
www.zurich.ibm.com

Zurich Research Laboratory

FAST 2008
26 February 2008

Cryptographic Methods for Protecting Storage
Systems

Christian Cachin <cca@zurich.ibm.com>

Zurich Research Laboratory

2 26 February 2008 © 2008 IBM Corporation

Overview
■ Design options for security in storage systems

■ Block/record-layer security

→ Tweakable encryption and other block-cipher modes

→ Hybrid block-integrity protection

→ Authenticated record-encryption

■ Object-layer security

→ Capabilities in Object Storage

■ Filesystem security

→ Designs for key management

→ Encryption using lazy revocation and key updating

→ Integrity protection in filesystems

→ Consistent access to untrusted storage*

■ Cryptography for storage in action

→ Tape drive with encryption (IBM TS1120)

→ TCG storage specification and drive-encryption (Seagate)

→ A cryptographic SAN filesystem

Zurich Research Laboratory

3 26 February 2008 © 2008 IBM Corporation

Past Storage Systems: Inside the Box

app

inode

fs

blk

hba

Direct-attached Storage

Zurich Research Laboratory

4 26 February 2008 © 2008 IBM Corporation

Current Storage Systems: Local

NAS
(Network-attached Storage)

net

NFS, CIFS
(TCP/IP)

net

fs

hba

inode

blk

fs

app

SAN
(Storage-area Network)

blk

FC, iSCSI

net

blk

hbanet

inode

fs

app

OBS
(Object Storage)

inode

net

OBS-SCSI
(T10)

net

inode

blk

hba

fs

app

Zurich Research Laboratory

5 26 February 2008 © 2008 IBM Corporation

Network-based Storage Devices

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access control
 - space allocation
 - backup ops

Zurich Research Laboratory

6 26 February 2008 © 2008 IBM Corporation

Future Storage Systems: Anywhere

Amazon S3
(Simple Storage Service)

Zurich Research Laboratory

7 26 February 2008 © 2008 IBM Corporation

Security in Current Networked Storage Systems

■ Existing technology offers little protection

→ Originally developed for server room

→ Coarse-grained access control

→ Storage provider, networks, and clients are trusted

■ Security is needed

→ Storage as a commodity
→ Networked storage to desktop (iSCSI)

■ Threats

- physical access to disks

- access to network

- authorized machines

- unauthorized machines

 ...

Zurich Research Laboratory

8 26 February 2008 © 2008 IBM Corporation

Design Options for Security

Zurich Research Laboratory

9 26 February 2008 © 2008 IBM Corporation

■ Goals

Confidentiality (no unauthorized access)

Integrity (no unauthorized modification)

Availability

■ Security mechanisms

Encryption

→ Confidentiality based on shared key k

Message-authentication code (MAC)

→ Integrity based on shared key k

Hashing and digital signatures

→ Integrity, w.r.t. reference value v

Access control

→ Confidentiality, integrity, availability

■ Any mechanism may be applied on any layer

Security Toolbox

E E
k k

k k
A A

✔

vH

Zurich Research Laboratory

10 26 February 2008 © 2008 IBM Corporation

■ Storage systems have these layers for good reasons

→ Not all security mechanisms are useful and efficient on all layers

→ Challenge is to select the “right” combination

■ Some representative examples are presented

Any Security Mechanism May Be Applied
on Any Layer

key mgmt.
&

lazy revocation

block-cipher
 modes &

IEEE P1619

file

object

block

hash trees
&

fork-linearizability

hybrid block-
integrity

protection

E A ✔

OBS security
protocol

Zurich Research Laboratory

11 26 February 2008 © 2008 IBM Corporation

Generic Model for a Secure Storage System

client
security
provider

■ Option 1: Protect data in flight

→ Trusted client, trusted storage (untrusted network)

■ Option 2: Protect data at rest

→ Trusted client (untrusted storage and untrusted network)

→ Allows DoS attack, data may be lost

client
security
provider

Zurich Research Laboratory

12 26 February 2008 © 2008 IBM Corporation

■ Encrypt the communication

→ Session, transport or packet layer

→ Secure RPC, SSL, IPsec, FC-SP ...

■ Layer-specific access control on storage device

→ NAS at filesystem layer (exists in AFS, NFSv4 ...)
→ ObjectStore at object layer (in standard)
→ SAN at block layer (proposed)

Security for Networked Storage Systems (1)

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

E EA A

✔

Option 1: Protect the data in flight

Access control

Authentication/integrity protection

Encryption

✔

E

A

Zurich Research Laboratory

13 26 February 2008 © 2008 IBM Corporation

■ Encrypt the storage space

→ Encryption and integrity protection for a storage layer

■ Layer-specific cryptography on storage device

→ Typically on low layers: block encryption

- In tape and disk storage devices (emerging today)

- As separate appliance (existing, e.g., Decru/NetApp)

Security for Networked Storage Systems (2)

Option 2: Protect the data at rest

Access control

Authentication/integrity protection

Encryption

✔

E

A
fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

net net

A E
✔

Zurich Research Laboratory

14 26 February 2008 © 2008 IBM Corporation

■ Encrypt the storage space

→ But don't trust the network
and don't trust the storage device

■ Layer-specific cryptography on client

→ Typically on higher layers: cryptographic filesystems

- Available today in local cryptographic filesystems

(CFS, SFS, Linux loopback encryption, Windows EFS)

- Not yet widely available for distributed filesystems

Security for Networked Storage Systems (3)

Combining Options 1 & 2:
Protecting data in flight & at rest

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

A E
✔

Zurich Research Laboratory

15 26 February 2008 © 2008 IBM Corporation

■ Encryption: keys?

