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Overview

= Design options for security in storage systems

= Block/record-layer security
— Tweakable encryption and other block-cipher modes
— Hybrid block-integrity protection
— Authenticated record-encryption

= Object-layer security
— Capabilities in Object Storage

= Filesystem security
— Designs for key management
— Encryption using lazy revocation and key updating
— Integrity protection in filesystems
— Consistent access to untrusted storage*

= Cryptography for storage in action
— Tape drive with encryption (IBM TS1120)

— TCG storage specification and drive-encryption (Seagate)
© 2008 IBM Corporation

— A cryptographic SAN filesystem
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Past Storage Systems: Inside the Box

app

fs

inode
blk
hba

Direct-attached Storage
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Current Storage Systems: Local

app app app
fs fs fs fs
n_et,—l net |inode- inode inode inode
NFS, CIFS blk net - net blk blk blk
(TCPAP) hb OBS-SCSI hb t t| |hb
a - a ne |—| ne a
(T10)
FC, iSCSI
NAS OBS SAN

(Network-attached Storage) (Object Storage) (Storage-area Network)
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Network-based Storage Devices

File server Object storage dev. Block device

- read & write data in file - read & write bytes in object - read & write blocks

- create & destroy file - create & destroy object --

- directory operations -- --

- file/dir-based access control - object-level access control - device-level access control
- space allocation - space allocation --

- backup ops - backup ops --
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Future Storage Systems: Anywhere

_ N
Lramazon
“ webservices™

Amazon S3
(Simple Storage Service)

(QBitTorrent
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Security in Current Networked Storage Systems

= Existing technology offers little protection

— QOriginally developed for server room
— Coarse-grained access control
— Storage provider, networks, and clients are trusted

= Security is needed
— Storage as a commodity
— Networked storage to desktop (iISCSI)

= Threats
- physical access to disks
- access to network
- authorized machines
- unauthorized machines

7 | 26 February 2008 © 2008 IBM Corporation
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Design Options for Security

8 | 26 February 2008 © 2008 IBM Corporation
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Security Toolbox

= Goals
Confidentiality (no unauthorized access)
Integrity (no unauthorized modification)
Availability

m Security mechanisms
Encryption é k é
— Confidentiality based on shared key k
Message-authentication code (MAC) k
— Integrity based on shared key k Q Q
Hashing and digital signatures @ -
— Integrity, w.r.t. reference value v

e Ol

Access control
— Confidentiality, integrity, availability

= Any mechanism may be applied on any layer

9 | 26 February 2008
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Any Security Mechanism May Be Applied
on Any Layer

= Storage systems have these layers for good reasons
— Not all security mechanisms are useful and efficient on all layers

— Challenge is to select the “right” combination

= Some representative examples are presented

key mgmt. hash trees

file & &

lazy revocation [fork-linearizabilityf

. OBS security
ObJeCt protocol
block-cipher hybrid block-
block modes & integrity
IEEE P1619 protection
© 2008 IBM Corporation
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Generic Model for a Secure Storage System

= Option 1: Protect data in flight
— Trusted client, trusted storage (untrusted network)

LN

= Option 2: Protect data at rest

— Trusted client (untrusted storage and untrusted network)
— Allows DoS attack, data may be lost

8
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Security for Networked Storage Systems (1)
Option 1: Protect the data in flight

app
@ Access control
@ Authentication/integrity protection _ _
@ Encryption fs/obj/blk (v )s/obj/blk
= Encrypt the communication hba

— Session, transport or packet layer
— Secure RPC, SSL, IPsec, FC-SP ...

