
Asynchronous Group Key Exchange with Failures

Christian Cachin Reto Strobl
IBM Research

Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

cca,rts@zurich.ibm.com

ABSTRACT
Group key exchange protocols allow a group of servers com-
municating over an asynchronous network of point-to-point
links to establish a common key, such that an adversary which
fully controls the network links (but not the group members)
cannot learn the key. Currently known group key exchange
protocols rely on the assumption that all group members par-
ticipate in the protocol and if a single server crashes, then no
server may terminate the protocol. In this paper, we propose
the first purely asynchronous group key exchange protocol that
tolerates a minority of servers to crash. Our solution uses a
constant number of rounds, which makes it suitable for use in
practice. Furthermore, we also investigate how to provide for-
ward secrecy with respect to an adversary that may break into
some servers and observe their internal state. We show that
any group key exchange protocol amongn servers that toler-
atestc > 0 servers to crash can only provide forward secrecy
if the adversary breaks into less thann− 2tc servers, and pro-
pose a group key exchange protocol that achieves this bound.

Keywords
Group Key Exchange, Group Communication, Provable Secu-
rity, Universal Composability

General Terms
Security, Reliability

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls;
C.2.4 [Distributed Systems]: Distributed applications

1. INTRODUCTION
Group Key Exchange (GKE) protocols allow a group of

servers communicating over a complete network of point-to-
point links to establish a commonsession keysuch that any-
one outside the group that can only observe the network traffic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04,July 25–28, 2004, St. Johns, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

cannot learn this key. Such a session key can later be used to
achieve cryptographic goals like for example multicast mes-
sage confidentiality, or multicast data integrity. Hence, GKE
protocols are essential for applications such as secure video-
or tele-conferencing, or other collaborative applications. To
model environments like the Internet, one assumes an asyn-
chronous network where the scheduling of messages is deter-
mined by an adversary, and where the servers do not have ac-
cess to a common clock.

The main goals of a GKE protocol are to ensure secrecy of
the session key, and to ensure that every member of the group
eventually terminates the protocol and computes the session
key. So far, GKE protocols have been designed to meet these
goals only as long as all members of the group follow the pro-
tocol specification [8, 26, 3, 7]. These solutions have the draw-
back that if only a single server crashes, then no member of
the group will terminate the protocol. This makes such proto-
cols specifically vulnerable to denial of service attacks, as the
execution time of the protocol is determined by the slowest
member of the group.

One way to solve this problem, explored by Amir et al. [2],
is to base GKE on a view-based group communication system
(GCS), which provides the abstraction of the “currently live
nodes” to all servers in a consistent way (Chockler et al. [15]
provide a survey of GCS). Since the GCS can detect crashes
among the servers also during the execution of a GKE proto-
col, the protocol can react accordingly; as GCSs rely on time-
outs to detect crashed participants, the approach leads to so-
lutions that are not purely asynchronous and subject to timing
attacks, however.

In this paper we propose the first GKE protocol in apurely
asynchronousmodel that terminates for every member as long
as at least a majority of the participants remain up, which is
optimal for this model. Our solution is conceptually simple
and efficient, which makes it suitable for practice. In particu-
lar, it consists of the following two stages. In the first stage, the
group members exchange keying information using two com-
munication rounds and a total ofO(n2) messages, wheren
denotes the size of the group. In the second stage, they ex-
ecute a consensus protocol to select the contributions from
the first stage from which the session key is computed. The
protocol may use randomized asynchronous consensus in the
fully asynchronous model or a consensus protocol in the asyn-
chronous model augmented with a failure detector [14]. In the
latter case, our approach yields a modular solution for GKE in
the same model as the GCS-based protocol mentioned above.

Comparing the efficiency of our construction with the most
efficient solution for GKE without failures [8] shows that the

price we pay for tolerating failures lies only in the consensus
protocol executed in the second stage. We also show that the
communication complexity of our construction is nearly op-
timal. In particular, we show that given an optimal solution
for consensus, our construction yields a solution for GKE that
uses onlyO(n2) messages andO(1) communication rounds
more on average than an optimal solution for GKE with fail-
ures.

Following the approach of Steiner [27], we analyze the se-
curity of our protocol in the framework for asynchronous re-
active systems proposed by Pfitzmann and Waidner [23]. In
particular, we first specify the target behavior of a GKE pro-
tocol in terms of an idealized service, and then show that our
protocol has the same input-output behavior as this idealized
service. This approach has the benefit of guaranteeing com-
posability, i.e., the security of any application relying on an
ideal service for GKE remains the same when our real proto-
col is used to implement the ideal service.

We first prove the security of our construction in the so-
calledweak corruptionmodel with failures, where the adver-
sary may schedule and observe the network, crash servers, but
not break into a server and observe its internal state. We show
that in this model, our protocol toleratestc < n/2 servers that
crash, which is optimal for this setting.

We then investigate how to provideforward secrecyin the
strong corruptionmodel, where the adversary is additionally
allowed to break into some servers and to observe their internal
state. Such break-ins should only compromise the security of
the session keys that are being generated during the attack, but
not the keys generated previously or afterwards. We first show
that if a GKE protocol toleratestc > 0 servers that crash, then
it can tolerate strictly less thann − 2tc break-ins. We then
show how to build a GKE protocol with this optimal resilience.
Our construction is also practical: It uses one execution of a
consensus protocol, and additionallyO(n2) messages in three
rounds.

Related Work. One can classify previous work on GKE along
two dimensions: The assumptions made on the communica-
tion links, and the framework used for proving security. Along
the first dimension, one can distinguish between GKE proto-
cols that assume an authentic network (as we do) [19, 8, 26,
24, 27], and GKE protocols that rely on a-priori distributed
public and private keys (as for example provided by a public-
key infrastructure) [20, 6, 3, 28]. A recent paper of Katz and
Yung [21] closes the bridge between these two approaches by
showing how any GKE protocol built for an authentic network
can be “compiled” into a GKE protocol for an insecure net-
work with a-priori distributed public and private keys. The
compilation only adds one additional communication round
andO(n2) messages.

With respect to the framework used for proving security, one
can identify two approaches. One approach, taken by Bresson
et al. [7] and by Katz and Yung [21], is to extend the frame-
work for modeling two-party key exchange proposed by Bel-
lare et al. [5] to then-party case. Another approach, taken by
Steiner [27] and by this work, is to use a general framework for
modeling asynchronous reactive systems — such as the one of
Pfitzmann and Waidner [23] or the one of Canetti [12] — and
define and prove security therein. The advantage of using such
a framework is that security is preserved under modular com-
position.

Some of the above-mentioned works [3, 26, 24, 7] also ad-

dress thedynamiccase of GKE, where servers may join or
leave the group and the session key must be updated when-
ever this occurs. Recently, Amir et al. [1] showed how the
dynamic join and leave protocols of Steiner et al. [26] can
be integrated with a view-based GCS to maintain a common
group key, which is later used to encrypt the communication
among the group. The group key has to be updated whenever
the underlying GCS detects a change in the group structure.
This is accomplished as outlined in [2], i.e., by running the
corresponding dynamic GKE protocol whenever servers join
or leave. In case that the GCS detectsnested leaves, i.e., de-
tects leaving serversduring the execution of a (dynamic) GKE
protocol, this protocol is aborted and a basic GKE protocol is
run from scratch among the remaining servers. Establishing a
key in case of nested leaves can also be seen as crash-tolerant
GKE. Note that iftc servers crash one by one, this approach
leads totc sequential executions of a basic GKE protocol. If
the basic GKE protocol of Steiner et al. [26] is used, this re-
sults inO(tcn) messages andO(tcn) rounds. Furthermore, as
GCSs rely on timeouts to detect crashes, this approach is not
purely asynchronous and subject to timing attacks.