Separate security admin server

Encrypted with user/group public key

Held by hardware module

■ Integrity verification: reference values?

Integrated in directory

Inode tree is hash tree

Digital signatures under user/group public-key

■ Access control: credentials?

Separate security admin server (Kerberos, ObjStore admin)

Design Dimensions

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

A E
✔

Zurich Research Laboratory

16 26 February 2008 © 2008 IBM Corporation

■ Storage systems have these layers for good reason

→ Not all security mechanisms are useful and efficient on all layers

■ Challenge is to select the “right” combination

Outline of Presentation

key mgmt.
&

lazy revocation

block-cipher
 modes &

IEEE P1619

file

object

block

hash trees
&

fork-linearizability

hybrid block-
integrity

protection

E A ✔

OBS security
protocol

pr
es

en
ta

tio
n

or
de

r

Zurich Research Laboratory

17 26 February 2008 © 2008 IBM Corporation

Block Layer

■ Tweakable encryption and other block-cipher modes

■ Hybrid block-integrity protection

■ Authenticated record-encryption

Zurich Research Laboratory

18 26 February 2008 © 2008 IBM Corporation

Encryption at the Block Layer

■ “Sector” encryption, 512-byte blocks

■ Transparent to storage system → no extra space available for chaining
mode

■ IEEE SISW standardization effort: P1619, P1619.1, P1619.2, ...

app

inode

fs

blk

E

Zurich Research Laboratory

19 26 February 2008 © 2008 IBM Corporation

Why a Block-Cipher Mode of Operation?

Plaintext bitmap
picture

Encrypted in ECB
mode

Encrypted in
secure chaining

mode

Zurich Research Laboratory

20 26 February 2008 © 2008 IBM Corporation

Using CBC Mode

■ IV chosen at random → must be stored (but there is no room)

■ Derive IV from offset of sector on disk

IV = EK(disk id || sector offset)

■ Leaks location of first updated block within sector (a passive attack)

■ Active attack possible if adv. can decrypt some sectors but not others

P1

E

C1

K

IV P2

E

C2

K . . .

IV

Zurich Research Laboratory

21 26 February 2008 © 2008 IBM Corporation

Tweakable Block Encryption [LRW02]

■ EK() is a pseudo-random permutation (deterministic after picking K)

→ Change even one bit of C to C' → decrypted P' totally independent of P

→ But the same permutation in every instance

■ Tweakable EK,T() is a family of independent permutations (indexed by T)

→ T = address of block

P

E

C

K
(secret)

P

E

C

K T
(public)

EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable

Zurich Research Laboratory

22 26 February 2008 © 2008 IBM Corporation

Narrow-block Tweakable Encryption

■ All blocks of sector encrypted independently (unlike CBC)

■ Tweak is sector s plus block index i

■ Leaks only location of updated blocks within sector

Ciphertext in disk sector s

P1

. . .

Pi Pn

EK

s || i

. . .

C1 Ci Cn

Plaintext

Tweaked block
=

 cipher block

Zurich Research Laboratory

23 26 February 2008 © 2008 IBM Corporation

■ XTS-AES mode based on
XOR-Encrypt-XOR (XEX) [R04]

■ Tweak = sector s || block index i

■ Key K = K1 || K2

■ Arithmetic in GF(2128)

→ α is primitive element in GF(2128)

→ αi computation is efficient for i=0,1,2...

■ XTS-AES is standardized by IEEE
P1619 (almost final)

Narrow-block Tweakable Encryption Scheme

Pi

EK1

s

EK2

Pi

•αi

Zurich Research Laboratory

24 26 February 2008 © 2008 IBM Corporation

Wide-block Tweakable Encryption

■ One tweaked block-encryption per sector

■ Tweak is sector address s

■ Leaks only that sector has been updated

Ciphertext in disk sector s

P1 Pn

E s

C1 Cn

Plaintext

K

Tweaked block
=

 disk sector

Zurich Research Laboratory

25 26 February 2008 © 2008 IBM Corporation

Wide-block Tweakable Encryption Scheme

■ EME mode [HR04],
calls to E are parallelizable:

■ EME requires ≈2 block cipher calls per plaintext block

→ Considered too costly by many

■ IEEE P1619.2 standardization (far from final)

Zurich Research Laboratory

26 26 February 2008 © 2008 IBM Corporation

Integrity Protection at the Block Layer

■ No extra space available → really problematic for integrity

■ All integrity protection and data authentication methods require extra
space for a tag or a hash value

■ If there was space, use a MAC or a hash tree (see later) ...

app

inode

fs

blk

A

Zurich Research Laboratory

27 26 February 2008 © 2008 IBM Corporation

Hybrid Integrity Protection at the Block Layer [ORY05]

■ Data is encrypted

■ Use tweakable encryption mode on wide block (sector of 512B)

■ Idea:

If data contains redundancy, then any modification
of ciphertext is detectable because decrypted
plaintext will look random.

