
Fully Simulatable Multiparty Computation

Yevgeniy Dodis∗ Rafael Pass† Shabsi Walfish‡

September 29, 2004

Abstract

We introduce and realize the notion of fully simulatable multiparty computation. Unlike any of the previous
models, our notion simultaneously enjoys the following features:

• Main feature: The simulator does not have any extra power over the “real-life” adversary.
In particular, it cannot program any public parameters or run in super-polynomial time. Thus, our imple-
mentation is fully deniable for tasks such as authentication and zero-knowledge (unlike the previous solutions
in the common reference string model).

• Universal composability (in particular, straight-line simulation).

• No PKI (although there exists one “non-programmable” public key; see below).

• Adaptive security.

We remark that it might seem impossible to realize all (or even the main) of the above features, even for relatively
simple tasks such as zero-knowledge [10]. The way we overcome this apparent contradiction is by introducing
a polynomial-time, fully off-line trusted party T to our model. T publishes a single certified public key pk and
never has to participate again in any of the protocols. However, any party P has an option of contacting T
and requesting an identity-based secret key skP . We stress, though, that no honest party actually needs to (and
correspondingly will not) contact T , while the security will hold even against corrupted parties who do contact T .
We believe that the addition of fully off-line T is a minimal and very realistic way to overcome the impossibility
results in the “standard” model. Additionally, the introduction of T could naturally support other desirable
properties impossible in the standard model (such as optimistic fairness with faulty majority).

The main building block of our construction is the notion of identity-based chameleon hash functions [1].
We give an elegant, generic construction of such hash functions from any signature scheme possessing a certain
Σ-protocol. By showing several efficient implementations of such protocols, we give the first constructions of
identity-based chameleon hash functions without random oracles, which is of independent interest.

1 Introduction

Secure multiparty computation is one of the most general and celebrated achievements of modern cryptography.
Originating from the pioneering work of Goldrecih, Micali and Wigderson [9], the security of multiparty computation
was defined by the means of the simulation paradigm. Namely, first one defines the given functionality in the “ideal”
model, where the trusted party is available to perform the task at hand by serving as an “uncorruptible” intermediary
between the non-communicating parties. Then one shows the realization of this functionality in the “model”, where
the trusted party is gone and players can communicate to each other. Finally — and this is the key step — one
has to argue that for any polynomial adversary A in the real model there exists an efficient adversary (called the
simulator) S in the ideal model which can “computationally reproduce the damage caused by A”. Intuitively, this
means that A really did not gain anything it could not have gotten in the ideal model — by simply running S in his
head.

The existence of such secure multiparty protocols seems remarkable, since the simulator is extremely limited in its
capabilities. And, indeed, there are many caveats in various feasibility results. For example, most feasibility results

∗dodis@cs.nyu.edu. New York University, Department of Computer Science, 251 Mercer St., New York, NY 10012 USA.
†rafael@nada.kth.se. KTH, Nada, S - 100 44 Stockholm, Sweden.
‡walfish@cs.nyu.edu. New York University, Department of Computer Science, 251 Mercer St., New York, NY 10012 USA.

1



of the late 80’s and early 90’s only held in the so called standalone setting, where no other functionality can be
run concurrently with the one being implemented. Indeed, the main technique of such protocols which allowed the
simulator to gain advantage over the real-life adversary was rewinding. With many protocols running at the same
time, the simulation is easily seen to become exponential. Motivated by these considerations, several researchers
proposed various frameworks for achieving various forms of concurrent composability, where many protocols can be
run at the same time. Among other less important details, the main feature of such models was the (necessary)
requirement that the simulator has to be “non-rewinding”. Perhaps the most popular model of security along these
lines is the universal composability (UC) framework of Canetti [4]. The attractive feature of this framework is the
composition theorem, which states that universally composable protocols can be concurrently run with arbitrary
other protocols.

Unfortunately, the UC framework is so strong, that many tasks such as commitment, zero-knowledge and general
multiparty computation cannot be realized without relaxing the model [4, 5, 6]. Recently, several such relaxation
have been proposed [7, 12, 2] which we briefly survey before describing our solution.

Common Reference String (CRS) Model. This model assumes that at the system initialization there exists
an honestly generated random string R (or more generally, some public key pk whose distribution is not necessarily
uniform) available to all the parties. The “real” power of this relaxation, however, does not actually come from the
fact that R is truly random — in practice1 one can find an abundant number of randomly looking strings — but
rather from the fact that the simulator S is allowed to generate its own string R′ (as long as it looks indistinguishable
from R). This seemingly harmless advantage given to S turns out to be very significant. Indeed, the UC security
in the CRS model states that whatever A could achieve in the real model, it could have achieved in the ideal model
provided it had the power to generate R. But in the real world the parties presumably know that R was not generated
by the adversary, so it is not really true that the adversary did learn something he could not have learned in the
ideal model. For example, consider the task of non-interactive zero-knowledge which is possible in the CRS model.
In the ideal model, the verifier simply learns a binary value “yes” or “no” stating whether the statement x is true or
false. Clearly, in the ideal model it cannot convincingly transfer this conclusion to some third party (as long as x is
“non-trivial”). However, if the party gets an actual non-interactive proof π in the real model, it can now obviously
convince any third party that x is true — by simply presenting π, and despite the fact that it could have simulated
π had he had the power to generate R! Indeed, Pass [10] formally pointed out that the CRS model does not give
any advantages over the standard model for the goal of achieving deniable zero-knowledge proofs (where the proof
should leave no transferable evidence that the interaction took place).