Organization. In the next section, we introduce our system
model and give the formal definitions for GKE and consen-
sus. In Section 3, we present our construction for GKE with
failures in the weak corruption model, and elaborate on its op-
timality. In Section 4, we first introduce the strong corruption
model and adjust the definition of GKE to this model. We then
prove an upper bound on the number of break-ins one can tol-
erate for GKE with failures in the strong corruption model,
and finally show how to build a GKE protocol with this opti-
mal resilience.

2. PRELIMINARIES

2.1 The Framework
Our computational model is parameterized by a security pa-

rameterk; a functionε(k) is callednegligibleif for all c > 0
there exists ak0 such thatε(k) < 1

kc for all k > k0. Two
ensembles{vark}k ∈ N and {var ′k}k∈N of random vari-
ables (or probability distributions) are calledcomputationally
indistinguishableif for every algorithmD (the distinguisher)
that runs in probabilistic polynomial-time in its first input, the
following quantity is negligible: |Pr[D(1k, vark) = 1] −
|Pr[D(1k, var ′k) = 1]|. Throughout the paper, we abbrevi-
ate this by saying that “vark andvark′ are indistinguishable”,
and write “vark ≈ vark′ ”.

We will study our protocols in the framework for universally
composable asynchronous reactive systems of Pfitzmann and
Waidner [23]. We sketch a simplified version of the model.

Overview. We model a protocolπ as a collection ofn prob-
abilistic polynomial-time (ink) interactive Turing machines
(PPT ITM) Mπ

1 , . . . ,M
π
n called theservers, which communi-

cate over an authentic networkNET modeled as a PPT ITM.
We call the collection{NET,Mπ

1 , . . . ,M
π
n} a real systemfor

protocolπ in networkNET and denote it bySys real,π
n . We

model protocol-specific input and output of a serverMπ
i in

terms of messages that occur atMπ
i ’s input and output connec-

tions ini andouti , respectively. We call the setI of the input-
output connections of all servers theinterface1 of Sys real,π

n .

1For readers familiar with [23]: The interface corresponds to
thespecified ports.

We model an execution of a protocolπ in a networkNET
as a run of the real systemSys real,π

n augmented with two PPT
ITMs: a userH and an adversaryAreal. We call the collec-
tion {Sys real,π

n ,H,Areal} a real configurationfor π. Theuser
H represents a higher-level application that builds on top of
the servers. It may interact with the servers through the in-
terface (or a subset thereof), and may also communicate with
Areal at arbitrary points during the protocol.Areal may attack
the servers and schedule the network. We model attacks on
a serverMπ

i in terms of special messages that may occur at
a designated input connectioncor ini of Mπ

i (also part of the
interface). For now, we consider theweak corruption model,
where the only available attack of the adversary is tocrasha
server; if this happens, the server halts, i.e., does not partici-
pate in the protocol anymore. In Section 4, we will discuss the
strong corruption model, where also break-ins are allowed.

We describe the security properties ofπ in terms of a ser-
vicef that the corresponding real systemSys real,π

n should guar-
antee at its interface. Formally, we define the servicef in terms
of an ideal systemSys ideal,f

n . This ideal system has the same
interfaceI as the real system, but comprises only a single PPT
ITM called thetrusted hostTHf

n that serves the interface. It
also runs in a configuration with a userH and an adversary
Aideal (both modeled as PPT ITM), whereAideal may communi-
cate withTHf

n at arbitrary points during the protocol. This al-
lows to model the non-determinism in the ideal servicef which
may be controlled by the adversary.

The security of the protocolπ is then defined by requiring
that whatever can happen to an arbitrary userH in the real sys-
temSys real,π

n could also happen to the same user in the ideal
systemSys ideal,f

n , i.e., H cannot distinguish an ideal configu-
ration from a real one. In this case, we say thatSys real,π

n is
as secure asSys ideal,f

n . The standard argument how to prove
this notion of security is a constructive one. Specifically, one
shows how to construct for any userH and any adversaryAreal

an ideal adversaryAideal such thatH cannot distinguish the
corresponding real configuration from the ideal configuration.

The framework also allows modular composition of proto-
cols by describing a protocolπ that runs on top of an ideal ser-
vice g. We model this as ahybrid systemSys

hybrid,πg
n consist-

ing of the real systemSys real,π
n for π with an ideal sub-system

Sys ideal,g
n . In such a hybrid system, the serversMπ

1 , . . . ,M
π
n

have access toSys ideal,g
n as if they were the user of this sys-

tem. An important property of the framework is that if a real
systemSys real,ρ

n is as secure asSys ideal,g
n , then the real system

Sys
real,πρ
n (where the servers have access toSys real,ρ

n instead
of Sys ideal,g

n) is as secure asSys
hybrid,πg
n . Below, we add a few

more details. For a more elaborate treatment of the framework
we refer to [23].

Ideal and Real Configurations.On an abstract level, a real or
an ideal configuration can be seen as a set of PPT ITM called
machines, that are connected with each other through commu-
nication tapes [18] and may interact. For every communication
tape there is exactly one machine that can write to the tape, and
another machine that can read from the tape. We also call such
a communication tape aconnection. Figure 1 shows an exam-
ple of a configuration of the real and the ideal system for a
protocolπ and a servicef, respectively; it shows the connec-
tions (denoted by arrows) and the interface (the connections
that cross the dashed lines) of the configurations.

Executing a Configuration: The execution of a configuration
is called arun and is defined as follows.2 At the begin-
ning of the run, every machine is initialized with the
security parameterk. Then, the run proceeds insteps.
In the first step, a designated machine called themas-
ter scheduleris activated (for the configurations in this
paper, the master scheduler is the adversary). In every
step, the currently active machine may read its commu-
nication input tapes, perform some computation (possi-
bly involving random choices), and then write a mes-
sage to one of its communication output tapes. It then
eitherhaltsor terminatesthe activation. In either case,
the machine which can read from the tape that has been
written to is activated and proceeds with the next step.
If this machine has halted before, or no message was
written to a tape, then the master scheduler is activated
instead. This process continues until the master sched-
uler halts.

The Network: The networkNET provides authentic commu-
nication among the servers with scheduling determined
by the adversary. It connects to every serverMπ

i through
connectionsnet outi andnet ini , and connects to the
adversaryAreal through the connectionsto Advnet and
from Advnet , and works as follows. A serverMπ

i can
send a messagem toMπ

j by sending the message(m, j)
on the connectionnet outi to NET. If this happens,
NET stores(m, i, j) in a collectionM , and sends the
tuple (m, i, j) on the connectionto Advnet to the ad-
versary. Similarly,Areal can schedule a messagem to
be delivered fromMπ

i to Mπ
j by sending(m, i, j) on

the connectionfrom Advnet . If this happens, and if
(m, i, j) ∈ M , thenNET removes(m, i, j) from M ,
and outputs(m, i) to Mπ

j ; we also sayMπ
j receivesm

from Mπ
i . We say that the adversarydelivers all mes-

sages amongMπ
i andMπ

j , if at the end of the run, the
collectionM does not contain any tuples(m, i, j) or
(m, j, i) for any messagem.

