
© 2009 IBM Corporation

Protocols for Secure Cloud Computing

IBM Research – Zurich
Christian Cachin
April 2011

 © 2011 IBM Corporation

Where is my data?

1986 2011

 © 2011 IBM Corporation

Who runs my computation?

1986 2011

4 © 2011 IBM Corporation

Overview

1.Cloud computing and its security

2.Intercloud storage - Replication across clouds

3.Storage integrity

4.Cryptographic protocols
● Proof of storage
● Fully homomorphic cryptosystems

5.Conclusion

5 © 2011 IBM Corporation

Cloud computing security

6 © 2011 IBM Corporation

Cloud computing

■ On-demand network access to a shared pool of configurable computing resources
– networks, servers, storage, applications, and services
– rapidly provisioned with minimal management effort and provider interaction

■ Key features
– On-demand self-service
– Accessible over the network "from everywhere"
– Resource pooling → provider distributes cost over many customers
– Rapid elasticity → quickly scale to large sizes
– Measured service → pay only for actually consumed resources

[NIST, 2009]

?

7 © 2011 IBM Corporation

Cloud service models

SQL Azure,
Google Apps,
IBM test&devel.,
IBM SONAS

Amazon (S3,
EC2), IBM,
Rackspace,
Windows Azure

Yahoo!, GMail,
Google Docs,
LotusLive,
salesforce.com,
sourceforge.net

Provider
manages

Customer
manages

8 © 2011 IBM Corporation

Cloud deployment

■ Public clouds
– Provider offers service to the public
– Standardized, large-scale, flexible, cheap
– Resources shared by multiple tenants
– Concerns about security

■ Private clouds
– Service limited to one enterprise
– Customized, dedicated functions, local control, expensive
– One or few tenants that trust each other
– Increased security

■ Hybrid clouds
– Private infrastructure integrated with public cloud
– Combines trust in private cloud with scalability of public cloud

 © 2011 IBM Corporation

Cloud storage - secure?

■ Red Hat's servers were corrupted in Aug. '08
– Package-signing key potentially exposed

– Was source or binary content modified?

– Red Hat stated in RHSA-2008:0855-6:
... we remain highly confident that our systems and processes
prevented the intrusion from compromising RHN or the content
distributed via RHN and accordingly believe that customers who keep their
systems updated using Red Hat Network are not at risk.

 © 2011 IBM Corporation

Cloud computing - dependable?

■ A problem in Amazon's cloud services disabled computing and storage services
for one day

■ Clients were affected, including websites that use Amazon's resources

■ Problem affected multiple, supposedly independent "zones" in Amazon's
infrastructure

11 © 2011 IBM Corporation

Key concerns about cloud computing

Compliance
Complying with SOX, HIPPA
and other regulations may

prohibit the use of clouds for
some applications.

Comprehensive auditing
capabilities are essential.

Less Control
Many companies and governments
are uncomfortable with the idea of

their information located on
systems they do not control.

Providers must offer a high degree
of security transparency to help

put customers at ease.
Reliability

High availability will be a key concern.
 IT departments will worry about a
loss of service should outages

occur. Mission critical applications
may not run in the cloud without
strong availability guarantees. Security

Management
Providers must supply easy,
visual controls to manage

firewall and security settings
for applications and runtime
environments in the cloud.

Data Security
Migrating workloads to a shared

network and compute
infrastructure increases the
potential for unauthorized

exposure. Authentication and
access technologies become

increasingly important.

12 © 2011 IBM Corporation

How to address the concerns

■ Less control
– Providers become transparent and offer sophisticated controls

■ Data security
– Isolate multiple tenants from each other
– Implement secure authentication, authorization, and identity management
– Critical data must be encrypted and integrity-protected by client

■ Reliability
– Today, mission-critical applications do not run in the cloud
– Highly available clouds in the future

■ Compliance
– Offer auditing capabilities to clients
– Provider runs audited service (for a premium)

■ Security Management
– Client-controlled features important

13 © 2011 IBM Corporation

Cloud security

■ Security implemented by provider - NOT A PROTOCOL SOLUTION!
– Isolation among resources of different tenants

• Hypervisor
• Storage
• Network (VLAN)

– Restrict administrator privileges on hosting systems
– Strong authentication, authorization, and identity management
– Interfaces for direct client-controlled audits
– Engage third-party auditors

■ Mechanisms implemented by clients
– Cryptographically protect the data

• Encryption
• Integrity protection

– Remote auditing

■ Client must trust provider ... ?

