
© 2009 IBM Corporation

Integrity, Consistency, and Verification of
Remote Computation

IBM Research – Zurich
Christian Cachin
November 2014

2 © 2014 IBM Corporation

Cloud computing everywhere

Network

Compute

Storage

3 © 2014 IBM Corporation

Computing as a utility

Google data center

4 © 2014 IBM Corporation

Physical location irrelevant

Data center, Luleå (SE), near the Arctic circle

5 © 2014 IBM Corporation

Verification, integrity, and consistency

6 © 2014 IBM Corporation

Verification of responses by remote server

■ One or more clients interact with server

■ Server
– Computes
– Responds to requests
– Maintains state

■ Clients
– Request operations and obtain

responses
– Verify correctness of responses
– Maintain some (small) state

■ No assumptions about server
– Usually response is correct ... but

sometimes not
– No audits, no trusted hardware,

no trusted 3rd party ...

Client

7 © 2014 IBM Corporation

Many dimensions of verification

■ Server state
– Server may maintain state across requests

■ Server functionality F
– Arbitrary (polynomial-time computable)
– Specific data structures (maps, tables, ...)
– Storage (only reads and writes)

■ Single-client vs. multiple clients
– With multiple clients, who verifies?
– Clients need to agree on "correct" verification

■ Prototypes and implementation

8 © 2014 IBM Corporation

Part 1 ― Verifiable computation

■ One client

■ Arbitrary functionality F

■ No server state (mostly)

■ Challenge
– Verification should be faster than

client recomputing the result by itself

Client

9 © 2014 IBM Corporation

Part 2 ― Authenticated data types

■ One client writes

■ Many clients read

■ Specific class of functions F
– Mostly related to queries over a

database

■ Server keeps state

■ Challenge
– Efficiency of verification operation
– Generality of operations on data

Writer
Reader

Reader
Reader

10 © 2014 IBM Corporation

Part 3 ― Distributed consistency enforcement

■ All clients may write

■ All clients may read

■ Generic functions F
– Data storage is an important

special case

■ Server keeps state

■ Challenge
– Some attacks cannot be prevented
– How consistent are the views of the

different clients?Client
Client Client

Client

11 © 2014 IBM Corporation

Verifiable computation

12 © 2014 IBM Corporation

Cloud computing ― Do you get the correct answer?

■ Clients depend on the results and
outputs of remote computations

■ Remote servers may not always
give the correct response

■ How can clients verify that a reply is
correct?

13 © 2014 IBM Corporation

Verifiable computation (VC) ― Definition [GGP10]

■ KeyGen(F, κ) → (EKF, VKF, SKF)

– Generates evaluation key EKF,
public verification key VKF, secret key SKF

■ ProblemGen(SKF, x) → (σx, ωx)
– Client encodes problem instance x of F

into σx, given to S, and secret ωx

■ Compute(EKF, σx) → (σy)
– Server computes encoded result σy

■ Verify(VKF, ωx, σy) → y
– Client obtains result y, where y = ⊥ denotes that verification failed

■ Designated verifier (as stated)
– Only holder of secret keys may verify result

■ Publicly verifiable (no secret keys, i.e., SKF = ⊥ and ωx = ⊥)
– Everyone can verify result

Client

KeyGen()

ProblemGen(x)

Compute()

Verify() → y

14 © 2014 IBM Corporation

Verifiable computation ― Properties

■ Correctness
– For any polynomial-time functionality F and input x, run

KeyGen(F, κ), ProblemGen(∙∙∙x), Compute(∙∙∙σx), Verify(∙∙∙σy) → y
– Then y = F(x)

■ Security
– For any F and any adversary A:

• Run KeyGen(F, κ)
• Repeatedly, A picks x' and obtains σx' from ProblemGen(∙∙∙x')
• A outputs x* and σy*, compute y* ← Verify(∙∙∙σy*)
• With overwhelming probability: y* ≠ ⊥ → y* = F(x*)

■ Efficiency
– Running ProblemGen() and Verify() takes less time together than evaluating

F(x) directly

15 © 2014 IBM Corporation

Background

■ Zero-Knowledge Proofs (ZKPs)
– Have similar goals as VC but generally do not achieve efficiency