= Layer-specific access control on storage device

— NAS at filesystem layer (exists in AFS, NFSv4 ...)
— QObjectStore at object layer (in standard)
— SAN at block layer (proposed)

26 February 2008 © 2008 IBM Corporation
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Security for Networked Storage Systems (2)
Option 2: Protect the data at rest

app
@ Access control
(® Authentication/integrity protection 4
. fs/obj/blk
@ Encryption
net net

= Encrypt the storage space

— Encryption and integrity protection for a storage layer
= Layer-specific cryptography on storage device

— Typically on low layers: block encryption

- In tape and disk storage devices (emerging today)
- As separate appliance (existing, e.g., Decru/NetApp)

26 February 2008 © 2008 IBM Corporation
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Security for Networked Storage Systems (3)

= Encrypt the storage space

— But don't trust the network
and don't trust the storage device

= Layer-specific cryptography on client
— Typically on higher layers: cryptographic filesystems

- Available today in local cryptographic filesystems
(CFS, SFS, Linux loopback encryption, Windows EFS)

- Not yet widely available for distributed filesystems

14 | 26 February 2008 © 2008 IBM Corporation
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Design Dimensions

Encryption: keys?
u yp y app

Separate security admin server
Encrypted with user/group public key

Held by hardware module

= Integrity verification: reference values?

Integrated in directory

Inode tree is hash tree
Digital signatures under user/group public-key

m Access control: credentials?

Separate security admin server (Kerberos, ObjStore admin)

26 February 2008 © 2008 IBM Corporation
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Outline of Presentation

= Storage systems have these layers for good reason

— Not all security mechanisms are useful and efficient on all layers

= Challenge is to select the “right” combination

file

object

block

®

®

©

key mgmt.
&
lazy revocation

hash trees
&
[fork-linearizability]

OBS security
protocol

block-cipher
modes &
IEEE P1619

hybrid block-
integrity
protection

26 February 2008
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Block Layer

= Tweakable encryption and other block-cipher modes
= Hybrid block-integrity protection

= Authenticated record-encryption

17 | 26 February 2008 © 2008 IBM Corporation
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Encryption at the Block Layer

= “Sector” encryption, 512-byte blocks

= Transparent to storage system -» no extra space available for chaining
mode

app

fs

inode

blk

» |EEE SISW standardization effort: P1619, P1619.1, P1619.2, ...

18 | 26 February 2008 © 2008 IBM Corporation
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Why a Block-Cipher Mode of Operation?

Plaintext bitmap Encrypted in ECB Encrypted in
picture mode secure chaining
mode

19 | 26 February 2008 © 2008 IBM Corporation
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Using CBC Mode

L v 1 [P ] [P ]

[ :J :J e

L v |1 [ C |

= [V chosen at random - must be stored (but there is no room)

m Derive IV from offset of sector on disk
IV = Ek( disk id || sector offset )

= Leaks location of first updated block within sector (a passive attack)

= Active attack possible if adv. can decrypt some sectors but not others

20 | 26 February 2008 © 2008 IBM Corporation
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Tweakable Block Encryption [LRWO0Z2]

Traditional Tweakable

K K T
(secret) (public)
Ek() is PRP Ek 1() is a PRP for every T

= Ek() is a pseudo-random permutation (deterministic after picking K)

— Change even one bit of C to C' » decrypted P’ totally independent of P
— But the same permutation in every instance

= Tweakable Ek 1() is a family of independent permutations (indexed by T)

— T = address of block
21 | 26 February 2008 © 2008 IBM Corporation
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Narrow-block Tweakable Encryption

Plaintext

P17 | Pi | [ Pn T

Tweaked block

cipher block

L C1 ] [ Ci ] [ Cn [ _

Ciphertext in disk sector s

= All blocks of sector encrypted independently (unlike CBC)
= Tweak is sector s plus block index i

= Leaks only location of updated blocks within sector

22 | 26 February 2008 © 2008 IBM Corporation
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Narrow-block Tweakable Encryption Scheme

m XTS-AES mode based on [ Pi ]

XOR-Encrypt-XOR (XEX) [R04]
= Tweak = sector s || block index i
= Key K =K1 || K2

= Arithmetic in GF(2128)
— a is primitive element in GF(2128)

— ai computation is efficient for i=0,1,2...

m XTS-AES is standardized by IEEE
P1619 (almost final)

23 | 26 February 2008 © 2008 IBM Corporation
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Wide-block Tweakable Encryption

