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Overview
■ Design options for security in storage systems

■ Block/record-layer security

→ Tweakable encryption and other block-cipher modes

→ Hybrid block-integrity protection

→ Authenticated record-encryption

■ Object-layer security

→ Capabilities in Object Storage

■ Filesystem security

→ Designs for key management

→ Encryption using lazy revocation and key updating

→ Integrity protection in filesystems

→ Consistent access to untrusted storage*

■ Cryptography for storage in action

→ Tape drive with encryption (IBM TS1120)

→ TCG storage specification and drive-encryption (Seagate)

→ A cryptographic SAN filesystem
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Past Storage Systems: Inside the Box

app

inode

fs

blk

hba

Direct-attached Storage
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Current Storage Systems: Local

NAS
(Network-attached Storage)

net

NFS, CIFS
(TCP/IP)

net

fs

hba

inode

blk

fs

app

SAN
(Storage-area Network)

blk

FC, iSCSI

net

blk

hbanet

inode

fs

app

OBS
(Object Storage)

inode

net

OBS-SCSI
(T10)

net

inode

blk

hba

fs

app
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Network-based Storage Devices

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access control
 - space allocation
 - backup ops 
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Future Storage Systems: Anywhere

Amazon S3
(Simple Storage Service)
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Security in Current Networked Storage Systems

■ Existing technology offers little protection

→ Originally developed for server room

→ Coarse-grained access control

→ Storage provider, networks, and clients are trusted

■ Security is needed

→ Storage as a commodity
→ Networked storage to desktop (iSCSI)

■ Threats

- physical access to disks

- access to network

- authorized machines

- unauthorized machines

  ...
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Design Options for Security
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■ Goals

Confidentiality (no unauthorized access)

Integrity (no unauthorized modification)

Availability

■ Security mechanisms

Encryption

→ Confidentiality based on shared key k

Message-authentication code (MAC)

→ Integrity based on shared key k

Hashing and digital signatures

→ Integrity, w.r.t. reference value v

Access control

→ Confidentiality, integrity, availability

■ Any mechanism may be applied on any layer

Security Toolbox

E E
k k

k k
A A

✔

vH
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■ Storage systems have these layers for good reasons

→ Not all security mechanisms are useful and efficient on all layers

→ Challenge is to select the “right” combination

■ Some representative examples are presented

Any Security Mechanism May Be Applied 
on Any Layer

key mgmt.
&

lazy revocation

block-cipher
 modes &

IEEE P1619

file

object

block

hash trees
&

fork-linearizability

hybrid block-
integrity

protection

E A ✔

OBS security
protocol
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Generic Model for a Secure Storage System

client
security
provider

■ Option 1: Protect data in flight

→ Trusted client, trusted storage (untrusted network)

■ Option 2: Protect data at rest

→ Trusted client (untrusted storage and untrusted network)

→ Allows DoS attack, data may be lost

client
security
provider
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■ Encrypt the communication

→ Session, transport or packet layer

→ Secure RPC, SSL, IPsec, FC-SP ...

■ Layer-specific access control on storage device

→ NAS at filesystem layer (exists in AFS, NFSv4 ...)
→ ObjectStore at object layer (in standard)
→ SAN at block layer (proposed)

Security for Networked Storage Systems (1)

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

E EA A

✔

Option 1: Protect the data in flight

Access control

Authentication/integrity protection

Encryption

✔

E

A
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■ Encrypt the storage space

→ Encryption and integrity protection for a storage layer

■ Layer-specific cryptography on storage device

→ Typically on low layers: block encryption

- In tape and disk storage devices (emerging today)

- As separate appliance (existing, e.g., Decru/NetApp)

Security for Networked Storage Systems (2)

Option 2: Protect the data at rest

Access control

Authentication/integrity protection

Encryption

✔

E

A
fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

net net

A E
✔
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■ Encrypt the storage space

→ But don't trust the network
and don't trust the storage device

■ Layer-specific cryptography on client

→ Typically on higher layers: cryptographic filesystems

- Available today in local cryptographic filesystems

(CFS, SFS, Linux loopback encryption, Windows EFS)

- Not yet widely available for distributed filesystems

Security for Networked Storage Systems (3)

Combining Options 1 & 2:
Protecting data in flight & at rest

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

A E
✔
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■ Encryption: keys?