14 © 2011 IBM Corporation

Intercloud storage

15 © 2011 IBM Corporation

The Intercloud

■ Cloud of clouds

■ Client accesses it like a single cloud

■ Service composed from multiple clouds

■ Analogous to the "Internet"
– Local-area networks → Internet (TCP/IP)
– Isolated clouds → Intercloud (open protocols for interoperation, WS-* ...)

16 © 2011 IBM Corporation

Intercloud storage

■ Storage on the Intercloud
– Limits trust in single provider

■ Features
– Confidentiality

• Transparent encryption, keys managed by the Intercloud
– Integrity

• Data authenticity from cryptographic protection
– Resilience

• Replication tolerates data loss/corruption in a fraction of clouds

Cloud 1

Cloud 7
Cloud 5

Cloud 8

Cloud 9

Cloud 0

17 © 2011 IBM Corporation

Key-value stores

■ Popular storage interface using unstructured objects ("blobs")
– Every object identified by a unique key
– Objects grouped into containers

■ Available in Amazon's Simple Storage Service (Amazon S3) and many, many others
– Accessed via REST web interface

■ Main operations
– put(key,obj)
– get(key) → obj
– list() → {objs ...}
– remove(key)

key
object

18 © 2011 IBM Corporation

Intercloud storage stack

■ Modular structure

■ Layers are configurable and switchable
– E.g., encryption-only with single cloud

■ Transparent to client

■ No modification to clouds

■ Multiple clients
– No client-to-client communication
– Clients may fail (crash)

■ Client locally stores credentials

Integrity

Resilience

Encryption

Client

M
et

ad
a

ta

K
ey

s

19 © 2011 IBM Corporation

Intercloud storage - Confidentiality with
encryption

20 © 2011 IBM Corporation

Encryption

■ Encryption with standard block cipher
– AES
– Secret key needed

■ Objects may become slightly larger

■ Software encryption

Encryption

Client

K
e

ys

21 © 2011 IBM Corporation

Key management

■ Two options
– Standardized key-management service
– Keys managed in the Intercloud

22 © 2011 IBM Corporation

Key management as a service

■ Key management is becoming a service
– Centralized control
– Lifecycle management
– Automated and policy driven

■ Very important for storage encryption

■ OASIS Key Management Interoperability
Protocol (KMIP)

– Vendor-neutral format for accessing key
server in enterprise

– Finalized Oct. 2010, available already in
multiple products

– Contributions from IBM Research
[BCHHKP10]

Key Management Interop. Protocol

Tivoli Key Lifecycle Manager

 © 2011 IBM Corporation

Secret sharing for managing keys in the intercloud

■ Share secret s among parties p1, ..., pn such that
– Any t < n/2 parties have no information about s
– Any group of t+1 parties can recover the secret s

■ Trusted dealer picks random polynomial a(X)
– a(X) ∈ Fq[X], degree t and a(0) = s

■ Share for pi is si = a(i)

■ Given set U of t+1 shares, recover secret: s = a(0) = ∑j∈U jaj

– i are Lagrange coefficients w.r.t. U

[S79]

24 © 2011 IBM Corporation

Intercloud storage - Integrity with
hashing and signatures

25 © 2011 IBM Corporation

Integrity protection for one client

■ Storage consists of n data items x1, ..., xn
(objects in the same container)

■ Client accesses storage via integrity layer
– Uses small trusted memory to store

short reference hash value v
(together with encryption keys)

■ Integrity layer operations
– Read item and verify w.r.t. v
– Write item and update v accordingly

Integrity

Client

H
a

sh
e

s

26 © 2011 IBM Corporation

Implementing the integrity layer

■ Use hash function H to compute v? v = H(x1 || ... || xn)
– Infeasible for many objects
– No random access to one object