Plaintext

Tweaked block
S =
disk sector

L ct 1T . T . T .. T ¢cn [

Ciphertext in disk sector s

= One tweaked block-encryption per sector
= Tweak is sector address s

m Leaks only that sector has been updated

24 | 26 February 2008 © 2008 IBM Corporation
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Wide-block Tweakable Encryption Scheme

25

= EME mode [HRO04],
calls to E are parallelizable:

L —&
PPy

[ ]

MP

MC

]

cCy

L—&

&

FPP,
= SPaT

M=

f=—s5CaT

ccey

Py

2[—
PPy

]

]

cCy

2L—=

Cs

PPP,

cCCy

AL——¢p
PPy

]

AM—=

]

CCsy

A=

Cy

= EME requires ~2 block cipher calls per plaintext block

— Considered too costly by many

= |[EEE P1619.2 standardization (far from final)

| 26 February 2008

PPP,

CCCy

PPy

M —=db

aCy

8L—=

PPP,

CCCy
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Integrity Protection at the Block Layer

= No extra space available - really problematic for integrity

= All integrity protection and data authentication methods require extra
space for a tag or a hash value

app

fs

inode

blk

= If there was space, use a MAC or a hash tree (see later) ...

26 | 26 February 2008 © 2008 IBM Corporation
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Hybrid Integrity Protection at the Block Layer [ORY(05]

= Data is encrypted
= Use tweakable encryption mode on wide block (sector of 512B)
= Idea:

If data contains redundancy, then any modification

of ciphertext is detectable because decrypted
plaintext will look random.

— “Redundant” sectors are not extra protected for modification detection
— “Random” sectors are protected in traditional way

= Needs a heuristic test for “redundancy” or “randomness” in a sector

26 February 2008 © 2008 IBM Corporation
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Writing Data

app
fs
inode
blk Looks
random?
—p
If yes:
(»)
./ T = If sector looks random,

authenticate it using extra
trusted storage.

» If sector looks redundant,
just store it.

28 | 26 February 2008 © 2008 IBM Corporation
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Reading Data

app
fs
inode
Looks
blk random?
*

= If decrypted sector looks random,
then hash it and compare it with
authenticated value.

oo}

= If decrypted sector looks
redundant, accept it as authentic.

— Allows replay attack with
previous content of sector.

29 | 26 February 2008 © 2008 IBM Corporation
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Discussion of Hybrid Scheme

= Performance depends on payload data

= Suffers from replay attacks

= Depends on estimator for redundancy
— Simple 1-st order entropy test on 8-bit blocks in 1024-byte sector

* Threshold set to 7.7 bits
» 98% of blocks from filesystem trace have observed entropy < 7.7

— Saves 98% storage space compared to hashing every block
(Or: protects integrity of 98% of observed data.)

= Cannot achieve ideal security for arbitrary payload

© 2008 IBM Corporation
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Authenticated Record-Encryption

LIV ]

Authenticated Encryption

l (AE)

|_Tag |

= AE combines encryption and authentication (MAC) in one pass
AE(K, IV, P) — (C, Tag)
AE-1(K, C, Tag) — P/ “FAIL”

= Length-expanding — suitable for tape, but not for disk

31 | 26 February 2008 © 2008 IBM Corporation
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Authenticated Record-Encryption Standards

= [EEE P1619.1 has standardized four authenticated encryption schemes:

CCM-128-AES-256

— Counter mode encryption with CBC-MAC
using AES-256 with 128-bit wide CBC-MAC (used by Sun)

GCM-128-AES-256

— Galois/counter mode encryption
using AES-256 with 128-bit wide tag (used by IBM, LTO)

CBC-AES-256-HMAC-SHA-*

— CBC mode encryption with HMAC
using AES 256 and SHA-*

XTS-AES-256-HMAC-SHA-512

— XTS narrow-block tweakable encryption (P1619.1) with HMAC
using AES 256 and SHA-512

= Standard status is final, adoption by industry is guaranteed

Ky | 26 February 2008 © 2008 IBM Corporation
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Object Layer