→ “Redundant” sectors are not extra protected for modification detection

→ “Random” sectors are protected in traditional way

■ Needs a heuristic test for “redundancy” or “randomness” in a sector

Zurich Research Laboratory

28 26 February 2008 © 2008 IBM Corporation

Writing Data

app

inode

fs

blk

E

K

T

Looks
random?

If yes:

A
■ If sector looks random,

authenticate it using extra
trusted storage.

■ If sector looks redundant,
just store it.

Zurich Research Laboratory

29 26 February 2008 © 2008 IBM Corporation

Reading Data

app

inode

fs

blk

D

K

T

Looks
random?

If yes:

A=
■ If decrypted sector looks random,

then hash it and compare it with
authenticated value.

■ If decrypted sector looks
redundant, accept it as authentic.

→ Allows replay attack with
previous content of sector.

Zurich Research Laboratory

30 26 February 2008 © 2008 IBM Corporation

Discussion of Hybrid Scheme

■ Performance depends on payload data

■ Suffers from replay attacks

■ Depends on estimator for redundancy

→ Simple 1-st order entropy test on 8-bit blocks in 1024-byte sector
● Threshold set to 7.7 bits
● 98% of blocks from filesystem trace have observed entropy < 7.7

→ Saves 98% storage space compared to hashing every block
(Or: protects integrity of 98% of observed data.)

■ Cannot achieve ideal security for arbitrary payload

Zurich Research Laboratory

31 26 February 2008 © 2008 IBM Corporation

Authenticated Record-Encryption

■ AE combines encryption and authentication (MAC) in one pass

AE(K, IV, P) → (C, Tag)

AE-1(K, C, Tag) → P / “FAIL”

■ Length-expanding → suitable for tape, but not for disk

IV

AE
K

P

C Tag

Authenticated Encryption
(AE)

Zurich Research Laboratory

32 26 February 2008 © 2008 IBM Corporation

Authenticated Record-Encryption Standards

■ IEEE P1619.1 has standardized four authenticated encryption schemes:

CCM-128-AES-256

→ Counter mode encryption with CBC-MAC
using AES-256 with 128-bit wide CBC-MAC (used by Sun)

GCM-128-AES-256

→ Galois/counter mode encryption
using AES-256 with 128-bit wide tag (used by IBM, LTO)

CBC-AES-256-HMAC-SHA-*
→ CBC mode encryption with HMAC

using AES 256 and SHA-*

XTS-AES-256-HMAC-SHA-512

→ XTS narrow-block tweakable encryption (P1619.1) with HMAC
using AES 256 and SHA-512

■ Standard status is final, adoption by industry is guaranteed

Zurich Research Laboratory

33 26 February 2008 © 2008 IBM Corporation

Object Layer

■ Capabilities in Object Storage

Zurich Research Laboratory

34 26 February 2008 © 2008 IBM Corporation

Object Store Security Protocol [ACF+02, FNN+05]

client

security
manager

(req, cap, tag, data) →

security
context

authentication
request

← (reply, data)

OSD

■ Capability-based protocol to authenticate requests and traffic
between client and object-storage device (OSD)

■ Key establishment protocol between OSD and security manager

■ Protocol between client and security manager specific to filesystem

Zurich Research Laboratory

35 26 February 2008 © 2008 IBM Corporation

Protocol Features

■ Security methods

NONE: --

CAPKEY: authenticate requests at OSD level, no transport security

→ tag computed only over capability

CMDRSP: above plus transport integrity for request and reply

→ tag computed over capability and request

ALLDATA: above plus transport integrity for payload data

→ tag computed over capability, request, and data

■ May replace IPsec for iSCSI or FCsec for Fibre Channel
(also duplicates some of their functionality)

Zurich Research Laboratory

36 26 February 2008 © 2008 IBM Corporation

OSD Data Types

■ Object hierarchy

OBS → Partition → Object

■ Key hierarchy

Master key: to initialize OSD and create root key

Root key: to manage partitions and their keys

Partition key: only to create per-partition working key

Working key: per partition, changed frequently, useful for revocation (among
other uses), protects all objects in partition

Zurich Research Laboratory

37 26 February 2008 © 2008 IBM Corporation

OBS Security Protocol Details (CAPKEY)
■ PRF F

■ Capabilities

(obj, exptime, permissions, nonce)