Separate security admin server

Encrypted with user/group public key

Held by hardware module

■ Integrity verification: reference values?

Integrated in directory

Inode tree is hash tree

Digital signatures under user/group public-key

■ Access control: credentials?

Separate security admin server (Kerberos, ObjStore admin)

Design Dimensions

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

A E
✔
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■ Storage systems have these layers for good reason

→ Not all security mechanisms are useful and efficient on all layers

■ Challenge is to select the “right” combination

Outline of Presentation

key mgmt.
&

lazy revocation

block-cipher
 modes &

IEEE P1619

file

object

block

hash trees
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fork-linearizability

hybrid block-
integrity

protection

E A ✔

OBS security
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Block Layer

■ Tweakable encryption and other block-cipher modes

■ Hybrid block-integrity protection

■ Authenticated record-encryption
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Encryption at the Block Layer

■ “Sector” encryption, 512-byte blocks

■ Transparent to storage system → no extra space available for chaining 
mode

■ IEEE SISW standardization effort: P1619, P1619.1, P1619.2, ...

app

inode

fs

blk

E
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Why a Block-Cipher Mode of Operation?

Plaintext bitmap 
picture

Encrypted in ECB 
mode

Encrypted in 
secure chaining 

mode
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Using CBC Mode

■ IV chosen at random → must be stored (but there is no room)

■ Derive IV from offset of sector on disk

IV = EK( disk id || sector offset )

■ Leaks location of first updated block within sector (a passive attack)

■ Active attack possible if adv. can decrypt some sectors but not others

P1

E

C1

K

IV P2

E

C2

K . . .

IV
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Tweakable Block Encryption [LRW02]

■ EK() is a pseudo-random permutation (deterministic after picking K)

→ Change even one bit of C to C' → decrypted P' totally independent of P

→ But the same permutation in every instance

■ Tweakable EK,T() is a family of independent permutations (indexed by T)

→ T = address of block

P

E

C

K
(secret)

P

E

C

K T
(public)

EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable
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Narrow-block Tweakable Encryption

■ All blocks of sector encrypted independently (unlike CBC)

■ Tweak is sector s plus block index i

■ Leaks only location of updated blocks within sector

Ciphertext in disk sector s

P1

. . .

Pi Pn

EK

s || i

. . .

C1 Ci Cn

Plaintext

Tweaked block
=

 cipher block
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■ XTS-AES mode based on
XOR-Encrypt-XOR (XEX) [R04]

■ Tweak = sector s || block index i

■ Key K = K1 || K2

■ Arithmetic in GF(2128)

→ α is primitive element in GF(2128)

→ αi computation is efficient for i=0,1,2...

■ XTS-AES is standardized by IEEE 
P1619 (almost final)

Narrow-block Tweakable Encryption Scheme

Pi

EK1

s

EK2

Pi

•αi
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Wide-block Tweakable Encryption

■ One tweaked block-encryption per sector

■ Tweak is sector address s

■ Leaks only that sector has been updated

Ciphertext in disk sector s

P1 ... ... ... Pn

E s

C1 ... ... ... Cn

Plaintext

K

Tweaked block
=

 disk sector
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Wide-block Tweakable Encryption Scheme

■ EME mode [HR04],
calls to E are parallelizable:

■ EME requires ≈2 block cipher calls per plaintext block

→ Considered too costly by many

■ IEEE P1619.2 standardization (far from final)
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Integrity Protection at the Block Layer

■ No extra space available → really problematic for integrity

■ All integrity protection and data authentication methods require extra 
space for a tag or a hash value

■ If there was space, use a MAC or a hash tree (see later) ...

app

inode

fs

blk

A
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Hybrid Integrity Protection at the Block Layer [ORY05]

■ Data is encrypted

■ Use tweakable encryption mode on wide block (sector of 512B)

■ Idea:

If data contains redundancy, then any modification
of ciphertext is detectable because decrypted
plaintext will look random.