= Capabilities in Object Storage

33 | 26 February 2008 © 2008 IBM Corporation
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Object Store Security Protocol [ACF+02, FNN+035]

security
context

authenticatio
request

security
manager

client

(req, cap, tag, data) »
< (reply, data)

= Capability-based protocol to authenticate requests and traffic
between client and object-storage device (OSD)

= Key establishment protocol between OSD and security manager

= Protocol between client and security manager specific to filesystem

| 26 February 2008 © 2008 IBM Corporation
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Protocol Features

= Security methods

NONE: --

CAPKEY: authenticate requests at OSD level, no transport security
— tag computed only over capability

CMDRSP: above plus transport integrity for request and reply

— tag computed over capability and request

ALLDATA: above plus transport integrity for payload data
— tag computed over capability, request, and data

= May replace IPsec for iSCSI or FCsec for Fibre Channel
(also duplicates some of their functionality)

35 | 26 February 2008
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OSD Data Types

= Object hierarchy
OBS - Partition » Object

= Key hierarchy
Master key: to initialize OSD and create root key
Root key: to manage partitions and their keys

Partition key: only to create per-partition working key

Working key: per partition, changed frequently, useful for revocation (among
other uses), protects all objects in partition

© 2008 IBM Corporation
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OBS Security Protocol Details (CAPKEY)

= PRF F
= Capabilities

(obj, exptime, permissions, nonce)
= Client requests credential from security manager and receives

cred = (cap, Kcap)
where Kcap = Fg(cap) under appropriate partition's working key K

= Client sends
(req, cap, tag)
to OSD, with a unique channel id (or nonce) chosen by the OSD, and

tag = Fkcap(cap || channel id)

= OSD verifies that
1. req is an allowed operation by cap for this partition
= Fk(cap) with its working

2. validates tag from channel id, using key K'
© 2008 IBM Corporation

key K of current partition

37 | 26 February 2008
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File Layer

= Designs for key management
= Encryption using lazy revocation and key updating
= Integrity protection in filesystems

= Consistent access to untrusted storage

26 February 2008 © 2008 IBM Corporation
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Key Management in Cryptographic Filesystems

= Two approaches

On-line and centralized

- Only symmetric-key crypto

- Simple and efficient

- Limited scope and scalability

- Ex. eCryptfs (as in Linux Kernel 2.6.19), Cryptographic SAN.FS [PCO07] ...

Off-line and de-centralized

- Requires public-key crypto

- Complex, computationally expensive

- Scalable

- Ex. SFS [FKMO02], Windows EFS, Plutus [KRS+03], Sirius [GSMBO03] ...

26 February 2008 © 2008 IBM Corporation
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De-centralized Key Management

= Users have SK/PK pair
= Groups have SK/PK pair; every member of group knows SK
= Files encrypted using FEK with block cipher

= Confidentiality: Store FEK encrypted in meta-data
— Encrypted under every PK of every user/group that has access

Example: File X, encrypted with FEKx
owner: A, rwx, Epk,(FEK),
group: G, rw-, EPKG(FEKX),

world: —-——

» Integrity: Add FSKyx / FVK, key pair for digital signatures, to X
— Store FSK like this in every encrypted file
= Drawback: key revocation is tedious

40 | 26 February 2008 © 2008 IBM Corporation
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Key Revocation

= User revoked - change all keys that were known to user
— Re-encrypt all data with fresh keys

= Expensive and disruptive operation

= Idea: Lazy Revocation [F99]

— Re-encrypt data only when it changes after revocation, keep old keys
around.