■ Client requests credential from security manager and receives

cred = (cap, Kcap)

where Kcap = FK(cap) under appropriate partition's working key K

■ Client sends

(req, cap, tag)

to OSD, with a unique channel id (or nonce) chosen by the OSD, and

tag = FKcap(cap || channel id)

■ OSD verifies that

1. req is an allowed operation by cap for this partition

2. validates tag from channel id, using key K' = FK(cap) with its working
key K of current partition

Zurich Research Laboratory

38 26 February 2008 © 2008 IBM Corporation

File Layer

■ Designs for key management

■ Encryption using lazy revocation and key updating

■ Integrity protection in filesystems

■ Consistent access to untrusted storage

Zurich Research Laboratory

39 26 February 2008 © 2008 IBM Corporation

Key Management in Cryptographic Filesystems

■ Two approaches

On-line and centralized

- Only symmetric-key crypto

- Simple and efficient

- Limited scope and scalability

- Ex. eCryptfs (as in Linux Kernel 2.6.19), Cryptographic SAN.FS [PC07] ...

Off-line and de-centralized

- Requires public-key crypto

- Complex, computationally expensive

- Scalable

- Ex. SFS [FKM02], Windows EFS, Plutus [KRS+03], Sirius [GSMB03] ...

Zurich Research Laboratory

40 26 February 2008 © 2008 IBM Corporation

De-centralized Key Management

■ Users have SK/PK pair

■ Groups have SK/PK pair; every member of group knows SK

■ Files encrypted using FEK with block cipher

■ Confidentiality: Store FEK encrypted in meta-data

→ Encrypted under every PK of every user/group that has access

Example: File X, encrypted with FEKX

owner: A, rwx, EPKA
(FEKX),

group: G, rw-, EPKG
(FEKX),

world: ---

■ Integrity: Add FSKX / FVKX, key pair for digital signatures, to X

→ Store FSK like this in every encrypted file

■ Drawback: key revocation is tedious

Zurich Research Laboratory

41 26 February 2008 © 2008 IBM Corporation

Key Revocation

■ User revoked → change all keys that were known to user

→ Re-encrypt all data with fresh keys

■ Expensive and disruptive operation

■ Idea: Lazy Revocation [F99]

→ Re-encrypt data only when it changes after revocation, keep old keys
around.

■ All versions of a key must remain accessible

Zurich Research Laboratory

42 26 February 2008 © 2008 IBM Corporation

Lazy Revocation [KRS+03]

B2 B3B1 ... Bn

K1

K1

u u' u''

users

K1

center storage

K1S1(K1)

S1(K1, K2)

time

u' is revoked

u'' writes B2 K2

K2 K2--

u'' is revoked

u writes B3 ...

K3 ----S1(K1, K2, K3)

K3

Zurich Research Laboratory

43 26 February 2008 © 2008 IBM Corporation

Key Updating Schemes for Lazy Revocation

seed S0

S1

S2

ST

M1

M2

MT

center user

state

user key

... ...

Derive()
K1

K2

KT

Extract()

...

FEK

Init()

Update()

■ Requirements

→ User can obtain K1 ... Kt from Mt

→ Adversary with Mt cannot distinguish Kt+1 from uniformly random string

Zurich Research Laboratory

44 26 February 2008 © 2008 IBM Corporation

Formalization [BCO05, BCO06, FKK06]

■ Key updating scheme for T periods

KUT = (Init, Update, Derive, Extract)

■ Metrics of interest

→ Time of Update(), Derive(), and Extract()

→ Size of center state St

→ Size of user key Mt

Zurich Research Laboratory

45 26 February 2008 © 2008 IBM Corporation

Composition of Key Updating Schemes [BCO06]

■ Addition

KU1T1 ⊕ KU2T2 = KU⊕T1+T2

Construction

→ First T1 intervals use KU1

→ Subsequent T2 intervals use KU2 and include MT1 in user key

■ Multiplication

KU1T1 ⊗ KU2T2 = KU⊗T1 · T2

Construction

→ Every key generated with KU1 is used to seed an instance of KU2

Zurich Research Laboratory

46 26 February 2008 © 2008 IBM Corporation

Constructions

■ Chaining construction

■ Trapdoor permutation-based

■ Tree construction

Zurich Research Laboratory

47 26 February 2008 © 2008 IBM Corporation

■ Using pseudo-random generator G

■ Drawback: Fixed T

Chaining Construction (“Hash Chain”)

S1M1

ST-1MT-1

STMT

seed

G

G

...

K1

KT-1

KT

G

State Update Derive Extract

seed 0 O(T) PRG O(T) PRG

Zurich Research Laboratory

48 26 February 2008 © 2008 IBM Corporation

■ Using a trap-door permutation f, f-1 (TDP), where f is easy and f-1 is
hard without private key, hash function h() in Random-Oracle Model

Trapdoor Permutation Construction [KRS+03]

S1M1

...