■ Probabilistically Checkable Proofs (PCPs)
– Cost was prohibitive for a long time
– Many improvements recently make this near-practical

■ Technically VC is closely related to a SNARK
– Succinct Non-interactive ARgument of Knowledge
– Assume that prover is computationally bounded

→ VC from SNARK is immediate

→ Implementations of VC first construct a SNARK

16 © 2014 IBM Corporation

Implementing verifiable computation

Client

F(x):
...
for i=1...n do
 a ← a+x*b[i]
y ← c(a)
return y

+ •

•

Encoded
transcript
(ET)

Circuit C
for F(x)

Program F
Input x

Transcript
of circuit
evaluation

Queries
about ET

Verify responses
on ET w.r.t. y=F(x)

C

■ Efficient program for F(x) is compiled into a circuit C for F(x)
– Arithmetic or boolean gates

■ Server evaluates C and proves that valid assignment exists (= transcript)

■ Client verifies that transcript matches result y and y=F(x)
– Must be faster than recomputing F or evaluating C

(This condition rules out the existing interactive proof techniques)

17 © 2014 IBM Corporation

How to verify the encoded transcript?

■ Client and server run (randomized) interactive proof
– May require interaction or large communication
– As pioneered in "Interactive Proofs for Muggles" [GKR08]
– Extended and implemented by "streaming" interactive proofs [Thaler et al.,

multiple works]

■ Server commits to ET, client checks commitment probabilistically (PCP)
– Based on ZK arguments and "short PCPs" [IKO07]
– Implemented by Blumberg, Setty, Walfish et al. (multiple works)

■ Client sends query in encrypted form
– Server computes response and output without knowing checked locations

(related to private query to databases - PIR)
– Server uses FHE to blindly evaluate a garbled circuit for F [GGP10]
– Realized by encoding F into a Quadratic Program [GGPR13]

• Implemented by "Pinocchio" [PGHR13]
• Coupled with a specific circuit compiler, in "SNARKs for C" [BCGTV13]

→ Focus here

18 © 2014 IBM Corporation

Quadratic Programs (QPs) for circuits [GGPR13, PGHR13]

■ Consider an arithmetic circuit C for F over a finite field F (also boolean circuit)
– Quadratic Arithmetic Program (QAP)

■ Main result [GGPR13] ― There is a QAP of size O(|C|) that computes F.

■ Define how a QAP computes F: F → F (one input and one output, wlog):

y = F(x) holds iff there exists (c3,...,cN)  FN , with (c0, c1, c2) = (1, x, y), s.t.

a given target polynomial t(z) divides p(z),

where p(z) = (k ck vk(z)) • (k ck wk(z)) – (k ck yk(z)).

■ QAP = [V={vk(z)}k, W={vk(z)}k, Y={vk(z)}k, t(z)]

■ Key step ― t(z) divides p(z) ≡ ∃ h(z): h(z) • t(z) = p(z)
– Server (prover) picks h(z) based on wires that satisfy C
– Client (verifier) checks identity of polynomials efficiently, at random point

19 © 2014 IBM Corporation

c6

Converting a circuit to a QAP

■ Pick a root r in F for each multiplication gate c

– r5 for c5, r6 for c6 ...

■ Set t(z) = (z–r5) (z–r6)

■ Set p(z) from V={vk(z)}k, W={vk(z)}k, Y={vk(z)}k ,
one polynomial for each gate g (input and mult. gate),
all other points on the polynomials are 0

Circuit for F(x)

+
c5

c5 = c3 • c4

c4c3c2c1

c6 = c5 • (c1 + c2)

...

z=r5 z=r6
v1(z) 0 1
v2(z) 0 1
v3(z) 1 0
v4(z) 0 0
v5(z) 0 0
v6(z) 0 0

z=r5 z=r6
w1(z) 0 0
w2(z) 0 0
w3(z) 0 0
w4(z) 1 0
w5(z) 0 1
w6(z) 0 0

z=r5 z=r6
y1(z) 0 0
y2(z) 0 0
y3(z) 0 0
y4(z) 0 0
y5(z) 1 0
y6(z) 0 1

wire is left input wire is right input wire is gate output

•

•

20 © 2014 IBM Corporation

c6

QAP computation of y = F(x)