The Interface: The interface of a real and an ideal system
comprises the connectionsini , outi , andcor ini for i ∈
[1, n]. The first two connections are used to invoke the
service(s) provided by the systems, and to receive service-
specific output from the systems, respectively. The con-
nectionscor ini for i ∈ [1, n] are used to model attacks
of the adversary on a serveri. These connections have
to be part of the interface because attacks on the servers
will affect the service that a system provides. For now,
we describe theweak corruptionmodel, where the ad-
versary may onlycrasha serveri, modeled as a message
(crash) sent on the connectioncor ini (see Section 4
for the strong corruption model, where also break-ins
are allowed). If this happens in a real configuration,
thenMπ

i outputs(crash) at cor outi and halts. If this
happens in an ideal configuration, thenTHf

n outputs
(crash, i) at to Advth .

Other Connections: The trusted hostTHf
n also connects to

Aideal through connectionsto Advth and from Advth .
These connections are used to model the non-determinism

2The model of execution described here is not as general as
the model described in the original work [23], but will be suf-
ficient for our purpose.

NET

realA

H

net_in

netto_Adv from_Advnet

I

Sys realn
,π

in out in out cor_in

cor_in

cor_out

net_innet_out

M πM π

net_out

1 1 n n 1

n

n
11 n

1 1 n n

cor_out idealA

to_Advth
from_Advth

Sys n
ideal,f

H

I

THn
f

in out in out cor_in

cor_in

1 1 n n 1

n

Figure 1: Configurations of the real and ideal systems for protocolπ and servicef, respectively.

in the ideal servicef, which may be controlled by the ad-
versary. Furthermore, every serverMπ

i connects toAreal

through connectionscor outi . These connections are
used to model effects of an attack, e.g., in Section 4 we
will use these connections for revealing server internal
data to the adversary as a result of a break-in.

We are now ready to state the definition for a real system
Sys real,π

n to beas secure asan ideal systemSys ideal,f
n . For this

purpose, letVreal,π

n,H,Areal(k) denote the probability distribution of
the view ofH (the internal state ofH and all messages thatH
sees) in a run ofSys real,π

n with security parameterk, config-
ured withH andAreal, and letVideal,f

n,H,Aideal(k) be defined analo-
gously.

Definition 1 We say thatSys real,π
n is as secure asSys ideal,f

n ,
if for all usersH, and all real adversariesAreal, there exists
an ideal adversaryAideal such that the distribution ensembles
{Vreal,π

n,H,Areal(k)}k∈N and{Videal,f

n,H,Aideal(k)}k∈N are computation-
ally indistinguishable.

Composition. The framework allows to describe protocols in
a modular way, i.e., a protocolπmay build on a sub-protocolρ.
Such a composition is modeled as a real systemSys

real,πρ
n

comprising the two systemsSys real,π
n andSys real,ρ

n , where the
servers ofSys real,π

n have access to the sub-systemSys real,ρ
n as

if they were the user of this system. To ensure that an attack
on a serverMπ

i also affects the sub-system, we assume that the
connectioncor outi of a serverMπ

i is linked to the connection
cor ini of serverMρ

i , i.e., if Mπ
i outputs(crash) on cor outi ,

thenMρ
i receives(crash) oncor ini . The sub-system may also

be an ideal system, in which case we call the entire system
hybrid. The following composition theoremis an important
property of the framework [23].

Theorem 1 (Composition Theorem [23]) If a hybrid system
Sys

hybrid,πg
n consisting of a real systemSys real,π

n with sub-system
Sys ideal,g

n is as secure as an ideal systemSys ideal,f
n , and if a

real systemSys real,ρ
n is as secure as the ideal systemSys ideal,g

n ,

then the real systemSys
real,πρ
n consisting ofSys real,π

n with sub-
systemSys real,ρ

n is at least as secure the ideal systemSys ideal,f
n .

Complexity Measures.We will measure the complexity of a
protocolπ in terms of itsexpected message complexityM(π),
and itsexpected round complexityR(π). The first measure
represents the bandwidth required by the protocol, and is de-
fined as follows. LetMH,Areal(π) denote an upper bound on
the expected number of messages that the servers send across

the network in a run ofSys real,π
n configured withH andAreal,

where the expectation is taken over the random choices of the
servers. Then,M(π) is the maximum ofMH,Areal(π) over all
usersH and adversariesAreal.

The round complexity measures the running time of the pro-
tocol. To define it, we assign round numbers to the messages
sent by servers across the network as follows. Note that a
server only sends a messagem across the network in response
to an input from the user or in response to a messagem′ from
the network. In the first case, we assign round number0 tom,
and in the second case, we assign round numberr + 1 to m,
wherer is the round number ofm′. LetRH,Areal(π) denote an
upper bound on the expected highest round number assigned
to a message in a run ofSys real,π

n configured withH andAreal,
where the expectation is taken over the random choices of the
servers. Then,R(π) is the maximum ofRH,Areal(π) over all
usersH and adversariesAreal.

2.2 The Ideal System for Group Key Ex-
change

Our ideal systemSys ideal,gke
n for group key exchange models

hown servers repeatedly establish a session key. In particular,
we say a serveri starts a session with tagID when an in-
put (start, ID) occurs atini (ID is an arbitrary bit string and
represents a unique identifier for the session). Similarly, we
say a serveri finishes a session with tagID when an output
(finish, ID , key) occurs atouti .

Our trusted hostTHgke
n models the traditional security prop-

erties that one expects from a GKE protocol. In particular, it
guarantees that the session key of every sessionID is gener-
ated independently at random; this property is sometimes also
called key freshness. Furthermore, it guaranteesmutual key
authentication, which means that every server computes the
same key in a sessionID . Definition 2 below captures these
ideas more formally. We do not yet addressforward secrecy,
as this becomes only an issue if the adversary can break into
a server and learn its internal state (we discuss this model in
Section 4).

Definition 2 The ideal systemSys ideal,gke
n for group key ex-

changeconsists of the trusted hostTHgke
n given by the follow-

ing transition rules:

Init: At system initialization, it setsS [i] ← ∅, F [i] ← ∅ for
i ∈ [1, n], κ[ID]← ⊥ for all ID .

Start: When a serveri starts a session with tagID , the trusted
host addsID to the setS [i], and outputs the message
(started, ID ,i) to the adversary.

Finish: When the adversary inputs(finish, ID ,i) whereID ∈
S [i]\F [i], thenTHgke

n first addsID to the setF [i]. Next,

if κ[ID] = ⊥, it choosesκ[ID] at random over{0, 1}k.
Finally, it outputs(deliver, ID , κ[ID]) at outi .

Recall that our goal is to build a GKE protocolπ that is not
only secure, but also guarantees to terminate for every server
even if up totc servers crash. This is captured by the following
definition of atc-resilient group key exchange protocol.

Definition 3 We call a protocolπ a tc-resilient group key ex-
change protocol, if Sys real,π

n is as secure asSys ideal,gke
n , and if

for every run of a configuration ofSys real,π
n where at mosttc

servers crash, the following holds: If all non-crashed servers
start a sessionID , then they all finish sessionID , provided
that the adversary delivers all messages among non-crashed
servers.

2.3 The Ideal System for Consensus
In a consensusprotocol, every server receives as input a bit

string of some lengthl(k), and produces as output some bit
string of lengthl(k). The goal is that all servers output the
same bit string, and that this bit string corresponds to the input
of at least one server.