■ Use a secret key with a MAC?
– Suffers from replay attacks

■ Well-known solution: Hash tree [M79]
– Overhead of read/verify and write/update is logarithmic (in n)

■ Recent alternatives
– Dynamic accumulators [CL02]

• Overhead of read is constant, but write is linear in n
– Incremental hashing [BM97]

• Overhead of write/update is constant, but read is linear in n

 © 2011 IBM Corporation

Hash trees for integrity checking (Merkle trees)

■ Parent node is hash of its children

■ Root hash value commits all
data blocks

– Root hash in trusted memory
– Tree is on extra untrusted

storage

■ To verify xi, recompute path from
xi to root with sibling nodes and
compare to trusted root hash

■ To update xi, recompute new root
hash and nodes along path from xi
to root

root

H0 H1

H00 H01 H10 H11

x1 x2 x3 x4

Read & write operations need work O(log n)
● Hash operations
● Extra storage accesses

 © 2011 IBM Corporation

Multi-client integrity protection with digital signatures

■ Single-client solution
– Relies on hash value v
– Stored locally
– Changes after every update operation

■ Multiple clients?
– Every client associated with a public/private key pair
– Write operation produces signature σ on hash v
– Client stores signature and hash (σ, v) on cloud
– Allows replay attacks ...

■ See next part of presentation!

29 © 2011 IBM Corporation

Intercloud storage - Resilience
with replication

30 © 2011 IBM Corporation

Replication

Alice Charlie
Bob

Clients read and write object values
● Do not communicate
● No clock synchronization

Storage nodes replicate data
● Faulty nodes may erase or modify data
● Do not communicate with each other

 © 2011 IBM Corporation

Replication algorithm

■ Clients read and write objects (values)

■ Client operations take time and may execute concurrently
– No locks!
– No single point of failure!
– Clients may fail!

■ Algorithm ensures a consistent view of single storage object
– If no operation is concurrent, then every read returns the most recently written value
– Otherwise, read may return old value (written before) or new value (written concurrently)

■ Algorithm emulates a shared memory
– Many other consistency conditions exist
– Most strict ensures that all operations appear atomic

■ Implementation based on logical timestamps (sequence numbers)

 © 2011 IBM Corporation

Quorum algorithm

■ Here nodes may only crash

■ A quorum is a majority of the storage nodes
– More generally: every two quorums overlap in one node
– With n nodes, every set of > n/2 nodes is a quorum

■ Data structure
– A node stores a timestamp/value pair (ts, v)

■ Read
– Send [READ] message to all nodes
– Receive [VALUE, ts, v] msgs from nodes in a quorum and return v with the highest ts

■ Write(v)
– Determine highest timestamp ts used so far, let ts' ← ts+1
– Send [WRITE, ts', v] to all nodes; nodes reply with [ACK]
– Receive [ACK] msgs from nodes in a quorum and return

 © 2011 IBM Corporation

Quorum algorithm example

(6, y) (6, y) (6, y) (4, b) (3, a)

Alice

Charlie

Bob

Time

write(b) with ts=4

write(c) with ts=5 write(y) with ts=6

read() → y

No reply from
faulty nodes

 © 2011 IBM Corporation

Quorum algorithms with malicious nodes

■ Nodes may behave arbitrarily: more difficult
– See presentation by Marko Vukolic (Friday)

35 © 2011 IBM Corporation

Intercloud storage - Summary

■ Cloud computing, the computing services of the future
– Storage is perhaps the most prominent example

■ Security problems of cloud computing
– Provider not trusted
– Multiple tenants share infrastructure

■ Intercloud storage protects data stored in cloud
– Confidentiality through encryption
– Integrity through cryptographic hashing and signatures
– Resilience through replication

– Modular, layered architecture
– Prototype being developed

36 © 2011 IBM Corporation

Storage integrity

 © 2011 IBM Corporation

System model

Client Client Client

■ Server S
–Normally correct
–Sometimes faulty (untrusted,

Byzantine)

■ Clients C1 ... Cn

–Correct, may crash
–Run operations on server
–Disconnected
–Small trusted memory

■ Asynchronous

 © 2011 IBM Corporation

■ Functionality MEM
–Array of registers x1 ... xn

–Two operations
• read(i) → xi returns xi

• write(i,x) → ok updates xi to new value x

■ Operations should be atomic

■ Abstraction of shared memory

■ Most work on forking consistency conditions considers MEM
[MS02] [LKMS04] [CSS07] [CKS09] ...