Circuit for F(x)

+
c5

c5 = c3 • c4

c4c3c2c1

c6 = c5 • (c1 + c2)

...

z=r5 z=r6
v1(z) 0 1
v2(z) 0 1
v3(z) 1 0
v4(z) 0 0
v5(z) 0 0
v6(z) 0 0

z=r5 z=r6
w1(z) 0 0
w2(z) 0 0
w3(z) 0 0
w4(z) 1 0
w5(z) 0 1
w6(z) 0 0

z=r5 z=r6
y1(z) 0 0
y2(z) 0 0
y3(z) 0 0
y4(z) 0 0
y5(z) 1 0
y6(z) 0 1

wire is left input wire is right input wire is gate output

•

•

■ Note t(z) | p(z) iff ∀ gates g: t(rg) = 0  p(rg) = 0

■ The polynomials are "extremely sparse"
– t(r5) = 0 p(r5) = (c3) • (c4) – (c5)

– t(r6) = 0 p(r6) = (c1+c2) • (c5) – (c6)

■ Thus, p(z) encodes the satisfying assignment of C
whenever C computes y = F(x)

21 © 2014 IBM Corporation

Verifiable computation from a QAP (1)

■ Idea ― Check polynomial identity h(z) • t(z) = p(z) at s R F,
– s is secret from server
– Map h(s), t(s), p(s) into exponents of a DL group G=<g> with bilinear map e()
– Client uses bilinear map (pairing operation) to check equality

■ Client computes KeyGen(F) and ProblemGen(∙∙∙)
– Create a QAP for F
– Choose s R F (randomly)

– EKF ← [{gvk(s)}k , {gwk(s)}k , {gyk(s)}k , g(s)**i for i=1...deg, ...]

– VKF ← [{gyk(s)}k , gt(s), ...]

■ Note client's setup complexity must be amortized over many computations

22 © 2014 IBM Corporation

Verifiable computation from a QAP (2)

■ Server computes y = F(x) and a wire assignment {ck}k for C
– Solves for h(z) such that h(z) • t(z) = p(z)
– Computes gv(s) = ∏ gvk(s)•ck ... only by linear operations "in the exponent"
– Similarly, gw(s) = ∏ gwk(s)•ck and gy(s) = ∏ gyk(s)•ck
– Proof is short

[gv(s), gw(s), gy(s), gh(s)]

■ Client verifies divisibility and other checks with a few pairing operations, e.g.,
e(gv(s), gw(s)) / e(gy(s), g) = e(gh(s), gt(s))

■ Remarks
– Security holds under the d-PKE, q-PDH, and 2q-SDH assumptions

(d-power knowledge of exponent; q-power Diffie-Hellman; 2q-strong DH)
– Proof can be as short as 7 group elements (in G)
– Server needs O(|C|) cryptographic and O(|C| ∙ log2 |C|) other operations
– Actual protocol is more complex

23 © 2014 IBM Corporation

Efficiency comparison

Circuit C of size T, input of size N Rounds Server/proof Client/verif.

With (randomized) interactive proofs
"Muggles" [GKR08] d log(N) poly(T) O(N+log d)
CMT [Thaler et al.] streaming O(T log T) O(log2 N)

Based on PCPs
Blumberg, Setty, Walfish et al. 1 O(T1.5) polylog

Encrypted queries based on QAP
[GGPR13] 1 O(T log2 T) const

24 © 2014 IBM Corporation

Systems for verifiable computation

■ Ginger [SVP+12], Zaatar [SBV+13], based on PCPs
– For a C-like language (going back to FairPlay)

■ CMT, implementing a streaming interactive protocol [Thaler et al.]

■ Pinocchio [PGHR13], based on QAPs
– Compiles a subset of C into a QAP

■ SNARKs for C [BCG+13], based on QAPs
– With a specific TinyRAM compiler that produces "good" circuits

■ Allspice [VSBW13], a hybrid design, combining the best of PCPs and CMT

■ Etc.