Below we give the ideal system for consensus, which will
serve as building block in our construction for a GKE pro-
tocol. It models hown servers repeatedly and concurrently
agree on bit strings of some lengthl(k), where every consen-
sus instance is identified by a tagID . We model that a server
starts a consensus instance with tagID and inputv by a mes-
sage(propose, ID , v) that occurs atini . If this happens, we
also sayserveri proposesv for ID . Similarly, we model that
a server terminates a consensus with tagID and valuev′ by a
message(decide, ID , v′) that occurs atouti . In this case, we
sayserveri decidesv′ in ID .

Definition 4 The ideal systemSys ideal,cons
n for consensuscon-

sists of the trusted hostTHcons
n given by the following transi-

tion rules:

Init: At system initialization,THcons
n setsP [ID] ← ∅ and

δ[ID]← ⊥ for all ID .
Propose: If a serveri proposesvi for ID , THcons

n adds the
tuple(i, vi) to the setP [ID], and outputs(propose,ID ,
i, v) to the adversary.

Decide: WhenTHcons
n receives(decide, ID ,i,v) from the ad-

versary, it verifies (by consultingP [ID] andδ[ID]) that

• serveri has proposed some value forID
• at least one server proposedv for ID
• no other server has decided another value forID

If all checks succeed, it setsδ[ID] ← v, and outputs
(decide, ID , v) to the user atouti .

We will need a consensus protocolκ that is not only secure,
but also guarantees to terminate for every server even if up to
tc servers crash. The following definition captures this more
formally.

Definition 5 We call a protocolπ a tc-resilient consensuspro-
tocol, if Sys real,π

n is as secure asSys ideal,cons
n , and if for every

run of a configuration ofSys real,π
n where at mosttc servers

crash, the following holds: If all non-crashed servers propose
a value for someID , then they all decide some value forID ,
provided that the adversary delivers all messages among non-
crashed servers.

The best-known randomized asynchronoustc-resilient con-
sensus protocol can be derived from the protocol of Canetti
and Rabin [13], which actually solves the harder problem of
Byzantine agreement, where the servers may not only crash
but behave arbitrarily, and is unconditionally secure. A con-
sensus protocol can be derived from this as described in [4,
Section 14.3.2]. It uses an expected number ofO(n3) mes-
sages, proceeds in expectedO(1) rounds, and has resilience
tc < n/3. Assuming a trusted dealer that initializes the sys-
tem and working in a realistic model with a computationally
bounded adversary, there exist cryptographic protocols due to
Cachin et al. [10, 9] and to Nielsen [22], which useO(n2)
messages andO(1) rounds on average, and have optimal re-
siliencetc < n/2.

As mentioned in the introduction, it is also possible to im-
plement consensus in thefailure-detector model[14], where
some very efficient protocols exist. A failure detector is a local
module available to every server that periodically outputs a list
of servers that it suspects to have crashed and is usually based
on a timing assumption. We do not pursue this further and
focus on the fully asynchronous model, but note that in cer-
tain practical settings, such protocols might actually be more
efficient than the fully asynchronous protocols mentioned.

3. IMPLEMENTATION

3.1 Protocolω for GKE
We now describe our protocolω for GKE. It builds on a

sub-system for consensus, and on a semantically secure en-
cryption scheme [17](K, E ,D) for elements of{0, 1}k with
key-generation algorithmK, encryption algorithmE , and de-
cryption algorithmD. In the following, all computations are
done overF2k if not indicated otherwise.

When a serveri starts a session with tagID , it first chooses
a contributionyi randomly from{0, 1}k; the goal is to com-
pute the session key assk =

∑
j∈G yi for some setG of n−tc

servers. It then runsK to generate a pair of public key/private
key (pi, si), and sendspi to every other server.

When serveri receives such a public keypj from another
serverj, it sends the contribution valueyi encrypted under
pj to serverj. Once it has received the contribution values
yu1 , . . . , yun−tc

of n − tc servers like this, it computes the
differencesd1 ← yu1 − yu2 , d2 ← yu2 − yu3 , . . . , dn−tc ←
yun−tc

− yu1 , and proposes the sequences〈u1, . . . , un−tc〉
and〈d1, . . . , dn−tc〉 for ID |cs in the consensus sub-system,
wherecs is an arbitrary constant string. Note that the differ-
ence between any pair of contribution values may be leaked to
the adversary through this, but since no other information is
revealed, all contribution values remain secret.

When a serveri decides two sequences〈ū1, . . . , ūn−tc〉
and〈d̄1, . . . , d̄n−tc〉 in the consensus instanceID |cs, it com-
putes the session key as follows. It first chooses an arbitrary
indexm ∈ [1, n−tc] such that it has receivedyūm before (no-
tice that such anm exists, as it has received at leastn− tc val-
uesyj at this point, and it holds thattc < n/2). It then com-
putes the session keysk = (

∑n−tc−1
j=1 jd̄m+j)+(n−tc)yūm ,

whered̄l ≡ d̄l−(n−tc) for n − tc < l < 2(n − tc). The de-
tailed protocol is given in Algorithm 1. In this description, we
make the convention that̄dl ≡ d̄l−(n−tc) andul ≡ ul−(n−tc)

for n− tc < l < 2(n− tc).
It is easy to see that every server terminates. It is also easy

to verify that every server computes the same session keysk =

upon initialization:
yl ← ⊥ for l ∈ [1, n]; um ← ⊥ for m ∈ [1, n− tc];
pi ← ⊥, si ← ⊥, ctr ← 0

upon input (start, ID):
chooseyi uniformly at random from{0, 1}k
(pi, si)← K
send(enc key, ID , pi) to every server

upon receiving(enc key, ID , pj) from server j:
send(key part, ID , zij) to serverj, wherezij ← Epj (yi)

upon receiving(key part, ID , zji) from server j:
ctr ← ctr + 1; uctr ← j; yj ← Dsi(zji)
if ctr = n− tc then
dj ← yuj − yuj+1 for j ∈ [1, n− tc];
propose(〈u1, . . . , un−tc〉, 〈d1, . . . , dn−tc〉) for ID |cs

upon deciding(〈ū1, . . . , ūn−tc〉, 〈d̄1, . . . , d̄n−tc〉) in ID |cs:
choosem ∈ [1, n− tc] such thatyūm 6= ⊥
sk ←

∑n−tc−1
j=1 jd̄m+j + (n− tc)yūm

output(deliver, ID , sk)

Algorithm 1: Protocolω for serveri, implementing GKE with
crashes.

∑n−tc
j=1 yūj , regardless of whichm it chooses. Finally, since

all contribution values remain secret (as argued above), the
same holds for the session key.

This technique is a fault-tolerant abstraction of the GKE
protocol of Burmester and Desmedt [8]. In their protocol the
public-key encryption scheme is instantiated with the ElGa-
mal scheme. The servers chooseyi in the same way, and then
jointly compute the valuesgdj = gyjyj−1−yjyj+1 for j ∈
[1, n] (here,g is a generator of a multiplicative group of prime
orderq). The session key is then derived from these values
(and one contribution valueyj) assk = gy1y2+y2y3+···+yny1 .
We prove the following theorem in the next section.

Theorem 2 If κ is a tc-resilient consensus protocol, then the
real systemSys real,ωκ

n consisting ofSys real,ω
n with sub-system

Sys real,κ
n is a tc-resilient group key exchange protocol.

