IEEE International
Conference on Distributed Computing Systems
pp.- 399-409, 2001.

G. Ateniese, M. Steiner, and G. Tsudik, “New

multiparty authentication services and key agreement

protocols,”Journal of Selected Areas in

Communications IEEFoI. 18, no. 4, pp. 1-13, 2000.

H. Attiya and J. WelchPistributed Computing:

Fundamentals, Simulations, and Advanced Topics

McGraw-Hill, 1998.

M. Bellare, D. Pointcheval, and P. Rogaway,

“Authenticated key exchange secure against dictionary

attacks,” inAdvances in Cryptology: Eurocrypt '00

2000.

C. Boyd, “On key agreement and conference key

agreement,” irfProc. 2nd Australasian Conference on

Information Security and Privacy (ACISP)997.

E. Bresson, O. Chevassut, D. Pointcheval, and

J. Quisquater, “Provably authenticated group

Diffie-Hellman key exchange,” iRroc. 8th ACM

Conference on Computer and Communication Secuirty

(CCs) 2001.

M. Burmester and Y. Desmedt, “A secure and efficient

conference key distribution system,” Advances in

Cryptology: Eurocrypt '941994.

[9] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup,

“Secure and efficient asynchronous broadcast protocols

(extended abstract),” iAdvances in Cryptology: Crypto

'01, 2001.

C. Cachin, K. Kursawe, and V. Shoup, “Random oracles

in Constantinople: Practical asynchronous Byzantine

agreement using cryptography,”iroc. 19th ACM

Symposium on Principles of Distributed Computing

(PODC), pp. 123-132, 2000.

R. Canetti, U. Feige, O. Goldreich, and M. Naor,

“Adaptively secure computation,” iRroc. 28th

Symposium on Theory of Computing (STOC)

pp. 639-648, 1996.

R. Canetti, “Universally composable security: A new

paradigm for cryptographic protocols,” Froc. 42nd

IEEE Symposium on Foundations of Computer Science

(FOCS) 2001.

[13] R. Canetti and T. Rabin, “Fast asynchronous Byzantine
agreement with optimal resilience,” Rroc. 25th

(3]

(4]

(5]

(6]

(7]

(8]

[10]

[11]

[12]

Annual ACM Symposium on Theory of Computing

(STOC) pp. 42-51, 1993.

T. D. Chandra and S. Toueg, “Unreliable failure

detectors for reliable distributed systemigurnal of the

ACM, vol. 46, no. 4, pp. 685-722, 1996.

G. Chockler, I. Keidar, and R. Vitenberg, “Group

communication specifications: A comprehensive study,”

ACM Computing Surveysol. 4, pp. 427-469,

December 2001.

O. Goldreich, S. Goldwasser, and S. Micali, “How to

construct random functionsJournal of the ACM

vol. 33, pp. 792-807, Oct. 1986.

[17] S. Goldwasser and S. Micali, “Probabilistic encryption,”

Journal of Computer and System Scienees 28,

pp. 270-299, 1984.

S. Goldwasser, S. Micali, and C. Rackoff, “The

knowledge complexity of interactive proof-systems,”

SIAM Journal of Computingrol. 18, pp. 186—208, Feb.

1989.

I. Ingemarasson, D. Tang, and C. Wong, “A conference

key distribution system EEE Transactions on

Information Theoryvol. 28, no. 5, pp. 714-720, 1982.

M. Just and S. Vaudenay, “Authenticated multi-party

key agreement,” ilddvances in Cryptology: Asiacrypt

'96, 1996.

[21] J. Katz and M. Yung, “Scalable protocols for
authenticated group key exchange,Advances in
Cryptology: Crypto '032003.

[22] J. Nielsen, “A threshold pseudorandom function
construction and its applicatoins,” &dvances in
Cryptology: Crypto '022002.

[23] B. Pfitzmann and M. Waidner, “A model for
asynchronous reactive systems and its application to
secure message transmission,Piroc. 22nd IEEE
Symposium on Security & Privagyp. 184—-200, 2001.

[24] O. Rodeh, K. P. Birman, and D. Dolev, “A study of
group rekeying,” Technical Report TR2000-1791,
Cornell University Computer Science, March 2000.

[25] A. Shamir, “How to share a secre€ommunications of
the ACM vol. 22, pp. 612—-613, Nov. 1979.

[26] M. Steiner, G. Tsudik, and M. Waidner, “Key agrement

in dynamic peer groupslEEE Transactions on Parallel

and Distributed Systemsol. 11, no. 8, pp. 769-780,

2000.

M. Steiner,Secure Group Key AgreemerRhD thesis,

Naturwissenschaftlich- Technische Fakuliler

Universitt des Saarlandes, Sadrbken, March 2002.

[28] W. Tzeng, “A practical and secure fault-tolerant
conference key agreement protocol,’Rroc. Third
International Workshop on Practice and Theory in
Public Key Cryptography (PKCR000.

(14]

(15]

(16]

(18]

(19]

(20]

[27]