25 © 2014 IBM Corporation

Typical performance

■ Pinocchio [PGHR13]:
– Evaluate a 5-var. multivariate polynomial with deg. 10 and 644k coefficients
– Setup (KeyGen/ProblemGen): 42s
– Compute: 246s
– Verify: 12.5ms
– |EK| = 56MB, |VK| = 640B, |Proof| = 288B

■ Other systems are similar, Pinocchio is one of the most efficient

■ Useful only for computations amortized over many instances
– Setup for client exists always

■ None is really practical today

■ Server cost is much, much bigger than simply computing F

26 © 2014 IBM Corporation

Cross-over points where amortization makes VC rational

■ Figure source: [WB13],

■ Multiplication of two 128x128 matrices, 64-bit floating point numbers

■ Number of instances must be "large" before VC is cheaper than evaluating
problem itself

27 © 2014 IBM Corporation

Authenticated data types

28 © 2014 IBM Corporation

Protecting outsourced data

■ Data stored remotely
– Access from everywhere
– Disaster recovery
– Long-term archiving

■ Data distributed over remote provider
– Authorized publication
– Protect critical information

■ Database records, reports, files, audit
logs ...

■ How to prevent tampering by storage
hosting provider or by the
content-distribution service?

29 © 2014 IBM Corporation

Authentication of remote data

■ Writer publishes data
– Issues incremental updates
– Data is large

■ Server (untrusted)
– Stores data
– Processes updates
– Responds to queries

■ Multiple readers
– Selectively retrieve data

with queries
– Verify authenticity w.r.t. short

authenticator α produced by
writer Writer Reader

Reader
Reader

Update()
Query()

Verify() → yα

30 © 2014 IBM Corporation

Database service model

■ Generic function F with state in X and operations O

F(x, o) → (x', r)

– State x  X
– Operation o  O
– New state x'  X
– Response r  R

■ Operations contain updates U and queries Q with O = U  Q
– Updates do not give a response: for u  U, it holds F(x, u) = (x', ⊥)
– Queries never change the state: for q  Q, it holds F(x, q) = (x, r)

31 © 2014 IBM Corporation

Authenticated data types (ADT) ― Model and setup

■ KeyGen(κ) → (pk, sk)
– Generates a public/secret key pair

■ InitF(pk, sk, x) → (α, σx)
– Writer transforms state x of F into encoded σx, obtains authenticator α

■ UpdateF(u, α, [x,] σx, pk, sk) → (α', [x',] σx')
– Writer performs update u, obtains new α' and σx' , possibly also x

■ RefreshF(u, α, σx, pk) → (α', σx')
– Server performs update u on encoded state, σx → σx', uses no secret key

Writer Reader

Update(u) → α', [x',] σx'

Query()

Verify()

α'

u, α, σx'

[x,] α, sk, pk
σx

Refresh(u) → x', σx'

r

α

32 © 2014 IBM Corporation

Authenticated data types (ADT) ― Retrieval

■ QueryF(q, α, σx, pk) → (r, φ)
– Server produces response r and proof φ for query q

■ VerifyF(q, r, α, φ, pk) → {0, 1}
– Client verifies response r and proof φ w.r.t. authenticator α

■ Intuition ― Server cannot forge a response and proof such that client accepts
wrong value

Writer Reader
q

Verify(q, r, α, φ)?

α
σx

Query(q, α, σx) → r, φ

r, φ

[x,] α, sk, pk

33 © 2014 IBM Corporation

Authenticated data types (ADT) ― Properties

■ Correctness
– Set up and perform updates, resulting in state x and α
– For all queries q, and responses r from Query(q, ∙∙∙)

Verify(q, r, ∙∙∙) = 1 iff F(x,q) = (∙∙∙, r)

■ Security
– Adversary A lets writer execute operations to produce state x and α
– Then, A cannot forge q, r, φ, such that

VerifyF(q, r, α, φ, pk) = 1 but F(x, q) ≠ (∙∙∙, r)

■ Efficiency ― Sizes of α and φ << size of x

Writer Reader

Verify()?