K1

f-1 f

h

S2 K2

f-1 f

h
M2

...

f-1 f

ST KT

f-1 f

h
MT

State Update Derive Extract

const. O(T) TDPseed TDP

Advantage: Flexible T
Drawback: Public-key operations

Zurich Research Laboratory

49 26 February 2008 © 2008 IBM Corporation

■ Using pseudo-random generator G and pseudo-random function F

■ User key Mt is smallest set of nodes needed to derive K1 ... Kt

■ T fixed, but practically unbounded, as cost is logarithmic in T

Tree Construction [BCO06]

V

V0

V10

K1

V1

V11

G

V00 V01

F

G G

K2

F
...

State Update Derive Extract

O(log T) O(log T)
PRG

0 O(log T)
PRG

Advantages:
- Symmetric-key operations
- Practically unbounded T

Zurich Research Laboratory

50 26 February 2008 © 2008 IBM Corporation

Comparison of Key Updating Schemes

■ Trapdoor scheme using RSA-1024

■ PRF/PRG using AES-128

■ Average times [ms] measured on Intel 2.4 GHz Xeon

Scheme T
Derive +
Update

Extract

Chaining 1024 1.28 1.24

Trapdoor 1024 15.4 15.2

Tree 1024 0.015 0.006

Tree 216 0.015 0.008Tree

Tree 225 0.015 0.01Tree

Zurich Research Laboratory

51 26 February 2008 © 2008 IBM Corporation

Integrity Protection in Filesystems

■ Storage consists of n data items x1, ..., xn (entries in list, blocks of file ...)

■ Applications access storage via integrity checker

→ Checker uses small trusted memory to store short reference value v
(i.e., together with encryption key in meta-data)

■ Integrity checker operations

→ Read item and verify w.r.t. v

→ Write item and update v accordingly

Trusted

App A

Zurich Research Laboratory

52 26 February 2008 © 2008 IBM Corporation

Implementing an Integrity Checker

■ Use hash function H to compute v? v = H(x1 || ... || xn)

→ Infeasible for long files

→ No random access to item

■ Use a secret key with a MAC?

→ Suffers from replay attacks

■ Well-known solution: Hash tree [Merkle 79]

→ Overhead of read/verify and write/update is logarithmic (in n)

■ Recent alternatives

Dynamic accumulators [CL02]

→ Overhead of read/verify is constant

Incremental hashing [BM97,CDDGS03]

→ Overhead of write/update is constant

Zurich Research Laboratory

53 26 February 2008 © 2008 IBM Corporation

Hash trees for Integrity Checking [Merkle 79]

■ Parent node is hash of its children

■ Root hash value commits all
data blocks

→ Root hash in trusted memory

→ Tree is on extra untrusted storage

■ To verify xi, recompute path from xi
to root with sibling nodes and
compare to trusted root hash

■ To update xi, recompute new root
hash and nodes along path from xi
to root

root

H0 H1

H00 H01 H10 H11

x1 x2 x3 x4

Read & write operations need work O(log n)
→ Hash operations
→ Extra storage accesses

Zurich Research Laboratory

54 26 February 2008 © 2008 IBM Corporation

Dynamic Accumulator for Integrity Checking
■ An accumulator is a cryptographic abstraction for collecting data values

and checking their presence:

Init() → (a, k) -- generates authenticator/accumulator value a and key k

Add(a, i, xi, k) → a' -- adds xi to accumulator at position i

Update(a, i, xi, k) → a' -- updates accumulator at position i to xi

Witness(a, i, xi, k) → w -- produces a witness w for presence of xi

Verify(a, i, xi, w) → “yes” / “no” -- checks if witness w is valid and proves
that entry xi was added to accumulator at position i

■ Without k, it must be infeasible to forge i', x', w' that verify for given a

■ Impl. with public-key crypto under strong RSA assumption [CL02]:

→ Given an RSA modulus N = P · Q (with P, Q safe primes), and r ∈ ZN, it is
infeasible to find a, b s.t. ab = r mod N

Accumulator a containing x1, ..., xn is a = r H(1||x1) ··· H(n||xn) mod N

Witness for xi in a is w = a 1/H(i||xi) mod N

Verify that xi is contained in a by checking w H(i||xi) = a mod N ?

Zurich Research Laboratory

55 26 February 2008 © 2008 IBM Corporation

Incremental Hashing for Integrity Checking

■ Hash function IH(x1, ..., xn) on n entries x1, ..., xn that allows updates:

Given h = IH(x1, ..., xi, ..., xn) and values xi and x'i,
one can compute h' = IH(x1, ..., x'i, ..., xn) in time independent of n.

■ Implementation based on number theory [BM97]:

IH(x1, ..., xn) = H(1||xn) ··· H(n||xn) mod p

for large prime p and ordinary hash function H(·)

Zurich Research Laboratory

56 26 February 2008 © 2008 IBM Corporation

Integrity Checking Schemes Summary

 Scheme Update time

 Hash tree

Verify time

 Accumulator

 Incr. Hash constant

n

n

constant

O(log n) O(log n) Fast, only hash operations

 Slow, public-key operations

 Fast, but verify is slow

In practice, integrity checking is usually done with hash trees.