Further Improvements. For repeatedly generating session
keys, there is a faster way than running protocolω for every
session. The idea is to use a familyΨk = {ψi}i∈{0,1}k of
pseudorandom functions[16], where a functionψi maps bit
strings used for the session tagsID to bit strings of length
k. Pseudorandom function families have the property that one
cannot distinguishψi(ID) from a value randomly chosen from
{0, 1}k without knowing the indexi. This allows the servers
to repeatedly generate session keys by running the protocolω
only once to get a secret indexs. The session key for a ses-
sion with tagID can then simply be computed asψs(ID). We
remark that this construction is only secure in the weak cor-
ruption model, where the adversary cannot break into a server
and learn the indexs.

3.2 Security Analysis
To establish Theorem 2 and prove the security of Proto-

col ω, we have to show that for atc-resilient consensus pro-
tocolκ, Sys real,ωκ

n is as secure as the ideal systemSys ideal,gke
n ,

and thatSys real,ωκ
n is live, i.e., that if all serversU that do not

crash during a run ofSys real,ωκ
n start a sessionID , then all

serversU finish sessionID , provided that at mosttc servers
crash and all messages among non-crashed servers are deliv-
ered.

To show liveness ofSys real,ωκ
n , we argue as follows. By the

assumption that at mosttc servers crash, it follows that every
server inU receivesn − tc contribution valuesyj and pro-
poses some values forID |cs. By the assumption thatκ is a
tc-resilient consensus protocol, every server therefore also de-
cides some sequences〈ū1, . . . , ūn−tc〉 and 〈d̄1, . . . , d̄n−tc〉
for ID |cs. By construction, every server knows at that step
n − tc different values{yj}. By tc < n/2 it follows that for
every server there exists at least one indexm ∈ [1, n−tc] such
that it knows the contribution valueyūm . Hence, all servers in
U will be able to compute the key and finish the sessionID .

To show security ofSys real,ωκ
n , we consider the hybrid sys-

temSyshybrid,ωcons
n consisting of the real systemSys real,ω

n with
the ideal sub-systemSys ideal,cons

n for consensus. Note that it
suffices to show thatSyshybrid,ωcons

n is as secure asSys ideal,gke
n ,

since the security ofSys real,ωκ
n then follows by the composi-

tion theorem and the assumption thatκ is a secure consensus
protocol.

We now show thatSyshybrid,ωcons
n is as secure asSys ideal,gke

n ,
using a constructive argument. In particular, we provide for
every userH, and every adversaryAhybrid against the hybrid
systemSyshybrid,ωcons

n the construction of an adversaryAideal

against the ideal system such that the views ofH in a run of the
ideal and hybrid system configured withH, Aideal, andAhybrid,
respectively, are computationally indistinguishable.

Recall that the view ofH in a run of the hybrid system also
comprises messages that it exchanges withAhybrid. In order to
ensure that these messages have the same distribution as the
messages thatH exchanges withAideal in a run of the ideal
system, we constructAideal using a technique calledblack-box
simulation. Specifically, we assume that we are given the hy-
brid adversaryAhybrid as a black-box, and then constructAideal

out of a simulatorSIM and the given black-boxAhybrid. The
idea is that the simulator feeds the black boxAhybrid with a
simulated view of a run of the hybrid system, whereSIM must
compute this view based on the information it receives from
THgke

n . If the simulated view is indistinguishable from what
the hybrid adversary would see in a corresponding hybrid run,
we can use the outputs of the black-boxAhybrid to simulate the
messages exchanged withH. The construction is illustrated in
Figure 2 (w.l.o.g. we only show how to buildAideal for a con-
figuration whereH interacts with the ideal system through the
entire interface).

from_Advth
to_Advth

Aideal

Ahybrid

from_Advth
cons

to_Adv th
cons

H

I

TH

cor_in cor_in

n
gke

to_Adv
from_Advnet

cor_out

cor_out

net

SIM

in out in out1 1
1

n n
n

1

n

Figure 2: The Construction of Aideal with Black Box Access
to Ahybrid

The Simulator. As usual in black-box simulations, we con-
struct the simulatorSIM as the combination of a simulated

userH̄ and a simulated hybrid system̄Sys
hybrid,ωcons
n . H̄ inter-

acts withTHgke
n throughto Advth andfrom Advth , and with

the simulated hybrid system̄Sys
hybrid,ωcons
n through its entire

interface.S̄ys
hybrid,ωcons
n interacts withAhybrid through connec-

tions to Advnet , from Advnet , to AdvTHcons
n
, from AdvTHcons

n
,

andcor outj for j ∈ [1, n]. H̄ provides the same inputs to

S̄ys
hybrid,ωcons
n asH provides toTHgke

n and, moreover, sched-
ulesTHgke

n such that whenever a serverM̄ωcons
i outputs a ses-

sion key forID , thenTHgke
n also outputs a session key forID

atouti . More precisely,̄H works as follows.

upon receiving(started, ID , i) from THgke
n :

send(start, ID) to M̄ωcons
i

upon receiving(deliver, ID , k) from M̄ωcons
i :

send(finish, ID , i) to THgke
n

upon receiving(crash, i) from THgke
n :

send(crash) to M̄ωcons
i

Comparing the Views. To show that for everyH andAhybrid,
the view ofH in a run of the hybrid systemSyshybrid,ωcons

n con-
figured withH andAhybrid is indistinguishable from the view
of H in a run of the ideal systemSys ideal,gke

n configured with
the adversaryAideal, it suffices to show that thejoint view of H
andAhybrid in a hybrid and an ideal run, respectively, are indis-
tinguishable (note that by construction ofAideal, this joint view
is well-defined in the ideal run).

We argue inductively over the steps of the runs. The base
case, i.e., indistinguishability of the initial states, follows by
construction. It remains to show that if the joint view ofH and
Ahybrid in a hybrid run up to a stepl > 0 is indistinguishable
from their view in an ideal run up to stepl (induction hypoth-
esis), then the same holds for stepl + 1 (inductive step).

First note that the joint view ofH andAhybrid only changes
if one of them either sends a message, or receives a message.
In the first case, the inductive step follows directly by the in-
duction hypothesis. In the second case, we argue as follows.

By the protocol specification, the messages received byH
andAhybrid for different sessions are statistically independent
of each other. Hence, it suffices to show that the probability
distributions of the received messages associated with asingle
session in an ideal and a hybrid run, respectively, are indis-
tinguishable. We first investigate the distribution in an ideal
run. Let yi, pi, si, andzij for j ∈ [1, n] denote the values
computed byM̄ωcons

i during the run. Then, the values con-
tained in messages received byH andAhybrid up to and includ-
ing stepl + 1 of the run are a subset of{〈ū1, . . . , ūn−tc〉} ∪
{sk , pi, zij | i, j ∈ [1, n]}, and a subset of any linear com-
bination of the valuesy1 − y2, y2 − y3, . . . , yn − y1. We
denote these values by the random variableVideal

k . Notice that
we may ignore the index vectors〈u1, . . . , un−tc〉 proposed by
the servers, as they are determined by the scheduling ofAhybrid,
and thus, identically distributed in an ideal and a hybrid run.
The distribution ofVideal

k is as follows:

yi
R← {0, 1}k, (pi, si)← K, zij ← Epj (yi) for i, j ∈ [1, n];