α
x, σx

Query()
Update()

Refresh()

q

r, φ

[x,] α, sk, pk

34 © 2014 IBM Corporation

Examples of ADT schemes

■ Original motivation ― certificate revocation lists (CRL) [NN00, MND+04]

■ Merkle hash tree
– Application to memory checking [BEGKN94]

■ Authenticated dictionaries

■ Many hierarchical indexing structures [GTT09]
– Authenticated skip lists
– B-trees etc.
– Supporting 1-d and multi-dimensional range queries

■ Sets with verifiable operations [CPPT14]

■ Simple database functions
– Updates and queries

35 © 2014 IBM Corporation

Key-value store (KVS) ― Authenticated dictionary

■ Popular storage interface using unstructured objects ("blobs")
– Every object ("value") identified by a unique name ("key")
– Objects may be grouped into containers

■ Practical use in many cloud storage systems (AWS S3, OpenStack Swift ...)

■ Operations
– put(key, val)
– get(key) → val
– list() → {keys ...}
– remove(key)

key
object

36 © 2014 IBM Corporation

(Merkle) Hash trees

■ Parent node is hash of its children

■ Top hash value (root) commits all
data items x1, ..., xn

– Root hash is authenticated,
cryptographically protected or in
trusted memory

– Tree is on extra untrusted storage

■ To verify xi, recompute path from xi to
root with sibling nodes and compare
to root

■ To update xi, recompute new root
hash and nodes along path from xi to
root

root

H0 H1

x1

H00 H01 H10 H11

x2 x3 x4

37 © 2014 IBM Corporation

Authenticated dictionary using a hash tree

■ Dictionary stores key/value entries (k, v)

■ Store (k, v) in hash tree leaves?
No ― does not allow to prove absence of a key

■ For proving membership and non-membership, hash tree contains tuples
(ki, ki+1, vi)

■ Uses only a cryptographic hash function, no keys

■ Update, Refresh
– Recompute all nodes along path from modified entry to root
– Authenticator α is the root hash of tree
– Hash tree is stored by untrusted server

■ Query, Verify
– Proof φ consists of sibling nodes along path from entry to root
– Verification recomputes root hash and compares to α

38 © 2014 IBM Corporation

Dynamic cryptographic accumulators [BP97, CL02]

■ A dynamic accumulator is a cryptographic abstraction for collecting data values
into a short digest and for checking their presence efficiently:

– Init() → (a, pk, sk) ― generates accumulator value a and a key pair pk/sk
– Add(a, x, pk) → a' ― adds x to accumulator
– Delete(a, x, pk, sk) → a' ― removes x from accumulator
– Witness(a, x, pk) → w ― produces a witness w for presence of x
– Verify(a, x, w, pk) → {0, 1} ― checks if witness w is valid for x and proves

that x was added to accumulator

■ History independence ― The accumulator value a does not depend on the
order of adding values, that is, adding values x and y is quasi-commutative:

Add(Add(a, x, pk), y, pk) = Add(Add(a, y, pk), x, pk)

■ Security ― Given an accumulator value a (produced "under influence" of the
adversary), it is infeasible to create x', w' without sk such that

Verify(a, x', w', pk) = 1

39 © 2014 IBM Corporation

Accumulator based on the strong RSA problem [CL02,GTH02]

■ Take an RSA modulus N = P ∙ Q (with P, Q safe primes), and r ∈ ZN

– Secret key consists of factorization (P, Q)

■ Strong RSA assumption ― It is infeasible to find a, b s.t. ab = r mod N

■ Accumulator α that "contains" x1, ..., xn is α = r H(x1) • ∙∙∙ • H(xn) mod N
– Hash function H maps entries to distinct primes

– Add an element xi to α by computing α' ← α H(xi) mod N

– Delete an element xi from α by computing α' ← α 1/H(xi) mod N (secret key!)

– Witness for xi in α is wi ← α 1/H(xi) mod N
• Witness may also be computed without the secret key

wi ← r H(x1) • ∙∙∙ H(x[i-1]) • H(x[i+1]) • ∙∙∙ • H(xn) mod N

– Verify that xi is contained in α by checking wi H(xi) = α mod N ?

40 © 2014 IBM Corporation

Authenticated dictionary using the dynamic accumulator

■ For key/value pairs (k, v) the dictionary contains tuples (ki, ki+1, v)

■ The authenticator is the accumulator value α
– Writer needs the secret key for updates

■ Update
– For put(), the writer adds the new tuple to α, perhaps removes the old first
– For remove(), the writer removes the tuple from α, updates predecessor

■ Refresh
– Server recomputes all witnesses (expensive!)