Zurich Research Laboratory

57 26 February 2008 © 2008 IBM Corporation

■ How to serialize tree with minimal overhead?

Storage access should cover contiguous region

File may grow & shrink

■ Which tree? → Topologies

■ Naïve scheme? Hash only once (depth 1)

?→

Implementing Hash Trees [L06]

Zurich Research Laboratory

58 26 February 2008 © 2008 IBM Corporation

Hash Tree Topologies for Filesystems

Imbalanced tree

Adapts to file size

by “growing”

...

Implicit complete tree

Sparse allocation

How to enumerate nodes?

Breadth-first order (BFO)

Pre-order

Zurich Research Laboratory

59 26 February 2008 © 2008 IBM Corporation

Pre-order Enumeration of Hash Tree Nodes [PC07]

(3,0)

3 7 11

2

H

H

1

H

25

16 20 24

15

H

28

H

4 5 6

H

12 13 14

H

8 9 10

H

21 22 23

H

17 18 19

(0,15)(0,0)

(1,3)

(2,1)

(0,10)
H H H

.

Implicit sparse allocation of maximum-size tree

Typical file starting at offset 0 maps to a contiguous range

Takes care of file holes

Zurich Research Laboratory

60 26 February 2008 © 2008 IBM Corporation

Hash Tree Implementations in Filesystems

■ Ensure consistency between two mutually dependent data paths

→ Much more complex than encryption in filesystem

■ Buffer current tree-path with all siblings

→ Sequential read & write of whole file in O(n) work
(constant overhead per access)

■ Cache whole tree

→ Potentially large memory footprint

→ Typical tree size 1‰ ... 1% of file size

■ Journaling needed for crash-resilience

→ Otherwise crash results in integrity violation

→ Solution demonstrated only once to date [MVS00]

Zurich Research Laboratory

61 26 February 2008 © 2008 IBM Corporation

An Experimental Comparison [L06]

■ Integrity-protecting virtual filesystem in Linux

→ Kernel 2.6, user-space, with FUSE (Filesystem in USErspace)

→ Physical filesystem was local ext3

→ IBM x346 server, dual 3.2 GHz Xeon CUPs

- 3GB RAM, several 73GB IBM SCSI disks with 10k RPM

■ Benchmarks

→ Sequential reads & writes of large files (8GB, dd)

→ PostMark synthetic benchmark

- Creates, reads, writes, deletes many 1-2 MB files

■ Topologies and layouts of tree

→ NAIVE (tree of depth 1)

→ SIMPLE (no buffered nodes)

→ BFO / PREORDER enumeration (incomplete trees with buffered path)

→ GROWING (imbalanced tree with buffered paths and pre-order enum.)

→ Degree: 4 / 16 / 128

Zurich Research Laboratory

62 26 February 2008 © 2008 IBM Corporation

Sequential Reads [L06]

Zurich Research Laboratory

63 26 February 2008 © 2008 IBM Corporation

Sequential Writes [L06]

Zurich Research Laboratory

64 26 February 2008 © 2008 IBM Corporation

PostMark Benchmark [L06]

Zurich Research Laboratory

65 26 February 2008 © 2008 IBM Corporation

Hash Trees in Filesystems - Summary

■ Naïve approach works surprisingly well here

→ But not for first access!

■ Topology and degree may vary

→ Best determine experimentally (≈ 128)

→ Pre-order enumeration simplifies design

Zurich Research Laboratory

66 26 February 2008 © 2008 IBM Corporation

Consistent Access to Untrusted Storage*

Client

Client

Client

■ Many independent clients

Correct

Store data on server

Communicate only with server

Small trusted memory

■ Storage server

Untrusted

Potentially corrupted

■ Clients read and write concurrently

How to ensure consistent view of data to all clients?

(* Advanced topic, applies to future storage systems.)

Zurich Research Laboratory

67 26 February 2008 © 2008 IBM Corporation

Consistent Access to Untrusted Storage

■ Loose synchronization and concurrency pose a new problem

■ Suppose clients sign data with digital signatures:

Server cannot forge any values ...

→ But answer with outdated value (“replay attack”)

→ Or send different values to different clients

Zurich Research Laboratory

68 26 February 2008 © 2008 IBM Corporation

Illustration of the Problem

C1 C3

C1

C2

C3

r(1) → x

w(1,x) w(1,u)

r(1) → u r(2) → w

w(2,w)

Zurich Research Laboratory

69 26 February 2008 © 2008 IBM Corporation

Solution: Fork linearizability [MS02, CSS07]

■ Server may present different views to clients

→ “Fork” their views of history

→ Clients cannot prevent this

■ Fork linearizability

If server forks the views of two clients once, then

→ their views are forked ever after

→ they never again see any updates of each other

■ Forks are easier to detect than subtle data modifications

→ Needs a separate channel for detection

■ Cryptographic protocols can ensure fork linearizability [MS02, CSS07]