= All versions of a key must remain accessible

26 February 2008 © 2008 IBM Corporation
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Lazy Revocation [KRS+03]

center

u'is revoked

u" writes Bo

u" is revoked

S1(K1, K2, K3)

u writes Bs ...

time

26 February 2008

S1(K1)

K1

S1(K1, K2)

K2

K3

© 2008 IBM Corporation
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Key Updating Schemes for Lazy Revocation

center user
_ state
Init() 5
seed 0 user key FEK

Extract()

M K1
Update()

My Ko

= Requirements

— User can obtain K ... K; from My
— Adversary with M; cannot distinguish K4 from uniformly random string

43 | 26 February 2008 © 2008 IBM Corporation
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Formalization [BCO05, BCO06, FKKO0G6]

= Key updating scheme for T periods
KUt = (Init, Update, Derive, Extract)

m Metrics of interest

— Time of Update(), Derive(), and Extract()
— Size of center state S¢

— Size of user key M

44 | 26 February 2008 © 2008 IBM Corporation
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Composition of Key Updating Schemes [BCOO0G]

= Addition
KU1t ® KUZ1p = KU®T 412

Construction
— First T1 intervals use KU
— Subsequent T2 intervals use KU2 and include Mt in user key

= Multiplication
KUty ® KU2r, = KU®Tq. 12

Construction
— Every key generated with KU1 is used to seed an instance of KU?2

45 | 26 February 2008 © 2008 IBM Corporation
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Constructions

= Chaining construction
= Trapdoor permutation-based

m Tree construction

46 | 26 February 2008 © 2008 IBM Corporation
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— m— ———

Chaining Construction (*Hash Chain™)

= Using pseudo-random generator G

M S+ K1

State | Update

Derive

Extract

seed 0

seed

m Drawback: Fixed T

| 26 February 2008

O(T) PRG

O(T) PRG
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Trapdoor Permutation Construction [KRS+03]

——

= Using a trap-door permutation f, f-1 (TDP), where f is easy and f-1 is
hard without private key, hash function h() in Random-Oracle Model

h

K4 State

Update

Derive

Extract

seed

48 | 26 February 2008

TDP

const.

Advantage: Flexible T
Drawback: Public-key operations

O(T) TDP

© 2008 IBM Corporation
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Tree Construction [BCOO06]

= Using pseudo-random generator G and pseudo-random function F

= User key M; is smallest set of nodes needed to derive K; ... K;

= T fixed, but practically unbounded, as cost is logarithmic in T

49 | 26 February 2008

State | Update | Derive | Extract
O(log T) O(log T) 0 O(log T)
PRG PRG
Advantages:

- Symmetric-key operations
- Practically unbounded T

© 2008 IBM Corporation
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Comparison of Key Updating Schemes

50

= Trapdoor scheme using RSA-1024
= PRF/PRG using AES-128

= Average times [ms] measured on Intel 2.4 GHz Xeon

Scheme T B[e)g;?; Extract

Chaining| 1024 1.28 1.24

Trapdoor| 1024 15.4 15.2
Tree 1024 0.015 0.006
Tree 216 0.015 0.008
Tree 225 0.015 0.01

| 26 February 2008

— m— ———

© 2008 IBM Corporation



| Zurich Research Laboratory

Integrity Protection in Filesystems

— (D f—> gg

s

., Xy (entries in list, blocks of file ...)

m Storage consists of n data items x4,

= Applications access storage via integrity checker
— Checker uses small trusted memory to store short reference value v

(i.e., together with encryption key in meta-data)

= Integrity checker operations

— Read item and verify w.r.t. v

— Write item and update v accordingly
© 2008 IBM Corporation
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Implementing an Integrity Checker

= Use hash function H to compute v? v =H(x4 || ... || Xn)

— Infeasible for long files
— No random access to item

= Use a secret key with a MAC?

— Suffers from replay attacks
= Well-known solution: Hash tree [Merkle 79]

— Qverhead of read/verify and write/update is logarithmic (in n)
= Recent alternatives

Dynamic accumulators [CL02]
— QOverhead of read/verify is constant

Incremental hashing [BM97,CDDGS03]
— Overhead of write/update is constant

52 | 26 February 2008
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Hash trees for Integrity Checking [Merkle 79]

root

Read & write operations need work O(log n)
— Hash operations
— Extra storage accesses