• Needs Θ(n) exponentiations (can be improved to O(1) and sublinear
query-response cost, when amortized and server keeps state [PTT08])

■ Query, Verify
– Proof φ consists witness w for the key in get() and the accumulator α
– Verification works according to accumulator's Verify()

41 © 2014 IBM Corporation

Efficiency comparison

Authenticated dictionary of size n Hash tree Accumulator

Update time O(log(n)) O(1)

Refresh time O(log(n)) O(n) (!)

Verify time O(log(n)) O(1)

Proof size O(log(n)) O(1)

■ In practice, public-key operations in accumulator scheme dominate cost [CW11]
– Accumulator schemes are "unsuitable for production use"

■ In a direct comparison, the small proofs of accumulators do not pay off [CW11]
– One RSA modulus would correspond to a path in a hash tree of depth 17,

holding 256'000 keys

42 © 2014 IBM Corporation

Distributed consistency enforcement

43 © 2014 IBM Corporation

Cloud storage integrity ― consistent to multiple clients?

■ Kernel.org Linux repository was compromised

– Linux kernel sources exposed, but public open-source anyway

– Thanks to cryptographic integrity protection in revision control system (git),
kernel code modifications could be detected

– Who determines the "true" kernel sources?

– What if cloud service is subverted or client data are modified?

44 © 2014 IBM Corporation

System modelSystem model

■ Server S
– Normally correct
– Sometimes faulty (untrusted,

potentially malicious ... Byzantine)

■ Clients: A, B, C ... (n in total)
– Correct, may crash
– Invoke operations on server
– Disconnected
– Small trusted memory

■ Asynchronous

■ No client-to-client communicationBobAlice Charlie

45 © 2014 IBM Corporation

Consistency among verifiers?

■ Verifiers need to be synchronized
– In ADT, the writer publishes authenticator through a trusted channel
– Applies also to stateful VC

■ In principle, verifiers could agree among themselves on "the" authenticator
– However, clients often cannot communicate
– Contradicts the model of outsourced computation

■ Thus, clients may observe different views → distributed computing

46 © 2014 IBM Corporation

An abstract storage service

■ Storage functionality MEM
– Array of registers x1, ..., xn // one register for every client
– A register has two operations

• Write(i, x) → ok // updates stored value xi to x

• Read(i) → xi // returns value xi stored at index i

■ Popular model for shared storage

■ Clients access MEM asynchronously
– Every operation defined through an invocation and a response

■ Consistency properties when operations execute concurrently
– Sequential consistency
– Regular semantics
– Atomic semantics (linearizability)

47 © 2014 IBM Corporation

Semantics of concurrent operations [L86, HW90]

Alice

Bob

Charlie

wA(x) wA(u)

rB(A) → x rB(A) → u

rC(A) → u rC(A) →

?

■ (Safe ― Every read not concurrent with a write returns the most recently written
value.)

■ (Regular ― Safe & a read concurrent with a write returns the most recently
written value or the concurrently written value. rC(A) → x or u.)

■ Atomic (linearizable) ― Regular & all read and write operations occur
atomically; all clients observe the same sequence of operations. rC(A) → u !

Linearization points

48 © 2014 IBM Corporation

Linearizability formally

■ A history σ is linearizable (w.r.t. F)

↔ ∃ a permutation π of σ such that

• π is sequential and adheres to the sequential specification (of F)

• ∀ clients c, the operations of c are in σ

• π preserves the real-time order of σ.