〈ū1, . . . , ūn−tc〉
Ahybrid

← [1, n]n−tc ; sk
R← {0, 1}k

Videal
k =

(
p1, . . . , pn, z11, . . . , z1n, . . . zn1, . . . , znn, sk ,

y1 − y2, y2 − y3, . . . , yn − y1, ū1, . . . , ūn−tc

)
In a hybrid run,H andAhybrid receive the same messages,

but with a different distribution. In particular, the session key
is not drawn at random from{0, 1}k but is the sum of the

n − tc valuesyūi . Specifically, the distributionVhybrid
k of the

received messages in a hybrid run is as follows:

yi
R← {0, 1}k, (pi, si)← K, zij ← Epj (yi) for i, j ∈ [1, n];

〈ū1, . . . , ūn−tc〉
Ahybrid

← [1, n]n−tc ; sk ←
n−tc∑
l=1

yūl

Vhybrid
k =

(
p1, . . . , pn, z11, . . . , z1n, . . . zn1, . . . , znn, sk ,

y1 − y2, y2 − y3, . . . , yn − y1, ū1, . . . , ūn−tc

)
Let Uk denote the uniform distribution over{0, 1}k. To

show thatVideal
k ≈ Vhybrid

k , it is sufficient to show that from
Videal

k one can compute values̄y1, . . . , ȳn such that the follow-
ing holds:

ȳi − ȳ(i mod n)+1 = yi − y(i mod n)+1 for i ∈ [1, n] (1)

sk = ȳū1 + · · ·+ ȳūn−tc
(2)

ȳi ≈ Uk for i ∈ [1, n] (3)

Epj (ȳi) ≈ Epj (yi) for i, j ∈ [1, n] (4)

The valuesȳi can be computed as follows. Fori ∈ [1, n],
let δi denote the valueyi − y(i mod n)+1 from Videal

k , and let
ūn−tc+1 ≡ ū1. Furthermore, fori ∈ [1, n− tc], let δ̄i denote
the valueyūi − yūi+1 . Note that every such valuēδi can be
computed as follows:

δ̄i =

{
δūi + δūi+1 + · · ·+ δūi+1−1 if ūi < ūi+1,

−δūi+1 − δūi+1+1 − · · · − δūi−1 otherwise.

One can now computēyū1 as(sk −
∑n−tc

m=1 mδ̄m)(n− tc)−1.
The remaining values̄yi for i ∈ [1, n]\{ū1} can be computed
as follows:

ȳi =

{
ȳū1 + δi + δi+1 + · · ·+ δū1−1 if ū1 > i,

ȳū1 − δū1 − δū1+1 − · · · − δi−1 if ū1 < i.

It is easy to verify that the computed valuesȳi satisfy (1) and
(2). Furthermore, (3) holds becauseyi for i ∈ [1, n] andsk
are uniformly distributed over{0, 1}k. Finally, (4) holds by
the semantic security of the encryption scheme used.

3.3 Efficiency Analysis
We now analyze the expected message and round complex-

ities of our construction for generating a single session key. In
the first paragraph, we give the complexities for two concrete
instantiations of consensus protocols found in the literature. In
the second paragraph we show that our construction is almost
optimal in the sense that given an optimal consensus protocol,
our construction yields an almost optimal GKE protocol.

Concrete Efficiency.Letωκ denote our GKE protocolω with
sub-protocolκ for consensus. Recall thatR(π) and M(π)
denote the expected round and message complexities, respec-
tively, of a protocolπ (cf. Section 2.1). It is easy to see that
R(ωκ) = 2 + R(κ) andM(ωκ) = 2n2 + M(κ). The best
known solution (in terms of round complexity) for GKE with-
out failures [8] proceeds in two rounds and uses2n+n2 mes-
sages; hence, the price we pay for tolerating crashes is essen-
tially a single consensus execution.

Below we give the asymptotic complexities ofωκ for some
known protocolsκ for consensus. Specifically, we consider
the consensus protocolκCR93 of Canetti and Rabin [13] and
the consensus protocolκCKS00 of Cachin et al. [10], simplified
according to the remark in Section 2.3.

κ M(ωκ) R(ωκ) resilience dealer

κCR93 O(n3) O(1) tc < n/3 no
κCKS00 O(n2) O(1) tc < n/2 yes

Optimality of the Construction. We now investigate the op-
timality of our protocol in terms of the round and message
complexities. In particular, letωopt denote an optimal proto-
col for GKE and letκopt denote an optimal protocol for con-
sensus — optimal either in round complexity or in message
complexity, respectively, depending on the context. Letωκopt

denote our GKE protocolω with sub-protocolκopt for con-
sensus. We want to know how close the efficiency ofωκopt is
to the efficiency ofωopt . We show that

R(ωκopt) ≤ R(ωopt) + 8 (5)

M(ωκopt) ≤ M(ωopt) + 8n2 (6)

We argue as follows. By construction of Protocolω, we have
R(ωκopt) = 2 + R(κopt) andM(ωκopt) = 2n2 + M(κopt).
Substituting this in (5) and (6) gives

R(κopt) ≤ R(ωopt) + 6 (7)

M(κopt) ≤ M(ωopt) + 6n2. (8)

Hence, it suffices to show that an optimal consensus protocol
κopt uses at most 6 rounds and6n2 messages more on aver-
age than an optimal solutionωopt for GKE. We show this by
a constructive argument. Specifically, we show how to build
from any given GKE protocolω′ a consensus protocolκω′ that
uses an average of 6 communication rounds and6n2 messages
more than a single execution ofω′. By the assumption that
κopt is round-optimal, it follows thatR(κopt) ≤ R(κω′) =

6+R(ω′) and by the assumption thatκopt is message-optimal,
it follows M(κopt) ≤ M(κω′) = 6n2 + M(ω′), respectively.
Because this holds foranyGKE protocolω′, it also holds for
ωopt , which implies (7) and (8).

We derive the protocolκω′ from the protocolκπcoin pro-
posed by Cachin et al. [10], which is based on a protocolπcoin

for a common coin; such a common coin protocol provides
every server with a random bit that is unpredictable by the ad-
versary. The consensus protocolκπcoin invokesπcoin twice on
average, proceeds in expected6+2 ·R(πcoin) rounds, and has
an expected message complexity of6n2 + 2 ·M(πcoin).

The main idea behind our protocolκω′ is to modifyκπcoin

as follows. At the beginning, the servers execute GKE pro-
tocol ω′ once to get a secret keysk . Then, they follow the
original protocolκπcoin , except that instead of invokingπcoin

to get thei’th random bitci, they use thei’th bit of sk (if more
thank random bits are used, the servers can also usesk as the
seed to a pseudorandom generator, and derive the random bits
ci thereof).

It remains to show that ifκπcoin is a tc-resilient consensus
protocol, then the same holds forκω′ . The result will follow
from the composition theorem if we can show that the com-
mon coins derived fromω′ are unpredictable by the adversary
(as the same holds for the common coins derived fromπcoin).
But this follows directly from the definition ofTHgke

n , which
guarantees that the adversary cannot predict a single bit of the
session key, even after seeing all other bits of the key.

4. THE STRONG CORRUPTION MODEL
In this section, we investigate GKE in the presence of a

stronger adversary that may also break into the servers and

observe their internal state. We first formally describe such
attacks and the desired security requirements of GKE in this
model. We then prove an upper bound on the number of break-
ins that a GKE protocol can tolerate, and describe an imple-
mentation of a protocol with optimal resilience.

