
Strict Access Control in a Key-Management Server
Christian Cachin Anil Kurmus Marko Vukolić

IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland
{cca,kur,mvu}@zurich.ibm.com

3 June 2009

1 Introduction

Key management is concerned with operations to manage the lifecycle of cryptographic keys, for creat-
ing, storing, distributing, deploying, and deleting keys. An important aspect is to manage the attributes
of keys that govern their usage and their relation to other keys. Multiple efforts are currently underway
to build and standardize key-management systems accessible over open networks: the W3C XML Key
Management Specification (XKMS) [18], the IEEE P1619.3 Key Management Project [12], the OASIS
Key Management Interoperability Protocol (KMIP) standardization effort [14], and the Sun Crypto Key
Management System [16] are some of the most prominent ones. Cover [9] gives an up-to-date summary
of the current developments.

Many proprietary key-management systems are on the market, including HP StorageWorks Secure
Key Manager, IBM Distributed Key Management System (DKMS), IBM Tivoli Key Lifecycle Man-
ager (TKLM), NetApp Lifetime Key Management, and Thales/nCipher keyAuthority. The need for
enterprise-wide key management systems has been recognized widely [4], and NIST, an agency of the
US Government, has issued a general recommendation for key management [3].

Such a key-management server is generally accessed by multiple clients, who perform operations
on keys and other cryptographic objects maintained by the server. The objects may include symmetric
keys, public keys, private keys, certificates, and more; they typically have a range of attributes describing
their lifecycle and their usage in cryptographic operations. Operations allow to create, import, read,
search, update, and delete keys by the server, and generally focus on attribute handling rather than on
cryptographic functions. A comprehensive key-management server will also support some small set
of cryptographic operations, including to create a key, to issue a certificate, to derive a new key (a
deterministic operation that creates a symmetric key from an existing one), and to wrap or unwrap a key
with another key (wrapping means to encrypt a target key with another key for export and transfer to
another system). These features can be found in many of the above-mentioned protocols and systems.

In this work, we report on a design for controlling access to operations and to keys in a key-server
prototype, which we are currently developing. The key server is able to distinguish between different
users, which are the principals that invoke operations, and to securely authenticate them.

Because the key-management server provides the above-mentioned cryptographic functions, it rep-
resents a cryptographic security API accessible over a network. Security APIs stand at the boundary
between untrusted code and trusted modules capable of maintaining internal state. Cryptographic se-
curity APIs are typically provided by cryptographic tokens [1], hardware-security modules (HSM) like
IBM’s 4764 cryptoprocessor that supports the IBM CCA interface [11, 13] and generic PKCS #11-
compliant [15] modules, smartcards, or the Trusted Platform Module [17]. This work extends the study
of cryptographic security APIs to protocols over open networks.

1



2 Access Control

We distinguish between basic and strict access control in the key server. In basic mode, access-control
decisions for a key are taken directly from an access-control list (ACL) associated with it. But because the
operations of our key server allow users to create complex relationships between keys, primarily through
key derivation and key wrapping, basic access control may have security problems. For example, if there
exists a particular key that some user is not allowed to read, but the user may wrap that key under another
key of its choice and export the wrapped representation, the user may nevertheless obtain the bits of the
first key. Another example is a key that was derived from a parent key by the server; when a user reads
the parent key, the user implicitly also obtains the cryptographic material of the derived key.

In general, a cryptographic interface that manages keys and allows to create such dependencies
among keys poses the problem that access to one key may give a user access to many another keys.
This issue has been identified in the APIs of several cryptographic modules [2, 6, 8, 10] and may lead to
serious security breaches when an organization does not fully understand all implications of an API.

In strict mode, therefore, access-control decisions by the key server take the semantics of the key-
management API into account and implement a cryptographically sound access-control policy on all
symmetric keys and private keys. The above issues with basic access control are eliminated with strict
access control. Our strict access-control policy builds on the work of Cachin and Chandran [7], which
describes a secure cryptographic token interface, introduces a cryptographically strong security policy,
and shows how to implement it. A strict access-control decision may not only depend on the ACL of the
corresponding key, but takes also into account the ACLs of related keys and the history of past operations
executed on them. It prevents any unauthorized disclosure of a symmetric key or a private key.

Every key maintained by the server has several attributes that govern if an access is permitted. The
basic policy is determined by an access-control list (ACL) attribute. It can be modified by clients and
contains a list of user/privilege-pairs. A boolean attribute strict determines if the key underlies only the
basic or the strict access-control policy.