→ Implemented in SUNDR file system [LKMS04]

Zurich Research Laboratory

70 26 February 2008 © 2008 IBM Corporation

Cryptography for Storage in Action

■ Tape drive with encryption (IBM TS1120)

■ TCG storage specification and drive-encryption (Seagate)

■ A cryptographic SAN filesystem [PC07]

Zurich Research Laboratory

71 26 February 2008 © 2008 IBM Corporation

Tape Drives with built-in Encryption (IBM TS1120)

■ Hardware-based encryption in drive

Authenticated encryption in Galois/counter mode with
AES-256

■ Hybrid encryption scheme

→ Cartridge analogous to a PGP message

Data Key (DK) encrypts raw data on tape (AES key)

→ DK chosen randomly, like a session key

Key-Encryption Key (KEK) encrypts DK (public key of
receiver)

→ Result is Encrypted DK (EEDK)

→ EEDK is stored on tape and in cartridge memory

Up to 2 EEDKs per cartridge

■ Public-key operations for key serving done by
Encryption-Key Manager (EKM) on host

Zurich Research Laboratory

72 26 February 2008 © 2008 IBM Corporation

Data Encryption Process for Writing Tape

Zurich Research Laboratory

73 26 February 2008 © 2008 IBM Corporation

Data Decryption Process for Reading Tape

Zurich Research Laboratory

74 26 February 2008 © 2008 IBM Corporation

Disk Drives with built-in Encryption (Seagate)

■ Encryption in hardware on the drive

→ Transparent to application

→ No performance issues (scales with storage space)

■ Key stored in drive logic inside disk enclosure

→ Never leaves drive
→ May exploit smartcard-like secure hardware

■ User or host authenticates to drive before OS boot

→ Security is shifted to authentication

→ Authentication methods

- Password/PIN entered via BIOS

- Cryptographic methods (Public-key signature or MAC)

■ Seagate's FDE drive

→ AES for bulk encryption (details not public, but NIST has validated its
ECB mode ...)

Zurich Research Laboratory

75 26 February 2008 © 2008 IBM Corporation

TCG Storage Architecture

■ Trusted Peripheral (TPer) contains a Security Provider (SP)

■ TPer communicates with host, its TPM, or other devices via:

→ SCSI (T10) Security Protocol IN/OUT commands

→ SATA (T13) Trusted Send/Receive commands

■ SP acts as a root of trust, in storage device

≠ most other methods presented here, where storage is not trusted

TPM

CPU

RAM

Host TPer

SP

SCSI / SATA

Zurich Research Laboratory

76 26 February 2008 © 2008 IBM Corporation

TCG Storage Architecture Details

■ Security Provider (SP)

→ SP: logical group of security features

→ Tables: register-like primitive storage and control functions

→ Methods: simple get/set commands

→ Access control over methods and tables

■ Cryptographic functions

→ Encryption, decryption, hashing, MAC, signing, verifying ...

→ AES, RSA, ECC, SHA-2, HMAC ...

■ SP has a life-cycle that needs support

→ Manufacturing ↔ issued / active ↔ disabled / active ↔ frozen

→ Life-cycle of TPer: Produce, own, enroll, connect, use ...

■ Currently a draft standard ...

Zurich Research Laboratory

77 26 February 2008 © 2008 IBM Corporation

A Cryptographic SAN Filesystem [PC07]

Zurich Research Laboratory

78 26 February 2008 © 2008 IBM Corporation

■ SAN today:

Clients access block storage devices directly

→ Fibre Channel (SCSI)

Static configuration

→ OS sees a local block storage device

Static access control

→ Zoning & fencing in FC switch

Inside server room only

SANs and SAN Filesystems

SAN

clientclient

Zurich Research Laboratory

79 26 February 2008 © 2008 IBM Corporation

■ Virtualized block storage space

■ Block access managed by metadata server (MDS)

■ Single filesystem name space

■ Heterogeneous clients

SAN Filesystems (e.g. IBM's StorageTank)

SAN

LAN

metadata

net

app

vfs

blk

net

net

app

vfs

blk

net

net

MDS
(clustered)

Un*x client W2k client

Zurich Research Laboratory

80 26 February 2008 © 2008 IBM Corporation

■ Integrity verification & encryption in client

→ Scalable

→ End-to-end security

■ MDS is trusted, provides
encryption keys & reference data

→ Integrate key management with
metadata

→ No modification of storage interface

■ Needs
- secure LAN connection (IPsec)
- trusted client kernels

Design of a Cryptographic SAN Filesystem

LAN

SAN

clientclient

MDS

E EH H

✔ ✔

Access control

Integrity protection

Encryption

✔

E

H

Zurich Research Laboratory

81 26 February 2008 © 2008 IBM Corporation

■ Any security mechanism can be applied on any layer

■ Challenge is to select the “right” combination

Summary

key mgmt.
&

lazy revocation

block-cipher
 modes &

IEEE P1619

file

object

block

hash trees
&

fork-linearizability

hybrid block-
integrity

protection

E A ✔

OBS security
protocol

Zurich Research Laboratory

82 26 February 2008 © 2008 IBM Corporation

Thank you!