Storage model

 © 2011 IBM Corporation

Storage integrity protection

■ Clients interact with service through operations to read/write data

■ Clients may digitally sign their write requests

→ Server cannot forge read values

→ But answer with outdated values ("replay attack")

→ But send different values to different clients (violates consistency)

 © 2011 IBM Corporation

Background - Semantics of concurrent operations

Safe - Every read not concurrent with a write returns the most recently written
value.

Regular - Safe & any read concurrent with a write returns either the most
recently written value or the concurrently written value: C3 may read x or u.

Linearizable (atomic) - All read and write operations appear to execute
atomically at one point in time: C3 must read u.

write(1,x) ok→
C1

C2
read(1) x→

C3

write(1,u) ok→

read(1) u→

read(1) u→ read(1) → ?

 © 2011 IBM Corporation

Linearizability illustrated

■ Every operation appears to execute atomically at its
linearization point

■ This point lies between invocation and response in (imaginary) real time

C1
write(1,x) ok→

C2
read(1) x→

C3

write(1,u) ok→

read(1) u→

read(1) u→ read(1) → u

 © 2011 IBM Corporation

Problem - Integrity violation

C1 C3

write(1,x)C1

C2

C3

write(1,t)

read(2)→w

write(2,v) read(1)→x write(2,w)

read(1)→u

write(1,u)

 © 2011 IBM Corporation

Solution - Fork-linearizability

■ Server may present different views to clients
–“Fork” their views of history
–Clients cannot prevent this

■ Fork linearizability [MS02]
–If server forks the views of two clients once, then

→ their views are forked ever after
→ they never again see each others updates

■ Every inconsistency results in a fork
–Not possible to cover up

■ Forks can be detected on separate channel
–Best achievable guarantee with faulty server

 © 2011 IBM Corporation

Fork-linearizability graphically

w(1,x) w(2,v)

w(1,u)

r(1) x→ w(2,w)

r(1) u→

r(2) w→

w(1,t) View of C1

View of C3

View of C2

write(1,x)C1

C2

C3

write(1,u)

read(2)→w

write(2,v) read(1)→x write(2,w)

read(1)→u

write(1,t)

 © 2011 IBM Corporation

Linearizability formally

A history  is linearizable (with respect to F)

 ⇔ ∃ permutation  of  such that
•  is sequential and follows specification (of F);
• ∀i all operations of Ci are in  ;
•  preserves real-time order of .

 © 2011 IBM Corporation

Fork-linearizability formally

A history  is fork-linearizable (w.r.t. F)

 ⇔ ∀i ∃ subset i ⊆  and permutation i of i such that
• All operations of Ci are in i ;

• i is sequential and follows specification (of F);

• If o ∈ i ∩ j, then i = j up to o;
• i preserves real-time order of i.

 © 2011 IBM Corporation

Fork-linearizable Byzantine emulation

■ Protocol P emulates functionality F on a Byzantine server S with fork-
linearizability, whenever

–If S correct, then history of every (...) execution of P is linearizable
w.r.t. F;

–The history of every (...) execution of P is fork-linearizable w.r.t. F.