53 | 26 February 2008

m Parent node is hash of its children

m Root hash value commits all
data blocks

— Root hash in trusted memory
— Tree is on extra untrusted storage

= To verify x;, recompute path from x;

to root with sibling nodes and
compare to trusted root hash

= To update x;, recompute new root
hash and nodes along path from x;
to root

© 2008 IBM Corporation
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Dynamic Accumulator for Integrity Checking

= An accumulator is a cryptographic abstraction for collecting data values
and checking their presence:

Init() — (a, k) -- generates authenticator/accumulator value a and key k
Add(a, I, xj, k) — a' -- adds x; to accumulator at position i
Update(a, i, x;, k) — a' -- updates accumulator at position i to x;
Witness(a, i, xj, k) - w -- produces a witness w for presence of x;
Verify(a, i, xj, w) — “yes” / “no” -- checks if witness w is valid and proves
that entry x; was added to accumulator at position i
= Without k, it must be infeasible to forge i, x', w' that verify for given a

= Impl. with public-key crypto under strong RSA assumption [CLOZ2]:

— Given an RSA modulus N = P - Q (with P, Q safe primes), and r € Zy, it is
infeasible to find a, b s.t. ab =r mod N
Accumulator a containing x4, ..., X, is a = r H(1[[x1) -+ H(n[lxn) mod N

Witness for x; in a is w = a 1/H(illxi) mod N
Verify that x; is contained in a by checking w H(illx)) =a mod N ?

54 | 26 February 2008
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Incremental Hashing for Integrity Checking

= Hash function IH(x4, ..., X,) on n entries x4, ..., X, that allows updates:

Given h = [H(x4, ..., X, ..., Xp) and values x; and x/j,
one can compute h' = IH(x4, ..., X|j, ..., Xn) in time independent of n.

= Implementation based on number theory [BM97].
IH(X1, ..., Xq) = H(1||Xn) --- H(n||xn) mod p

for large prime p and ordinary hash function H()

55 | 26 February 2008 © 2008 IBM Corporation
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Integrity Checking Schemes Summary

56

Scheme Update time Verify time

Hash tree O(log n) O(log n) Fast, only hash operations
Accumulator n constant Slow, public-key operations
Incr. Hash constant n Fast, but verify is slow

In practice, integrity checking is usually done with hash trees.

| 26 February 2008
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Implementing Hash Trees [LOG]

7?75  OIIIIIIr

= How to serialize tree with minimal overhead?

Storage access should cover contiguous region
File may grow & shrink

= Which tree? = Topologies

= Naive scheme? Hash only once (depth 1)

57 | 26 February 2008 © 2008 IBM Corporation
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Hash Tree Topologies for Filesystems

(ITTTTTTI
Imbalanced tree Implicit complete tree
Adapts to file size Sparse allocation
by “growing”

How to enumerate nodes?

Breadth-first order (BFO)
Pre-order

58 | 26 February 2008 © 2008 IBM Corporation
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Pre-order Enumeration of Hash Tree Nodes [PCO7]

(3,0)
15 28
(2,1)
() (H)

(1,3)
» ® ® O ®  ®

l4|s|e| [8]o]1w0] [12[13]14] [17]18]19] [21]22]23]
(0,0) 0,10) 0,15)
(H)

Implicit sparse allocation of maximum-size tree
Typical file starting at offset 0 maps to a contiguous range
Takes care of file holes

59 | 26 February 2008 © 2008 IBM Corporation
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Hash Tree Implementations in Filesystems

= Ensure consistency between two mutually dependent data paths

— Much more complex than encryption in filesystem

= Buffer current tree-path with all siblings
— Sequential read & write of whole file in O(n) work

(constant overhead per access)

m Cache whole tree
— Potentially large memory footprint
. 1% of file size

— Typical tree size 1%o ..
= Journaling needed for crash-resilience

— Otherwise crash results in integrity violation
— Solution demonstrated only once to date [MVSO00]

© 2008 IBM Corporation
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An Experimental Comparison [LO6]

= Integrity-protecting virtual filesystem in Linux

— Kernel 2.6, user-space, with FUSE (Filesystem in USErspace)
— Physical filesystem was local ext3
— IBM x346 server, dual 3.2 GHz Xeon CUPs