■ More information?

http://www.zurich.ibm.com/~cca

<cca@zurich.ibm.com>

Zurich Research Laboratory

83 26 February 2008 © 2008 IBM Corporation

References (1)
■ [BCO05] M. Backes, C. Cachin, and A. Oprea. Lazy revocation in cryptographic file

systems. In Proc. 3rd Intl. IEEE Security in Storage Workshop, December 2005.

■ [BCO06] M. Backes, C. Cachin, and A. Oprea. Secure key-updating for lazy revocation. In
Proc. 11th European Symposium On Research In Computer Security (ESORICS), vol. 4189
of Lecture Notes in Computer Science, Springer, 2006.

■ [BM97] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Advances in Cryptology: EUROCRYPT '97, vol. 1233 of
Lecture Notes in Computer Science, Springer, 1997.

■ [CDDGS03] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E. Suh. Incremental
multiset hash functions and their application to memory integrity checking. In Advances in
Cryptology: ASIACRYPT 2003, vol. 2894 of Lecture Notes in Computer Science, Springer,
2003.

■ [CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Advances in Cryptology: CRYPTO 2002,
vol. 2442 of Lecture Notes in Computer Science, Springer, 2002.

■ [CSS07] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted
shared memory. In Proc. 26th ACM Symp. Principles of Distributed Computing (PODC),
2007.

Zurich Research Laboratory

84 26 February 2008 © 2008 IBM Corporation

References (2)
■ [FKK06] K. Fu, S. Kamara, and T. Kohno. Key regression: Enabling efficient key distribution

for secure distributed storage. In Proc. Network and Distributed Systems Security
Symposium (NDSS), 2006.

■ [FKM02] K. Fu, M. Kaminsky, and D. Mazières. Using SFS for a secure network file system.
;login: --- The Magazine of the USENIX Association, 27(6), December 2002.

■ [FNN+05] M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran. The OSD security
protocol. In Proc. 3rd Intl. IEEE Security in Storage Workshop (SISW 2005), pages 29-39,
2005.

■ [Fu99] K. Fu. Group sharing and random access in cryptographic storage file systems.
Master Thesis, MIT LCS, 1999.

■ [GSMB03] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing remote
untrusted storage. In Proc. Network and Distributed Systems Security Symposium (NDSS),
2003.

■ [HR04] S. Halevi and P. Rogaway. A parallelizable enciphering mode. In Topics in
Cryptology: CT-RSA 2004, vol. 2964 of Lecture Notes in Computer Science, Springer,
2004.

■ [KRS+03] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable
secure file sharing on untrusted storage. In Proc. 2nd USENIX Conference on File and
Storage Technologies (FAST 2003), 2003.

Zurich Research Laboratory

85 26 February 2008 © 2008 IBM Corporation

References (3)
■ [L06] B. Lalin. Transparent Data Integrity for a File System. Master thesis, KTH Stockholm

and IBM Zurich Research Laboratory, 2006.

■ [LKMS04] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository
(SUNDR). In Proc. Symp. Operating Systems Design and Implementation (OSDI), 2004.

■ [LRW02] M. Liskov, R. R. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in
Cryptology: CRYPTO 2002, vol. 2442 of Lecture Notes in Computer Science, Springer,
2002.

■ [MS02] D. Mazières and D. Shasha. Building secure file systems out of Byzantine storage.
In Proc. 21st ACM Symp. Principles of Distributed Computing (PODC), 2002.

■ [MVS00] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database
system on untrusted storage. In Proc. Symp. Operating Systems Design and
Implementation (OSDI), 2000.

■ [ORY05] A. Oprea, M. Reiter, and K. Yang. Space-efficient block storage integrity. In Proc.
Network and Distributed Systems Security Symposium (NDSS 2005), 2005.

■ [PC07] R. Pletka and C. Cachin. Cryptographic security for a high-performance distributed
file system. In Proc. 24th Mass Storage Systems and Technologies (MSST), Sept. 2007.

■ [R04] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In Advances in Cryptology: ASIACRYPT 2004, vol. 3329 of
Lecture Notes in Computer Science, Springer, 2004.

Zurich Research Laboratory

86 26 February 2008 © 2008 IBM Corporation

Further Reading

■ [KK05] V. Kher and Y. Kim. Securing distributed storage: Challenges, techniques, and
systems. In Proc. Workshop on Storage Security and Survivability (StorageSS), 2005.

■ [RKS02] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework for evaluating storage
system security. In Proc. USENIX Conference on File and Storage Technologies (FAST),
2002.

■ [WDZ03] C. Wright, J. Dave, and E. Zadok. Cryptographic file systems performance: What
you don't know can hurt you. In Proc. 2nd International IEEE Security in Storage Workshop
(SISW), 2003.