→ “Redundant” sectors are not extra protected for modification detection

→ “Random” sectors are protected in traditional way

■ Needs a heuristic test for “redundancy” or “randomness” in a sector
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Writing Data

app

inode

fs

blk

E

K

T

Looks 
random?

If yes:

A
■ If sector looks random, 

authenticate it using extra 
trusted storage.

■ If sector looks redundant,
just store it.
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Reading Data

app

inode

fs

blk

D

K

T

Looks
random?

If yes:

A=
■ If decrypted sector looks random, 

then hash it and compare it with 
authenticated value.

■ If decrypted sector looks 
redundant, accept it as authentic.

→ Allows replay attack with 
previous content of sector.
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Discussion of Hybrid Scheme

■ Performance depends on payload data

■ Suffers from replay attacks

■ Depends on estimator for redundancy

→ Simple 1-st order entropy test on 8-bit blocks in 1024-byte sector
● Threshold set to 7.7 bits
● 98% of blocks from filesystem trace have observed entropy < 7.7

→ Saves 98% storage space compared to hashing every block
(Or: protects integrity of 98% of observed data.)

■ Cannot achieve ideal security for arbitrary payload
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Authenticated Record-Encryption

■ AE combines encryption and authentication (MAC) in one pass

AE(K, IV, P) → (C, Tag)

AE-1(K, C, Tag) → P / “FAIL”

■ Length-expanding → suitable for tape, but not for disk

IV

AE
K

P

C Tag

Authenticated Encryption
(AE)
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Authenticated Record-Encryption Standards

■ IEEE P1619.1 has standardized four authenticated encryption schemes:

CCM-128-AES-256

→ Counter mode encryption with CBC-MAC
using AES-256 with 128-bit wide CBC-MAC (used by Sun)

GCM-128-AES-256

→ Galois/counter mode encryption
using AES-256 with 128-bit wide tag (used by IBM, LTO)

CBC-AES-256-HMAC-SHA-*
→ CBC mode encryption with HMAC

using AES 256 and SHA-*

XTS-AES-256-HMAC-SHA-512

→ XTS narrow-block tweakable encryption (P1619.1) with HMAC
using AES 256 and SHA-512

■ Standard status is final, adoption by industry is guaranteed



Zurich Research Laboratory

33 26 February 2008 © 2008 IBM Corporation

Object Layer

■ Capabilities in Object Storage
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Object Store Security Protocol [ACF+02, FNN+05]

client

security
manager

(req, cap, tag, data) →

security
context

authentication
request

← (reply, data)

OSD

■ Capability-based protocol to authenticate requests and traffic
between client and object-storage device (OSD)

■ Key establishment protocol between OSD and security manager

■ Protocol between client and security manager specific to filesystem
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Protocol Features

■ Security methods

NONE: --

CAPKEY: authenticate requests at OSD level, no transport security

→ tag computed only over capability

CMDRSP: above plus transport integrity for request and reply

→ tag computed over capability and request

ALLDATA: above plus transport integrity for payload data

→ tag computed over capability, request, and data

■ May replace IPsec for iSCSI or FCsec for Fibre Channel
(also duplicates some of their functionality)
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OSD Data Types

■ Object hierarchy

OBS → Partition → Object

■ Key hierarchy

Master key: to initialize OSD and create root key

Root key: to manage partitions and their keys

Partition key: only to create per-partition working key

Working key: per partition, changed frequently, useful for revocation (among 
other uses), protects all objects in partition
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OBS Security Protocol Details (CAPKEY)
■ PRF F

■ Capabilities

(obj, exptime, permissions, nonce)

■ Client requests credential from security manager and receives

cred = (cap, Kcap)

where Kcap = FK(cap) under appropriate partition's working key K

■ Client sends

(req, cap, tag)

to OSD, with a unique channel id (or nonce) chosen by the OSD, and

tag = FKcap(cap || channel id)

■ OSD verifies that

1. req is an allowed operation by cap for this partition

2. validates tag from channel id, using key K' = FK(cap) with its working 
key K of current partition
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File Layer

■ Designs for key management

■ Encryption using lazy revocation and key updating

■ Integrity protection in filesystems

■ Consistent access to untrusted storage
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Key Management in Cryptographic Filesystems

■ Two approaches

On-line and centralized

- Only symmetric-key crypto

- Simple and efficient

- Limited scope and scalability

- Ex. eCryptfs (as in Linux Kernel 2.6.19), Cryptographic SAN.FS [PC07] ...