- 3GB RAM, several 73GB IBM SCSI disks with 10k RPM

= Benchmarks
— Sequential reads & writes of large files (8GB, dd)

— PostMark synthetic benchmark
- Creates, reads, writes, deletes many 1-2 MB files

= Topologies and layouts of tree
— NAIVE (tree of depth 1)
— SIMPLE (no buffered nodes)
— BFO / PREORDER enumeration (incomplete trees with buffered path)
— GROWING (imbalanced tree with buffered paths and pre-order enum.)
— Degree: 4/16/128

61 | 26 February 2008 © 2008 IBM Corporation
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Sequential Reads [L06]

DD read performance

1 I I
100 | -
'g 80 | i P T = LA AR AR e LR AR i e 7
ER P
— = e S -
E‘ ,__‘,’-'-,-:- -7 __
5 K
S 40 [ L i
= .
o N
— Ext3
El NullFsS --------
20 | NAIVE === il
BFO -
PREORDER -—x--
GROWING - —>(--
SIMPLE - {-]-
0 1 L L
4 16 128
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Degree of tree
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Sequential Writes [LO6]

DD write performance

PREORDER

GROWING

SIMPLE -

26 February 2008

Degree of tree

128
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PostMark Benchmark [LOG]

42.5
40 —
37.5 —
35 —
32.5 —
30 —
27.5 —
25 —
22.5 - 4
20 -~ @
17.5 — []128
15 — - [ ] Not appl.
12.5
10
7.5
5 —
2.5
0 | | | |

BFO PRE- GROWING NAIVE. NULL Ext3
ORDER

Throughput [MByte/second]
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Hash Trees in Filesystems - Summary

= Naive approach works surprisingly well here
— But not for first access!

= Topology and degree may vary

— Best determine experimentally (~ 128)
— Pre-order enumeration simplifies design

65 | 26 February 2008 © 2008 IBM Corporation
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Consistent Access to Untrusted Storage”

= Many independent clients

Correct

Store data on server
Communicate only with server
Small trusted memory

= Storage server

Untrusted
Potentially corrupted

Client
= Clients read and write concurrently

How to ensure consistent view of data to all clients?

(* Advanced topic, applies to future storage systems.)
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Consistent Access to Untrusted Storage

= Loose synchronization and concurrency pose a new problem

= Suppose clients sign data with digital signatures:

Server cannot forge any values ...

— But answer with outdated value (“replay attack”)

— Or send different values to different clients
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lllustration of the Problem
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Solution: Fork linearizability [MS02, CSS07]

= Server may present different views to clients

— “Fork” their views of history
— Clients cannot prevent this

m Fork linearizability
If server forks the views of two clients once, then

=> their views are forked ever after
= they never again see any updates of each other

= Forks are easier to detect than subtle data modifications
— Needs a separate channel for detection
= Cryptographic protocols can ensure fork linearizability [MS02, CSS07]

— Implemented in SUNDR file system [LKMS04]
© 2008 IBM Corporation

69 | 26 February 2008



| Zurich Research Laboratory

Cryptography for Storage in Action

= Tape drive with encryption (IBM TS1120)
= TCG storage specification and drive-encryption (Seagate)

= A cryptographic SAN filesystem [PCO07]
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Tape Drives with built-in Encryption (IBM TS1120)

= Hardware-based encryption in drive

Authenticated encryption in Galois/counter mode with
AES-256

= Hybrid encryption scheme
— Cartridge analogous to a PGP message
Data Key (DK) encrypts raw data on tape (AES key)
— DK chosen randomly, like a session key

Key-Encryption Key (KEK) encrypts DK (public key of
receiver)

— Result is Encrypted DK (EEDK)
— EEDK is stored on tape and in cartridge memory

Up to 2 EEDKSs per cartridge

= Public-key operations for key serving done by
Encryption-Key Manager (EKM) on host
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Data Encryption Process for Writing Tape