4.1 Modeling Break-ins and Forward Se-
cure GKE

We model a break-in as a message(break in, s) sent on a
connectioncor ini , wheres represents an arbitrary bit string.
If in a real systemSys real,π

n for a protocolπ, a serverMπ
i

receives such a message, it computes a variablestateπ
i and

sends(done, stateπ
i) on cor outi to Areal. When this hap-

pens we also say the adversarybreaks intoMπ
i . The variable

stateπ
i comprises all internal data that has not explicitly been

erased, including the strings received with thebreak in mes-
sage. This ensures that if the protocolπ is built on a sub-
protocolρ, then the adversary learns the internal state ofMπ

i

andMρ
i , asMρ

i receives (by the system model) oncor ini ev-
ery message(break in, stateπ

i) thatMπ
i outputs oncor outi ,

and hence, outputs the internal state ofMπ
i andMρ

i to the ad-
versary.

The desired security requirement of a GKE protocol in this
model is calledforward secrecy, and means that breaking into
a server reveals only the session keys being currently com-
puted by this server, but nothing about previously computed
session keys. Here, we define a threshold version of forward
secrecy, i.e., we require a GKE protocol to be forward-secure
only as long as the adversary does not break into more than
tb different servers. Formally, we capture this notion of se-
curity in terms of an ideal systemSys ideal,fs gke

n,tb
containing the

trusted hostTHfs gke
n,tb

. This trusted host works exactly asTHgke
n

(cf., Definition 2), except for maintaining an additional setB
containing the indices of broken-into servers (initialized to∅),
and for the following additional transition rule:

Break-in: When the adversary breaks into a serveri, THfs gke
n,tb

addsi to the setB, and chooses for everyID ∈ S[i] the
keyκ[ID] at random over{0, 1}k, if this key is not de-
fined yet. It then computes a setK of keys to be revealed
as follows:

K ←

{⋃
ID∈S[i]∪F [i](ID , κ[ID]) if |B| > tb,⋃
ID∈S[i]\F [i](ID , κ[ID]) otherwise.

Finally, it outputs(keys,K) to the adversary.

Note that the adversary isadaptivein the sense that she may
break into a server atany point during a run, and not only at
the beginning of the computation. The definition of a secure
GKE protocol in this model is as follows.

Definition 6 We call a protocolπ a (tc, tb)-resilient group key
exchange protocol, ifSys real,π

n is as secure asSys ideal,fs gke
n,tb

,

and if for every run of a configuration ofSys real,π
n where at

mosttc servers crash, the following holds: If all non-crashed
servers start a sessionID , then they all finishID , provided
that the adversary delivers all messages among non-crashed
servers.

4.2 An Upper Bound on the Number of
Break-ins

Given a GKE protocol that toleratestc servers that crash,
we now investigate for how many break-ins one can prove this

protocol as secure asTHfs gke
n,tb

. For proving that a protocol
π is as secure as an ideal servicef, one has to show how to
construct for every userH and every adversaryAreal against
Sys real,π

n an adversaryAideal againstSys ideal,f
n , such thatH can-

not distinguish the corresponding ideal configuration from the
real one. The difficulty in constructingAideal is to ensure that
it communicates withH in the same way asAreal does. Cur-
rently, the only known way how this can be done is by con-
structingAideal using the technique ofblack-box simulationas
in Section 3.2.

We now argue that fortc > 0, no protocolω̄ can be proven
to be a(tc, tb)-resilient GKE protocol using black-box simula-
tion if tb ≥ n−2tc. In other words, we show thatn−2tc is an
upper bound on the number of break-ins that one can tolerate
when building forward-secure GKE.

To see this, assume toward a contradiction that there exists a
(tc, tb)-resilient GKE protocolγ for tc > 0 andtb = n− 2tc.
We show how to build for a particular userH a real adversary
Areal againstγ such that foranyideal adversaryAideal based on
black-box access toAreal, the following holds: The joint view
of H andAreal in a run of the real configuration is efficiently
distinguishable from the joint view ofH andAreal in a run of
the ideal configuration. This contradicts the initial assumption
thatγ is a(tc, tb)-resilient GKE protocol.

We constructAreal for a user that invokes a single session
ID as follows. The adversaryAreal runsγ in two stages: In the
first stage, it chooses an arbitrary setM of n− tc servers, and
runs the protocol in an arbitrary way, but ensuring that:

• all messages sent among servers inM are delivered,
• no message is delivered which is either sent by or sent

to a server not inM , and
• no server is crashed or broken into.

When every server inM has finished the sessionID , the first
stage ends. In the second stage,Areal crashestc arbitrary servers
in M and breaks into the remainingn − 2tc servers ofM . It
then continues to run the protocol in an arbitrary way, but en-
suring that no server is crashed or broken into, and that all
messages sent among non-crashed servers are delivered. Once
every non-crashed server has finished the sessionID , the sec-
ond stage ends, and the adversary halts. Notice that by the
assumption thatγ is a (tc, tb)-resilient GKE protocol, both
stages terminate, and moreover, every server that finishes ses-
sionID outputs the same key.

Let sk denote this key, letstatej denote the internal state
of a serverMγ

j at the end of stage one, and letM denote the
set of all messages sent (but not yet delivered) to servers not
in M during the first stage. The fact that the servers inM do
not interact during the first stage with a server that is not inM
implies that the session keysk is efficiently computable from
M and the states{statej} of all servers inM ; otherwise, a
server not inM could not computesk and output the key at
the and of the second stage.

Suppose now we want to build an adversaryAideal, i.e., we
want to build a simulator that provides a black-box adver-
sary Areal the (simulated) information seen in a real run of
γ, based on the information received byTHfs gke

n,tb
. By defi-

nition of THfs gke
n,tb

andAreal, the simulator will not receive any
information on the session keysk ′ that the trusted host out-
puts to the user. Hence, the information that the simulator
feeds toAreal (comprisingM and {statej}) is statistically
independent ofsk ′, and therefore defines a keysk such that
Pr[sk ′ = sk] = 1/2k. But in a real run, the keysk defined by

this information is always equal to the keysk ′ that the user re-
ceives. We conclude that the joint views ofH andAreal in a run
of an ideal and a real configuration, respectively, are efficiently
distinguishable.

4.3 An Implementation with Optimal Re-
silience

We now describe a(tc, tb)-resilient GKE protocolωfs de-
rived fromω. We first explain whyω is not forward-secure
and then describe the necessary modifications to deriveωfs.

In protocolω, a serveri continues to participate in the pro-
tocol after outputting the session keysk . Specifically, it still
responds to arrivingenc key messages by sending back its en-
crypted contributionyi. This is necessary to ensure that every
non-crashed server eventually computes the session key. As a
result, an adversary that breaks into a serveri after this server
has outputsk has access to the server’s contributionyi and
may compute the keysk . This contradicts forward secrecy,
which requires that the adversary must not learn any informa-
tion onsk when breaking intotb servers after they have output
the keysk .

To ensure forward secrecy, a server could simplyeraseall
local data after outputting the key. However, the resulting pro-
tocol would not be live anymore, as the slowest servers might
never receive enough contributions from other servers to com-
pute the key. To ensure forward secrecy without compromis-
ing liveness, we extendω as follows. In addition to computing
the session keysk , every serveri also computes asharesi of
sk such that any set of at mosttb shares do not reveal any in-
formation onsk , whereas any set oftb + 1 shares allows to
efficiently computesk . Once a server has computed its share
and the session key, it outputs the key, and erases all local data
except for the share (this ensures forward secrecy). It then
continues to send its share to every server that requests it. This
ensures that every server eventually receives enough informa-
tion to compute the session key, and hence, ensures liveness.