Off-line and de-centralized

- Requires public-key crypto

- Complex, computationally expensive

- Scalable

- Ex. SFS [FKM02], Windows EFS, Plutus [KRS+03], Sirius [GSMB03] ...
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De-centralized Key Management

■ Users have SK/PK pair

■ Groups have SK/PK pair; every member of group knows SK

■ Files encrypted using FEK with block cipher

■ Confidentiality: Store FEK encrypted in meta-data

→ Encrypted under every PK of every user/group that has access

Example: File X, encrypted with FEKX

owner: A, rwx, EPKA
(FEKX), 

group: G, rw-, EPKG
(FEKX), 

world:    ---

■ Integrity: Add FSKX / FVKX, key pair for digital signatures, to X

→ Store FSK like this in every encrypted file

■ Drawback: key revocation is tedious
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Key Revocation

■ User revoked → change all keys that were known to user

→ Re-encrypt all data with fresh keys

■ Expensive and disruptive operation

■ Idea: Lazy Revocation [F99]

→ Re-encrypt data only when it changes after revocation, keep old keys 
around.

■ All versions of a key must remain accessible
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Lazy Revocation [KRS+03]

B2 B3B1 ... Bn

K1

K1

u u' u''

users

K1

center storage

K1S1(K1)

S1(K1, K2)

time

u' is revoked

u'' writes B2 K2

K2 K2--

u'' is revoked

u writes B3 ...

K3 ----S1(K1, K2, K3)

K3
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Key Updating Schemes for Lazy Revocation

seed S0

S1

S2

ST

M1

M2

MT

center user

state

user key

... ...

Derive()
K1

K2

KT

Extract()

...

FEK

Init()

Update()

■ Requirements

→ User can obtain K1 ... Kt from Mt

→ Adversary with Mt cannot distinguish Kt+1 from uniformly random string
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Formalization [BCO05, BCO06, FKK06]

■ Key updating scheme for T periods

KUT = (Init, Update, Derive, Extract)

■ Metrics of interest

→ Time of Update(), Derive(), and Extract()

→ Size of center state St

→ Size of user key Mt
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Composition of Key Updating Schemes [BCO06]

■ Addition

KU1T1 ⊕ KU2T2   =   KU⊕T1+T2

Construction

→ First T1 intervals use KU1

→ Subsequent T2 intervals use KU2 and include MT1 in user key

■ Multiplication

KU1T1 ⊗ KU2T2   =   KU⊗T1 · T2

Construction

→ Every key generated with KU1 is used to seed an instance of KU2
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Constructions

■ Chaining construction

■ Trapdoor permutation-based

■ Tree construction
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■ Using pseudo-random generator G

■ Drawback: Fixed T

Chaining Construction (“Hash Chain”)

S1M1

ST-1MT-1

STMT

seed

G

G

...

K1

KT-1

KT

G

State Update Derive Extract

seed 0 O(T) PRG O(T) PRG
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■ Using a trap-door permutation f, f-1 (TDP), where f is easy and f-1 is 
hard without private key, hash function h() in Random-Oracle Model

Trapdoor Permutation Construction [KRS+03]

S1M1

...

K1

f-1 f

h

S2 K2

f-1 f

h
M2

...

f-1 f

ST KT

f-1 f

h
MT

State Update Derive Extract

const. O(T) TDPseed TDP

Advantage: Flexible T
Drawback: Public-key operations
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■ Using pseudo-random generator G and pseudo-random function F

■ User key Mt is smallest set of nodes needed to derive K1 ... Kt

■ T fixed, but practically unbounded, as cost is logarithmic in T

Tree Construction [BCO06]

V

V0

V10

K1

V1

V11

G

V00 V01

F

G G

K2

F
...