Every key maintained by the key-management server in strict mode benefits from an explicitly stated
security policy that respects cryptographic side-effects of the server’s operations. In particular, it guaran-
tees that a user may only retrieve the information she is authorized to, i.e., that she cannot abuse the API
to violate the access control policy. Thus, it avoids the problems mentioned above and similar problems
existing in other APIs [2, 6, 8, 10], which arise from interdependencies among the keys.

In a forthcoming paper [5], we report on the challenges with designing and on the lessons learned
from implementing strict access control in the prototype key-management server.

References

[1] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, “Cryptographic processors — a survey,” Proceedings
of the IEEE, vol. 94, pp. 357–369, Feb. 2006.

[2] R. J. Anderson, “Why cryptosystems fail,” in Proc. 1st ACM Conference on Computer and Communications
Security (CCS), pp. 215–227, 1993.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key management,” NIST
special publication 800-57, National Institute of Standards and Technology (NIST), 2007. Available from
http://csrc.nist.gov/publications/PubsSPs.html.

[4] BITS Security Working Group, “Enterprise key management.” Whitepaper, BITS Financial Ser-
vices Roundtable, available from http://www.bits.org/downloads/Publications%20Page/
BITSEnterpriseKeyManagementMay2008.pdf, May 2008.

[5] M. Björkqvist, C. Cachin, R. Haas, X.-Y. Hu, A. Kurmus, R. Pawlitzek, and M. Vukolić, “Design and imple-
mentation of a key-lifecycle management system,” Research Report RZ 3739, IBM Research, June 2009.

2

http://csrc.nist.gov/publications/PubsSPs.html
http://www.bits.org/downloads/Publications%20Page/BITSEnterpriseKeyManagementMay2008.pdf
http://www.bits.org/downloads/Publications%20Page/BITSEnterpriseKeyManagementMay2008.pdf


[6] M. Bond, “Attacks on cryptoprocessor transaction sets,” in Proc. Cryptographic Hardware and Embedded
Systems (CHES), vol. 2162 of Lecture Notes in Computer Science, pp. 220–234, 2001.

[7] C. Cachin and N. Chandran, “A secure cryptographic token interface,” in Proc. Computer Security Founda-
tions Symposium (CSF-22), IEEE, July 2009. To appear.

[8] J. Clulow, “On the security of PKCS#11,” in Proc. Cryptographic Hardware and Embedded Systems (CHES),
vol. 2779 of Lecture Notes in Computer Science, pp. 411–425, 2003.

[9] “Cover pages: Cryptographic key management.” http://xml.coverpages.org/keyManagement.html,
Apr. 2009.

[10] S. Delaune, S. Kremer, and G. Steel, “Formal analysis of PKCS#11,” in Proc. 21st IEEE Computer Security
Foundations Symposium (CSF), 2008.

[11] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Weingart, “Building the
IBM 4758 secure coprocessor,” IEEE Computer, vol. 34, pp. 57–66, Oct. 2001.

[12] IEEE Security in Storage Working Group (SISWG), “P1619.3/D6 draft standard for key management in-
frastructure for cryptographic protection of stored data.” Available from https://siswg.net/index.php,
2009.

[13] International Business Machines Corp., CCA Basic Services Reference and Guide for the IBM 4758 PCI and
IBM 4764 PCI-X Cryptographic Coprocessors, 19th ed., Sept. 2008. Available from http://www-03.ibm.
com/security/cryptocards/pcicc/library.shtml.

[14] OASIS Key Management Interoperability Protocol Technical Committee, “Key Management Interoperability
Protocol,” Apr. 2009. Editor’s draft 0.98; available from http://www.oasis-open.org/committees/
documents.php?wg_abbrev=kmip.

[15] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard.” Available from http://
www.rsa.com/rsalabs/, 2004.

[16] Sun Microsystems, “Sun Crypto Key Management System (KMS).” http://opensolaris.org/os/
project/kmsagenttoolkit/, 2009.

[17] Trusted Computing Group, “Trusted platform module specifications.” Available from http://www.
trustedcomputinggroup.org, 2008.

[18] World Wide Web Consortium, XML Key Management Working Group, “XML Key Management Specifica-
tion (XKMS 2.0).” Available from http://www.w3.org/2001/XKMS/, 2005.

3

http://xml.coverpages.org/keyManagement.html
https://siswg.net/index.php
http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml
http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml
http://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip
http://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip
http://www.rsa.com/rsalabs/
http://www.rsa.com/rsalabs/
http://opensolaris.org/os/project/kmsagenttoolkit/
http://opensolaris.org/os/project/kmsagenttoolkit/
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.w3.org/2001/XKMS/

	Introduction
	Access Control