49 © 2014 IBM Corporation

Data on untrusted storage

■ Suppose clients can only write to and read
from untrusted server

– No outside communication or synchronization

■ Adding cryptographic authentication (digital
signatures or MACs) protects clients' data

– Server cannot forge values out of the blue

– But, answer with an outdated value:
"Replay attack" violates consistency

– But, send different values (some outdated) to different clients:
Violates consistency

Alice Bob Charlie

50 © 2014 IBM Corporation

Problem illustration

Alice

Bob

Charlie

wA(x) wA(u)

wB(v) rB(A)→x

rC(A)→u rC(B)→w

violation

wA(t)

wB(w)

violation

Alice Bob Charlie

■ Bob cannot detect the
replay attack, rB(A)→x

■ Charlie cannot detect the
inconsistency between
rC(A)→u and rC(B)→w

51 © 2014 IBM Corporation

Fork-linearizability as a solution

■ Server may replay old state and present different views to clients
– Thereby "fork" their views of history
– Clients cannot detect this unless they communicate

■ A protocol that imposes fork-linearizability ensures
– If the views of two clients are forked once, they are forked forever

• They never again see each other's updates
– Or they can detect the server's violation

■ Every consistency violation results in a fork
– Best achievable guarantee with an untrusted server

■ Forks can be exposed on an external channel with low capacity and security
– Synchronized clocks
– Periodic gossip

■ Introduced by Mazières and Shasha in SUNDR [MS02]

52 © 2014 IBM Corporation

Fork-linearizability illustrated

Alice

Bob

Charlie

wA(x) wA(u)

wB(v) rB(A)→x

rC(A)→u rC(B)→w

violation

wA(t)

wB(w)

violation

wA(x) wB(v)

wB(w)rB(A)→x

rC(A)→u

rC(B)→w

wA(u)

wA(u)

■ Cannot prevent forks: violation at rB(A) → x

■ Prevents joins: violation at rC(B) → w

View of Alice

View of Bob

View of Charlie

53 © 2014 IBM Corporation

Fork-linearizability formally [MS02, CSS07]

■ A history σ is fork-linearizable (w.r.t. F)

↔ ∀ clients c, ∃ a subset σ(c) ⊆ σ and a permutation π(c) of σ(c) s.t.

• The operations of c are in σ(c);

• π(c) is sequential and adheres to the specification (of F);

• π(c) preserves the real-time order of σ(c); and

• If o ∈ π(c)  π(c'), then π(c) = π(c') up to o.

■ If two clients both observe the same operation o, then their views are the same
up to to o.

54 © 2014 IBM Corporation

Fork-linearizable Byzantine emulations [CSS07]

■ Protocol P emulates functionality F on a Byzantine server S
with fork-linearizability whenever

– If S is correct, then the history of every (...) execution of P is
linearizable w.r.t. F;

– The history of every (...) execution of P is fork-linearizable w.r.t. F.

55 © 2014 IBM Corporation

Trivial protocol to ensure fork-linearizability

■ Suppose clients may cryptographically authenticate messags
– Digital signature schemes
– Alternatively, they share the key for a MAC

■ Idea ― Sign the complete history [MS02]
– Server sends history with all signatures (one sig. on every prefix)
– Client verifies all operations and all signatures
– Client adds its operation, signs new history
– Client sends back operation and signature

■ Provides a fork-linearizable Byzantine emulation

■ Not practical because messages and history grow with system age

56 © 2014 IBM Corporation

Efficient fork-linearizable storage (1)

■ Client C
– Stores timestamp (counter) tC
– Stores version (vector of timestamps) T, where T[C] = tC

– At every operation, client increments tC and updates T
– Signs operations and versions

■ Versions order operations
– For every operation, client increments timestamp, signs version and data

■ Check consistency between V of current op. and version T of last completed op.
– Version of subsequent operation must be V ≥ T
– Cryptographic authentication must be valid

V =

vA

vB

vC

57 © 2014 IBM Corporation

Efficient fork-linearizable storage (2)

Alice

T =

tA
tB
tC

V ← T
φ ← ω
d ← A

[REPLY, V, ...x', d, φ]

[SUBMIT, read, c']

[COMMIT, T, ω]

Values x, y, z ...
Signature φ of last op. by
some cient d

V =

vA

vB

vC

V >= T ?
verify vA = tA ?
verify (φ, V|...x') ?
if not then abort()

T ← V
tA ← tA + 1
ω ← sign(T|...xA)

return(x')

58 © 2014 IBM Corporation

Efficient fork-linearizable storage (3)

■ If clients are forked, they will sign and store incomparable versions

■ Authentication of versions and values prevents any other server manipulation
– With n clients, protocol uses O(n) extra memory for emulating

fork-linearizable shared memory on an untrusted server

■ Clients must proceed in lock-step mode
– Clients may be blocked
– Wait-free protocols would be desirable instead

■ How to increase concurrency? → See later

???

vA vA+1

vC

vB

vC

vB+1

59 © 2014 IBM Corporation

Benefits of fork-linearizable protocol

■ Suppose client A writes many values: u, v, w, x, y, z ...