State Update Derive Extract

O(log T) O(log T)
PRG

0 O(log T)
PRG

Advantages: 
- Symmetric-key operations
- Practically unbounded T
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Comparison of Key Updating Schemes

■ Trapdoor scheme using RSA-1024

■ PRF/PRG using AES-128

■ Average times [ms] measured on Intel 2.4 GHz Xeon

Scheme T
Derive +
Update

Extract

Chaining 1024 1.28 1.24

Trapdoor 1024 15.4 15.2

Tree 1024 0.015 0.006

Tree 216 0.015 0.008Tree

Tree 225 0.015 0.01Tree
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Integrity Protection in Filesystems

■ Storage consists of n data items x1, ..., xn (entries in list, blocks of file ...)

■ Applications access storage via integrity checker

→ Checker uses small trusted memory to store short reference value v
(i.e., together with encryption key in meta-data)

■ Integrity checker operations

→ Read item and verify w.r.t. v 

→ Write item and update v accordingly

Trusted

App A
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Implementing an Integrity Checker

■ Use hash function H to compute v?  v = H(x1 || ... || xn)

→ Infeasible for long files

→ No random access to item

■ Use a secret key with a MAC?

→ Suffers from replay attacks

■ Well-known solution: Hash tree [Merkle 79]

→ Overhead of read/verify and write/update is logarithmic (in n)

■ Recent alternatives

Dynamic accumulators [CL02]

→ Overhead of read/verify is constant

Incremental hashing [BM97,CDDGS03]

→ Overhead of write/update is constant
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Hash trees for Integrity Checking [Merkle 79]

■ Parent node is hash of its children 

■ Root hash value commits all
data blocks

→ Root hash in trusted memory

→ Tree is on extra untrusted storage

■ To verify xi, recompute path from xi 
to root with sibling nodes and 
compare to trusted root hash

■ To update xi, recompute new root 
hash and nodes along path from xi 
to root

root

H0 H1

H00 H01 H10 H11

x1 x2 x3 x4

Read & write operations need work O(log n)
→ Hash operations
→ Extra storage accesses
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Dynamic Accumulator for Integrity Checking
■ An accumulator is a cryptographic abstraction for collecting data values 

and checking their presence:

Init() → (a, k)  --  generates authenticator/accumulator value a and key k

Add(a, i, xi, k) → a'  --  adds xi to accumulator at position i

Update(a, i, xi, k) → a'  --  updates accumulator at position i to xi 

Witness(a, i, xi, k) → w  --  produces a witness w for presence of xi

Verify(a, i, xi, w) → “yes” / “no”  -- checks if witness w is valid and proves 
that entry xi was added to accumulator at position i

■ Without k, it must be infeasible to forge i', x', w' that verify for given a 

■ Impl. with public-key crypto under strong RSA assumption [CL02]:

→ Given an RSA modulus N = P · Q (with P, Q safe primes), and r ∈ ZN, it is 
infeasible to find a, b s.t. ab = r  mod N

Accumulator a containing x1, ..., xn is a = r H(1||x1) ··· H(n||xn)  mod N

Witness for xi in a is w = a 1/H(i||xi)  mod N

Verify that xi is contained in a by checking w H(i||xi) = a  mod N ?



Zurich Research Laboratory

55 26 February 2008 © 2008 IBM Corporation

Incremental Hashing for Integrity Checking

■ Hash function IH(x1, ..., xn) on n entries x1, ..., xn that allows updates:

Given h = IH(x1, ..., xi, ..., xn) and values xi and x'i, 
one can compute h' = IH(x1, ..., x'i, ..., xn) in time independent of n.

■ Implementation based on number theory [BM97]:

IH(x1, ..., xn) = H(1||xn) ··· H(n||xn) mod p 

for large prime p and ordinary hash function H(·)
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Integrity Checking Schemes Summary

 Scheme Update time

 Hash tree

Verify time

 Accumulator

 Incr. Hash constant

n

n

constant

O(log n) O(log n)  Fast, only hash operations

 Slow, public-key operations

 Fast, but verify is slow

In practice, integrity checking is usually done with hash trees.
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■ How to serialize tree with minimal overhead?