As we can see, the main reason deniability was lost came from the fact that the simulator S was given an advantage
over the real adversary A, so that one can no longer argue that A did not learn anything it could not have learned in
the ideal model. To summarize, the CRS model loses the appeal of the simulation paradigm when the parties know
that the CRS was not adversarilly “programmed”.2

Super-Polynomial Simulation. In this relaxation, originally considered by Pass [11] in the context of zero-
knowledge proofs and later by Prabhakaran and Sahai [12] in the general UC context, the simulator is again given
given an extra power over the adversary. Specifically, it can run in super-polynomial time. As was observed by
[11, 12], for many applications the resulting security notion is strong enough to imply meaningful results. Essentially,
this is the case when the ideal-model security is information-theoretic, or the allowed super-polynomial running time
of the simulator is still smaller than the super-polynomial hardness assumption used to argue the security of the
system. However, this new framework — termed relaxed Environmental Security (rES) by [12] — once again loses
many of the advantages of the UC framework. Most importantly, it is no longer closed under concurrent composition,
which was one of the main desiderata for modern multiparty computation. This is not surprising, since when arguing
the security of the composed system the real-life adversary has to run the simulator for a smaller sub-system, which
it can no longer do.

PKI Model. In this model, it is assumed that every party has a certified public key known to all other parties.
In particular, this implicitly assumes the introduction of a trusted authority C who can certify all the keys and
whom everybody trusts. As was very recently shown by Barak, Canetti, Nielsen and Pass [2], one can achieve
universally composable protocols in the PKI model, where the simulator no longer has an extra power over the

1In theory, of course, coin-flipping is one of the tasks which are impossible to achieve in the basic UC framework [6].
2For example, if the CRS is chosen based on some physical phenomenon such as the location of sunspots.

2



adversary (however, unlike our solution below, this guarantee holds only against a static adversary). Of course, the
main disadvantage of this approach is the fact that every user has to register his key and get correct keys of all the
other players.

Angel-based Security. In this model, recently introduced by Prabhakaran and Sahai [12], all the parties
— including the adversary and the simulator — are given oracle access to the so called [12] “imaginary angel”
G. This model is correspondingly called G-ES (or G-UC) since it is shown to be universally composable, for any
angel G. Unfortunately, when G is efficient, G-UC model becomes a regular UC model, and all the impossibility
results come back. On the other hand, [12] observe that super-polynomial angels G can conceivably overcome
the impossibility results of the regular UC model. In fact, based on non-standard computational assumption, [12]
construct an exponential angel G∗ such that one can securely implement any multiparty functionality in the G∗-UC
(non-adaptive) model. Moreover, honest parties never need to utilize the angel. On a positive side, this shows that if
the angel G∗ indeed existed in the real model and did not seem to violate the security of the functionality in the ideal
model, then the adversary A did not learn anything beyond what he could have learned (with the help of G∗) in the
ideal model. On a negative side, since G∗ is not efficiently computable, it is not clear what is the practical relevance
of this conclusion in the model when everybody knows that there is no such G∗. To summarize, this model fairly
lifts the power of both the simulator and the adversary, but does not guarantee simulatability when the adversary
clearly cannot utilize this “extra power” in the real model.

1.1 Our Model

Our model improves the model of angel-based security in several significant ways, making the simulation guarantees
meaningful in the actual real-life model.

First, we introduce an efficient trusted party T who can be viewed as a “real” analog of the “imaginary” angel.
At system initialization, T will pick a public key pk and a corresponding master secret key msk. Now, every party
P has an option of contacting P to obtain an identity-based secret key skP efficiently computed by T using msk
(and, presumably, infeasible to compute using pk only). In particular, no party ever needs to call T twice, and the
secret keys skP are completely independent from anything going on in the protocol (which means that it is indeed
harmless to provide those keys in the ideal model too). Moreover, in our model and implementation no honest party
P will ever need to (and therefore will not) obtain this secret key skP . This is a big advantage over the PKI model,
where every party needs to contact the certificate authority C and learn the corresponding secret keys of all the other
parties. In our model, the honest parties only need to know one global key pk and the non-cryptographic identities
of all the other parties (which is always assumed in the UC framework anyway).