[CSS07]

 © 2011 IBM Corporation

A trivial protocol

■ Fork-linearizable Byzantine emulation of MEM

■ Idea [MS02]: sign the complete history of read/write operations
–Server sends history with all signatures
–Client verifies all operations and signatures
–Client adds its operation and signs new history

■ Impractical since messages and history grow with system age

 © 2011 IBM Corporation

Fork-linearizable storage (1)

■ Client Ci

–Stores timestamp ti and
–Version (vector of timestamps) T, where T[i] = ti
–Increments ti and updates T at every operation

■ Versions order operations
–After every operation, client signs new timestamp, version, and

data
V =

■ Verification with version T of last operation
–Version V of next operation must be V ≥ T
–Signatures must verify

v1
v2
v3

 © 2011 IBM Corporation

[COMMIT, T, ]

[REPLY, V, ...xj, c, ]

[SUBMIT, READ, j]

Ci

Version V =

V ≥ T ?
verify V[i] = T[i] ?
verify(, V|...xxj) ?
if not then abort
T := V; T[i] := T[i]+1
 := sign(T|...)
return xj

V := T
 := 
c := i

Memory x1 ... xn
Signature  from Cc

Fork-linearizable storage (2)

v1
v2
v3

Version T =
t1
t2
t3

 © 2011 IBM Corporation

Fork-linearizable storage (3)

■ If clients are forked, they sign and store incomparable versions

■ Signatures prevent server from other manipulations
–Protocol uses O(n) memory for emulating fork-linearizable shared

memory (MEM) on Byzantine server

■ Increasing concurrency?
–Here, clients proceed in lock-step mode
–Yes, but see papers...

u
v

w+1

u
v+1
w

?

 © 2011 IBM Corporation

Fork-linearizability benefits

■ Client Ci writes many values u, v, w, x ...

■ Without protection, faulty S may return any such value to a reader Ci

■ With fork-linearizable emulation
–Ci writes z and tells Cj "out-of-band"

–Cj reads r from location i
• if r = z, then all values that Cj read so far were correct
• if r ≠ z, then S is faulty

–The "out-of-band" communication might be only synchronized
clocks

 © 2011 IBM Corporation

Storage systems providing fork-linearizability

SUNDR [LKMS04] Secure untrusted data repository
– NFS network file system API
– Extensions to NFS server and NFS client
– Hash tree over all files owned by every user

CSVN [CG09] Integrity-protecting Subversion revision-control system
– SVN operations are verified
– Hash tree over file repository
– Based on fork-linearizable storage protocol [CSS07]

Venus [SCCKMS10] Integrity-protecting cloud storage
– Protects Amazon S3 "key-value store"
– Prototype implementation

 © 2011 IBM Corporation

Storage integrity - Summary

■ Remote checking for storage and applications in cloud

■ Target is collaboration among group of mutually trusting clients

■ Fork-linearizable storage protocol
– In normal case, it is linearizable and sometimes “blocking”
– In case of Byzantine server, it respects fork-linearizability

■ Related work
– Extension to verify integrity of arbitrary services (not only storage MEM,

but any computation) [C11]
– Extension with an out-of-band communication system to detect violations

in Fail-Aware Untrusted STorage (FAUST) [CKS09]
– SPORC, a practical system for group collaboration [FZFF10]

55 © 2011 IBM Corporation

Cryptographic protocols

 © 2011 IBM Corporation

Fully homomorphic encryption [G09]

■ Public-key cryptosystem
– KG() → (pk, sk) - generate a public key/secret key pair
–E(pk, m)) → c - encrypt message m to ciphertext c
– D(sk, c) → m - decrypt ciphertext c to message m
– Ciphertext and public key alone reveal nothing about message

■ Permits algebraic operations on ciphertexts
– Two operations ,  on ciphertexts c1=E(m1), c2=E(m2) such that

• c1  c2 = E(m1)  E(m2) = E(m1 + m2) → gives m1 + m2
• c1  c2 = E(m1)  E(m2) = E(m1 × m2) → gives m1 × m2

■ Use to secure outsourced computation in the cloud
– Model computation as a binary circuit
– Client provides input
– Provider evaluates circuit on encrypted data, learns nothing about input
– Client decrypts output locally

■ Problems in practice
– Circuit model, external inputs and outputs, not efficient enough

 © 2011 IBM Corporation

Proofs of storage [ABCHKPS07, AK07]

■ Provider proves possession of data without sending it
– Client stores many data items (x1, ..., xn) at server
– Server may "forget" data
– Client wants to know: is data still stored at server?
– Trivial solution: send some data back to client

■ Cryptographic proof of storage
– Client initially generates pk/sk, computes a tag ti for every item xi using sk
– Server stores (x1, t1), ..., (xn, tn)
– Later, client periodically sends challenge c and pk