To compute the shares ofsk , we use polynomial secret shar-
ing as proposed by Shamir [25], where the sharessi of a se-
cret sk are computed by first choosing a random polynomial
f(·) of degreetb with f(0) = sk , and then computing every
share assi = f(i). This technique requires that every serveri
derives its sharesi of the session keysk using the same poly-
nomialf(·). This can be ensured by generatingtb + 1 session
keyssk0, . . . , sk tb in parallel, and then defining the polyno-
mial asf(x) = sk0 +

∑tb
m=1 skmx

m (the session keysk is
then defined assk = sk0). Generatingtb + 1 session keys
in parallel can be done by modifying protocolω such that
a serveri does not only choose a single contribution value
yi ∈ {0, 1}k, but a contribution vectoryi ∈ ({0, 1}k)

tb+1

and using this vector instead ofyi throughout the protocol (op-
erations such as additions or encryptions are simply applied
component-wise). As a result, the servers compute the desired
tb + 1 session keys in form of a vectorsk ∈ ({0, 1}k)

tb+1
.

We could also have used a single session keysk in conjunc-
tion with a pseudorandom function{φi}i∈{0,1}k to derive the
coefficients of the polynomial asskm ← φsk (m) for m ∈
[0, tb], but this could not be proven secure against an adaptive
adversary.

For the same reason, one has to adjustω such that a serveri
sends the contributionyi to another serverj in a non-committing
way [11]. This can be done as follows. When serverj receives
serveri’s public keypi, it chooses a random vectorrij over

({0, 1}k)
tb+1

, encrypts it (component-wise) underpi to get
cij , and sendscij to serveri. Upon receivingcij , serveri de-
rivesrij and sendszij ← rij +yi to serverj. Upon receiving
this message, serverj computesyi ← zij − rij .

Modifying protocolω as outlined above yields our desired
forward-secure protocolωfs. It uses one execution of a consen-
sus protocol, and additionally,3n2 messages in3 communica-
tion rounds. A security proof for protocolωfs can be derived
by modifying our proof for protocolω accordingly.

5. REFERENCES
[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,

and G. Tsudik, “Secure group communication using
robust contributory key agreement,” inIEEE
Transaction on Parallel and Distributed Systems, to
appear, 2004.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton,
and G. Tsudik, “Exploring robustness in group key
agreement,” inProc. 21st IEEE International
Conference on Distributed Computing Systems,
pp. 399–409, 2001.

[3] G. Ateniese, M. Steiner, and G. Tsudik, “New
multiparty authentication services and key agreement
protocols,”Journal of Selected Areas in
Communications IEEE, vol. 18, no. 4, pp. 1–13, 2000.

[4] H. Attiya and J. Welch,Distributed Computing:
Fundamentals, Simulations, and Advanced Topics.
McGraw-Hill, 1998.

[5] M. Bellare, D. Pointcheval, and P. Rogaway,
“Authenticated key exchange secure against dictionary
attacks,” inAdvances in Cryptology: Eurocrypt ’00,
2000.

[6] C. Boyd, “On key agreement and conference key
agreement,” inProc. 2nd Australasian Conference on
Information Security and Privacy (ACISP), 1997.

[7] E. Bresson, O. Chevassut, D. Pointcheval, and
J. Quisquater, “Provably authenticated group
Diffie-Hellman key exchange,” inProc. 8th ACM
Conference on Computer and Communication Secuirty
(CCS), 2001.

[8] M. Burmester and Y. Desmedt, “A secure and efficient
conference key distribution system,” inAdvances in
Cryptology: Eurocrypt ’94, 1994.

[9] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup,
“Secure and efficient asynchronous broadcast protocols
(extended abstract),” inAdvances in Cryptology: Crypto
’01, 2001.

[10] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles
in Constantinople: Practical asynchronous Byzantine
agreement using cryptography,” inProc. 19th ACM
Symposium on Principles of Distributed Computing
(PODC), pp. 123–132, 2000.

[11] R. Canetti, U. Feige, O. Goldreich, and M. Naor,
“Adaptively secure computation,” inProc. 28th
Symposium on Theory of Computing (STOC),
pp. 639–648, 1996.

[12] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” inProc. 42nd
IEEE Symposium on Foundations of Computer Science
(FOCS), 2001.

[13] R. Canetti and T. Rabin, “Fast asynchronous Byzantine
agreement with optimal resilience,” inProc. 25th

Annual ACM Symposium on Theory of Computing
(STOC), pp. 42–51, 1993.

[14] T. D. Chandra and S. Toueg, “Unreliable failure
detectors for reliable distributed systems,”Journal of the
ACM, vol. 46, no. 4, pp. 685–722, 1996.

[15] G. Chockler, I. Keidar, and R. Vitenberg, “Group
communication specifications: A comprehensive study,”
ACM Computing Surveys, vol. 4, pp. 427–469,
December 2001.

[16] O. Goldreich, S. Goldwasser, and S. Micali, “How to
construct random functions,”Journal of the ACM,
vol. 33, pp. 792–807, Oct. 1986.

[17] S. Goldwasser and S. Micali, “Probabilistic encryption,”
Journal of Computer and System Sciences, vol. 28,
pp. 270–299, 1984.

[18] S. Goldwasser, S. Micali, and C. Rackoff, “The
knowledge complexity of interactive proof-systems,”
SIAM Journal of Computing, vol. 18, pp. 186–208, Feb.
1989.

[19] I. Ingemarasson, D. Tang, and C. Wong, “A conference
key distribution system,”IEEE Transactions on
Information Theory, vol. 28, no. 5, pp. 714–720, 1982.

[20] M. Just and S. Vaudenay, “Authenticated multi-party
key agreement,” inAdvances in Cryptology: Asiacrypt
’96, 1996.

[21] J. Katz and M. Yung, “Scalable protocols for
authenticated group key exchange,” inAdvances in
Cryptology: Crypto ’03, 2003.

[22] J. Nielsen, “A threshold pseudorandom function
construction and its applicatoins,” inAdvances in
Cryptology: Crypto ’02, 2002.

[23] B. Pfitzmann and M. Waidner, “A model for
asynchronous reactive systems and its application to
secure message transmission,” inProc. 22nd IEEE
Symposium on Security & Privacy, pp. 184–200, 2001.

[24] O. Rodeh, K. P. Birman, and D. Dolev, “A study of
group rekeying,” Technical Report TR2000-1791,
Cornell University Computer Science, March 2000.

[25] A. Shamir, “How to share a secret,”Communications of
the ACM, vol. 22, pp. 612–613, Nov. 1979.

[26] M. Steiner, G. Tsudik, and M. Waidner, “Key agrement
in dynamic peer groups,”IEEE Transactions on Parallel
and Distributed Systems, vol. 11, no. 8, pp. 769–780,
2000.

[27] M. Steiner,Secure Group Key Agreement. PhD thesis,
Naturwissenschaftlich- Technische Fakultät der
Universiẗat des Saarlandes, Saarbrücken, March 2002.

[28] W. Tzeng, “A practical and secure fault-tolerant
conference key agreement protocol,” inProc. Third
International Workshop on Practice and Theory in
Public Key Cryptography (PKC), 2000.