Intuitively, the point of these id-based secret keys is that the dishonest parties P can (and probably will) obtain
those values skP already in the real model, which makes it both meaningful and “legal” to supply the corresponding
values skP to the simulator, whenever the party P gets corrupted. With the proper design of T and the corresponding
multiparty protocol, we will demonstrate that the simulator can achieve full black-box simulation: whatever a
polynomial-time adversary can obtain in the real protocol with the help of id-based keys skP for all corrupted P , the
corresponding polynomial-time simulator can achieve via straight-line simulation in the ideal model, and once again
with the help of exactly the same id-keys skP . Thus, using identical resources to what is actually available to him in
the real model, the real-life adversary A might have as well “transported” himself to the ideal model, and simply run
the simulator S there, while still producing the same effect as in the real model! In particular, our simulator does
not program the public key pk, run in super-polynomial time or call some imaginary angels which do not actually
exist in the real model. Moreover, our protocol withstands adaptive corruptions (unlike, for example, the protocols
of [2, 12]). Additionally, the introduction of T could naturally support other desirable properties impossible in the
standard model (such as optimistic fairness with faulty majority).

To summarize, we minimally and realistically changed the standard UC model by introducing an efficient, fully
off-line party T , which allowed us to achieve a meaningful notion of simulation in the real model.

1.2 Overview of Our Techniques

We briefly report on our techniques. First, we notice that it is sufficient to implement the commitment functionality
in a fully simulatable manner, as the rest of the protocol of [7] does not utilize the programmability of the CRS. Then

3



we show how to efficiently build (interactive, 4-round) fully simulatable commitments from any family of identity-
based chameleon hash functions (ID-CHash) [1].3 This protocol is inspired by the corresponding protocol of Damgard
and Nielsen [8] for regular UC commitments, although the details are somewhat different.

Identity Based Chameleon Hash Functions. ID-based chameleon hash functions are identity-based analogs
of trapdoor (or equivocable) commitment schemes. In such regular schemes, there exists a trapdoor information td
associated with the public key pk, which allows one to open a given commitment value c to an arbitrary message m
(which, of course, is impossible without td). In the ID-based setting, one also commits with respect to a given identity
P , and there correspondingly exists a different trapdoor tdP which allows one to equivocate all commitments w.r.t.
P . On the other hand, knowing many values tdP does not allow one to equivocate commitment w.r.t. a new identity
Q. So far, ID-CHash functions were used primarily for the purposes of chameleon id-based signature schemes [1, 13],
and all the constructions were in the random oracle model.

We give an elegant construction of ID-CHash functions based on any signature scheme possessing a Σ-protocol
proving that “the prover knows the signature of a given message m”. We then construct a variety of such protocols
for various signature schemes: both generic (i.e., starting from any signature scheme), as well as efficient number-
theoretic schemes (e.g., based on the strong RSA assumption and the signature of [3]). This gives several constructions
of ID-CHash functions in the standard model. Ironically, the random oracle based constructions of [1, 13] are also
special cases of our construction (applied to specific random oracle based signature schemes).

References

[1] G. Ateniese and B. de Medeiros. Identity-based Chameleon Hash and Applications. Proc. of Financial Cryptography,
2004. Available at http://eprint.iacr.org/2003/167/.

[2] B. Barak, R. Canetti, J. Nielsen and R. Pass. Universally composable protocols with relaxed set-up assumptions. In Proc.
of FOCS, 2004, to appear.

[3] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In Conference on Security in Communi-
cation Networks (SCN), 2002.

[4] R. Canetti. Universally Composable Security: A New paradigm for Cryptographic Protocols. In Proc. of FOCS, pages
136–145, 2001.

[5] R. Canetti and M. Fischlin. Universally Composable Commitments. In Proc. of Crypto, pages 19–40, 2001.

[6] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universally Composable Two-Party Computation
Without Set-Up Assumptions. In Proc. of Eurocrypt, Springer-Verlag (LNCS 2656), pp. 68–86, 2003.

[7] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-Party Secure Compu-
tation. In Proc. of STOC, pp. 494–503, 2002.

[8] I. Damgard and J. Nielsen. Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with
Constant Expansion Factor. In Proc. of Crypto, Springer-Verlag, pp. 581–596, 2002.

[9] O. Goldreich, S. Micali and A. Wigderson. How to Solve any Protocol Problem. In Proc.of STOC, 1987.

[10] R. Pass. On Deniabililty in the Common Reference String and Random Oracle Model. In Proc. of Crypto, LNCS 2729,
pp. 216–337, 2003.

[11] R. Pass. Simulation in Quasi-Polynomial Time and Its Application to Protocol Composition. In Proc. of EuroCrypt,
LNCS 2656, pages 160–176, 2003.

[12] M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Composability without Trusted Setup. In
Proc. of STOC, 2004.

[13] F. Zhang, R. Safavi-Naini and W. Susilo. ID-Based Chameleon Hashes from Bilinear Pairings. Available at
http://eprint.iacr.org/2003/208/.

3Similarly to [7], we also need augmenting non-committing encryption protocols; see [7].

4