\ Obtain KEK labels/methods \

‘ Request DK using KEK labels/methods ‘

| Validate drive in Drive Table |

| Request a Data Key (DK) |

‘ Generates a random DK ‘

‘ Request KEKs using KEK labels/methods ‘

Retrieves KEK pairs ‘

T TS1120

Request DK to be wrapped with public halves
of KEKs generating two EEDKs
Keystore Create EEDKs
@ ‘ Send EEDKs
0 Writes EEDKSs to three locations
@ EKM on tape and into CM
L) ) ,
Encrypts write data using DK
Cryptographic Services
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Data Decryption Process for Reading Tape

‘ Read EEDKs from tape or CM ‘

‘ Request unwrap of DK from EEDKs ‘

| Validate drive in Drive Table |

| Request KEKs for EEDKs |

Retrieves KEK pairs

T TS1120

Request unwrap of DK from EEDKs
using KEKs
Keystore
‘ Unwrap DK from EEDKs ‘
@ ‘ Send DK
Io Encrypts/Decrypts data using DK
@ EKM ryp ryp d
L =
Crypto Services =
L —
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Disk Drives with built-in Encryption (Seagate)

= Encryption in hardware on the drive

— Transparent to application
— No performance issues (scales with storage space)

= Key stored in drive logic inside disk enclosure

— Never leaves drive
— May exploit smartcard-like secure hardware

m User or host authenticates to drive before OS boot
— Security is shifted to authentication
— Authentication methods

- Password/PIN entered via BIOS
- Cryptographic methods (Public-key signature or MAC)

© 2008 IBM Corporation

= Seagate's FDE drive
— AES for bulk encryption (details not public, but NIST has validated its

ECB mode ...)
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TCG Storage Architecture

Host TPer

SCSI|/ SATA

CPU

= Trusted Peripheral (TPer) contains a Security Provider (SP)

= TPer communicates with host, its TPM, or other devices via:

— SCSI (T10) Security Protocol INNOUT commands
— SATA (T13) Trusted Send/Receive commands

= SP acts as a root of trust, in storage device

# most other methods presented here, where storage is not trusted
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TCG Storage Architecture Details

= Security Provider (SP)

— SP: logical group of security features
— Tables: register-like primitive storage and control functions
— Methods: simple get/set commands
— Access control over methods and tables
= Cryptographic functions
— Encryption, decryption, hashing, MAC, signing, verifying ...
— AES, RSA, ECC, SHA-2, HMAC ...
= SP has a life-cycle that needs support
— Manufacturing < issued / active <« disabled / active < frozen
— Life-cycle of TPer: Produce, own, enroll, connect, use ...

= Currently a draft standard ...
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A Cryptographic SAN Filesystem [PCO07]
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SANs and SAN Filesystems

= SAN today:
Clients access block storage devices directly
— Fibre Channel (SCSI)

Static configuration
— OS sees a local block storage device

Static access control
— Zoning & fencing in FC switch

Inside server room only
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client
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]
il

SAN Filesystems (e.g. IBM's StorageTank)

= Virtualized block storage space

= Block access managed by metadata server (MDS)

= Single filesystem name space

= Heterogeneous clients

metadata

net

MDS
(clustered)
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Un*x client

app

W2k client

vfs

app

net

blk

vfs

net

net

blk

net
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Design of a Cryptographic SAN Filesystem

80

= Integrity verification & encryption in client

— Scalable
— End-to-end security

= MDS is trusted, provides
encryption keys & reference data

— Integrate key management with
metadata
— No modification of storage interface

= Needs
- secure LAN connection (IPsec)

- trusted client kernels

@ Access control
@ Integrity protection

CE) Encryption
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Summary

= Any security mechanism can be applied on any layer

= Challenge is to select the “right” combination

® ® ©

key mgmt. hash trees
file & &
lazy revocation [fork-linearizabilityf
. OBS security
ObJeCt protocol
block-cipher hybrid block-
block modes & integrity
IEEE P1619 protection
© 2008 IBM Corporation
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Thank you!

m More information?
http://www.zurich.ibm.com/~cca

<cca@zurich.ibm.com>
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