Storage access should cover contiguous region

File may grow & shrink

■ Which tree? → Topologies

■ Naïve scheme? Hash only once (depth 1)

?→

Implementing Hash Trees [L06]
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Hash Tree Topologies for Filesystems

Imbalanced tree

Adapts to file size

by “growing”

...

Implicit complete tree

Sparse allocation

How to enumerate nodes?

Breadth-first order (BFO)

Pre-order
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Pre-order Enumeration of Hash Tree Nodes [PC07]

(3,0)

3 7 11

2

H

H

1

H

25

16 20 24

15

H

28

H

4 5 6

H

12 13 14

H

8 9 10

H

21 22 23

H

17 18 19

(0,15)(0,0)

(1,3)

(2,1)

(0,10)
H H H

. . . . . .

Implicit sparse allocation of maximum-size tree

Typical file starting at offset 0 maps to a contiguous range

Takes care of file holes
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Hash Tree Implementations in Filesystems

■ Ensure consistency between two mutually dependent data paths

→ Much more complex than encryption in filesystem

■ Buffer current tree-path with all siblings

→ Sequential read & write of whole file in O(n) work
(constant overhead per access)

■ Cache whole tree

→ Potentially large memory footprint

→ Typical tree size 1‰ ... 1% of file size

■ Journaling needed for crash-resilience

→ Otherwise crash results in integrity violation

→ Solution demonstrated only once to date [MVS00]
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An Experimental Comparison [L06]

■ Integrity-protecting virtual filesystem in Linux

→ Kernel 2.6, user-space, with FUSE (Filesystem in USErspace)

→ Physical filesystem was local ext3

→ IBM x346 server, dual 3.2 GHz Xeon CUPs

- 3GB RAM, several 73GB IBM SCSI disks with 10k RPM

■ Benchmarks

→ Sequential reads & writes of large files (8GB, dd)

→ PostMark synthetic benchmark

- Creates, reads, writes, deletes many 1-2 MB files

■ Topologies and layouts of tree

→ NAIVE (tree of depth 1)

→ SIMPLE (no buffered nodes)

→ BFO / PREORDER enumeration (incomplete trees with buffered path)

→ GROWING (imbalanced tree with buffered paths and pre-order enum.)

→ Degree: 4 / 16 / 128
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Sequential Reads [L06]
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Sequential Writes [L06]
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PostMark Benchmark [L06]
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Hash Trees in Filesystems - Summary

■ Naïve approach works surprisingly well here

→ But not for first access!

■ Topology and degree may vary

→ Best determine experimentally (≈ 128)

→ Pre-order enumeration simplifies design
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Consistent Access to Untrusted Storage*

Client

Client

Client

■ Many independent clients

Correct

Store data on server

Communicate only with server

Small trusted memory

■ Storage server

Untrusted

Potentially corrupted

■ Clients read and write concurrently

How to ensure consistent view of data to all clients?

(* Advanced topic, applies to future storage systems.)
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Consistent Access to Untrusted Storage

■ Loose synchronization and concurrency pose a new problem

■ Suppose clients sign data with digital signatures:

Server cannot forge any values ...

→ But answer with outdated value (“replay attack”)

→ Or send different values to different clients
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Illustration of the Problem

C1 C3

C1

C2

C3

r(1) → x

w(1,x) w(1,u)

r(1) → u r(2) → w

w(2,w)
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Solution: Fork linearizability [MS02, CSS07]

■ Server may present different views to clients

→ “Fork” their views of history

→ Clients cannot prevent this

■ Fork linearizability

If server forks the views of two clients once, then

→ their views are forked ever after

→ they never again see any updates of each other

■ Forks are easier to detect than subtle data modifications

→ Needs a separate channel for detection

■ Cryptographic protocols can ensure fork linearizability [MS02, CSS07]

→ Implemented in SUNDR file system [LKMS04]
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Cryptography for Storage in Action