• Server computes short response r = prove(pk, c, x1, ..., xn, t1, ..., tn)
• Client verifies r with sk if r is valid

■ Secure proof with low communication overhead
– Client stores only key and small state (not proportional to n)
– Length of c and r independent of n
– Infeasible for malicious server to forge a valid response without sk

58 © 2011 IBM Corporation

Conclusion

59 © 2011 IBM Corporation

Summary

■ Cloud computing, the computing services of the future
– Storage is perhaps the most promiment example

■ Security problems of cloud computing
– Provider not trusted
– Multiple tenants share infrastructure

■ Intercloud storage
– Exploit replication and independent providers

■ Storage integrity
– Clients remotely verify actions of cloud provider

■ Cryptographic protocols
– Further security guarantees
– "Total protection" of client's data from cloud service is not possible

 © 2011 IBM Corporation

Introduction to Reliable and Secure Distributed
Programming

■ C. Cachin, R. Guerraoui, L. Rodrigues

■ 2nd ed. of Introduction to Reliable Distributed
Programming

■ Published by Springer, 2011

■ More info on book website

http://ww.distributedprogramming.net

Advertisement - Textbook on distributed computing

 © 2011 IBM Corporation

Another advertisement - Workshop on cloud computing security

■ ACM Cloud Computing Security Workshop (CCSW)

■ Co-located with ACM Computer and Communications Security Conference
(CCS)

■ October 21, 2011, Chicago (USA)

■ More info on the web

http://crypto.cs.stonybrook.edu/ccsw11

62 © 2011 IBM Corporation

Further reading

■ [CHV10] C. Cachin, R. Haas, M. Vukolic. Dependable Services in the Intercloud:
Storage Primer. Research Report RZ 3783, IBM Research, 2010.

■ [C11] C. Cachin. Integrity and Consistency for Untrusted Services. SOFSEM
2011.

■ [CSS07] C. Cachin, A. Shelat, A. Shraer. Efficient fork-linearizable access to
untrusted shared memory. PODC 2007.

■ [CG09] C. Cachin, M. Geisler. Integrity Protection for Revision Control. ACNS
2009.

■ [CKS09] C. Cachin, I. Keidar, A. Shraer. Fail-aware untrusted storage. DSN
2009 (also SIAM J. Computing, 2011).

■ [SCCKMS10] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, D.
Shaket. Venus: Verification for Untrusted Cloud Storage. Cloud Computing
Security Workshop (CCSW) 2010.

63 © 2011 IBM Corporation

References (1)

■ [ABCHKPS07] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, D. Song. Provable Data Possession at Untrusted Stores. ACM CCS
2007.

■ [BCHHKP10] M. Björkqvist, C. Cachin, R. Haas, X.-Y. Hu, A. Kurmus, R.
Pawlitzek, M. Vukolic. Design and implementation of a key-lifecycle
management system. Financial Cryptography and Data Security, 2010.

■ [G09] C. Gentry. A Fully Homomorphic Encryption Scheme. Ph.D. thesis,
Stanford University, 2009.

■ [G10] C. Gentry. Computing arbitrary functions of encrypted data. Comm. ACM,
vol. 53, 2010.

■ [FZFF10] A. Feldman, W. Zeller, M. Freedman, E. Felten. SPORC: Group
collaboration using untrusted cloud resources. OSDI 2010.

■ [JK07] A. Juels, B. Kaliski. PORs: Proofs of Retrievability for Large Files. ACM
CCS 2007.

64 © 2011 IBM Corporation

References (2)

■ [LKMS04] J. Li, M. Krohn, D. Mazières, D. Shasha. Secure untrusted data
repository (SUNDR). OSDI 2004.

■ [M79] R. Merkle. Protocols for Public-Key Cryptosystems. IEEE Security &
Privacy 1980.

■ [MS02] D. Mazières, D. Shasha. Building secure file systems out of Byzantine
storage. PODC 2002.

■ [S79] A. Shamir. How to share a secret. Comm. ACM, vol. 22, 1979.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