■ Tape drive with encryption (IBM TS1120)

■ TCG storage specification and drive-encryption (Seagate)

■ A cryptographic SAN filesystem [PC07]
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Tape Drives with built-in Encryption (IBM TS1120)

■ Hardware-based encryption in drive

Authenticated encryption in Galois/counter mode with 
AES-256

■ Hybrid encryption scheme

→ Cartridge analogous to a PGP message

Data Key (DK) encrypts raw data on tape (AES key)

→ DK chosen randomly, like a session key

Key-Encryption Key (KEK) encrypts DK (public key of 
receiver)

→ Result is Encrypted DK (EEDK)

→ EEDK is stored on tape and in cartridge memory

Up to 2 EEDKs per cartridge

■ Public-key operations for key serving done by  
Encryption-Key Manager (EKM) on host
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Data Encryption Process for Writing Tape
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Data Decryption Process for Reading Tape
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Disk Drives with built-in Encryption (Seagate)

■ Encryption in hardware on the drive

→ Transparent to application

→ No performance issues (scales with storage space)

■ Key stored in drive logic inside disk enclosure

→ Never leaves drive
→ May exploit smartcard-like secure hardware

■ User or host authenticates to drive before OS boot

→ Security is shifted to authentication

→ Authentication methods

- Password/PIN entered via BIOS

- Cryptographic methods (Public-key signature or MAC)

■ Seagate's FDE drive

→ AES for bulk encryption (details not public, but NIST has validated its 
ECB mode ...)
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TCG Storage Architecture

■ Trusted Peripheral (TPer) contains a Security Provider (SP)

■ TPer communicates with host, its TPM, or other devices via:

→ SCSI (T10) Security Protocol IN/OUT commands

→ SATA (T13) Trusted Send/Receive commands

■ SP acts as a root of trust, in storage device

≠ most other methods presented here, where storage is not trusted

TPM

CPU

RAM

Host TPer

SP

SCSI / SATA
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TCG Storage Architecture Details

■ Security Provider (SP)

→ SP: logical group of security features

→ Tables: register-like primitive storage and control functions

→ Methods: simple get/set commands

→ Access control over methods and tables

■ Cryptographic functions

→ Encryption, decryption, hashing, MAC, signing, verifying ...

→ AES, RSA, ECC, SHA-2, HMAC ...

■ SP has a life-cycle that needs support

→ Manufacturing ↔ issued / active ↔ disabled / active ↔ frozen

→ Life-cycle of TPer: Produce, own, enroll, connect, use ...

■ Currently a draft standard ...
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A Cryptographic SAN Filesystem [PC07]
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■ SAN today:

Clients access block storage devices directly

→ Fibre Channel (SCSI)

Static configuration

→ OS sees a local block storage device

Static access control

→ Zoning & fencing in FC switch

Inside server room only

SANs and SAN Filesystems

SAN

clientclient
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■ Virtualized block storage space

■ Block access managed by metadata server (MDS)

■ Single filesystem name space 

■ Heterogeneous clients

SAN Filesystems (e.g. IBM's StorageTank)

SAN

LAN

metadata

net

app

vfs

blk

net

net

app

vfs

blk

net

net

MDS
(clustered)

Un*x client W2k client
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■ Integrity verification & encryption in client

→ Scalable

→ End-to-end security

■ MDS is trusted, provides
encryption keys & reference data

→ Integrate key management with 
metadata

→ No modification of storage interface

■ Needs 
- secure LAN connection (IPsec)
- trusted client kernels

Design of a Cryptographic SAN Filesystem

LAN

SAN

clientclient

MDS

E EH H

✔ ✔

Access control

Integrity protection

Encryption

✔

E

H
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■ Any security mechanism can be applied on any layer

■ Challenge is to select the “right” combination

Summary

key mgmt.
&

lazy revocation

block-cipher
 modes &

IEEE P1619

file

object

block

hash trees
&

fork-linearizability

hybrid block-
integrity

protection

E A ✔

OBS security
protocol
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Thank you!

■ More information?

http://www.zurich.ibm.com/~cca

<cca@zurich.ibm.com>
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