■ Without distributed consistency enforcement
– Server can show any of these values to another client B

■ With fork-linearizable emulation
– Client A writes z and tells B out-of-band
– Client B reads r from location of z

• If r = z, then all values that B read so far were correct
• If r ≠ z, then server is faulty and has violated consistency

– Out-of-band communication might be only synchronized clocks

60 © 2014 IBM Corporation

Fork-linearizable protocols are blocking

■ All fork-linearizable emulations of storage have executions with a correct S,
where some client A must wait for a client B [CSS07]

– Due to conflicting operations

■ Blocking needed also beyond fork-linearizability
– Fork-sequentially consistent storage emulations are blocking
– Fork-*-consistent [LM07] storage emulations are blocking

■ Weak fork-linearizability, as implemented in FAUST, eliminates the need
for blocking [CKS11]

– Leaves out last operation of a client

61 © 2014 IBM Corporation

Storage systems with forking consistency notions

■ SUNDR [MS02, LKMS04]
– Secure untrusted data repository
– Overlay to an NFS file system, O(n2) space overhead

■ CSVN [CG09]
– Integrity-protecting Subversion revision-control system
– O(n) space overhead based on [CSS07]

■ FAUST ― Fail-aware untrusted storage [CKS11]
– Never blocks, but weaker semantics
– Uses sporadic client-to-client messages

■ Venus [SCC+10]
– Integrity protection for simple cloud object storage
– Implements protocol very similar to FAUST

■ Depot: Cloud storage with minimal trust [MSL+11]
– Fork-causal consistency

62 © 2014 IBM Corporation

Forking consistency for generic computations

■ Consider generic function F that supports an authenticated data type

■ Recall F with state in X and operations O

F(x, o) → (x', r)

– State x  X, operation o  O, new state x'  X, response r  R

■ Operations contain updates U and queries Q with O = U  Q
– Queries never change the state: for q  Q, it holds F(x, q) = (x, •)

■ Recall ADT operations: InitF(), UpdateF(), RefreshF(), QueryF(), VerifyF() .

63 © 2014 IBM Corporation

Approach [C11]

■ Extend the fork-linearizable storage protocol
– Server stores the state of F
– Clients maintain only versions

■ Fork-linearizable operation execution
– Client announces operation o = u or o = q to S
– For an update u:

• S extracts necessary state for UpdateF() and sends to client

• Client runs UpdateF(), signs new authenticator, and sends to S

• S runs RefreshF()
– For a query q:

• S runs QueryF() and sends response to client

• Client runs RefreshF() and outputs response
• Client signs authenticator again, and sends to S

■ Protocol is lock-step
– Wait-free progress is possible when operations commute [WSS09, CO13]

64 © 2014 IBM Corporation

Fork-linearizable authenticated computation

Alice

T =

tA
tB
tC

--RefreshF(u, α, ...)

V ← T
φ ← ω
d ← A

[REPLY, V, α, state/q, d, φ]

[SUBMIT, o]

[COMMIT, T, ω, α]

State x
Authenticator α
Signature φ of last op. by d
If o = update, then extract state
If o = query, then r ← QueryF(s)

V =

vA

vB

vC

V >= T ?
verify vA = tA ?
verify (φ, V|α) ?
--verifyF(q, r, α) ?
if not then abort()

--α ← UpdateF(u, α)

T ← V
tA ← tA + 1
ω ← sign(T|α)

return(x')

65 © 2014 IBM Corporation

Protocol properties

■ If server is correct, then all executions are linearizable
– Correct server schedules operations in as they arrive

■ With faulty server, executions are fork-linearizable w.r.t. F
– Follows from versions and from authenticated data type for F

■ Complexity
– Three messages
– Size O(n) with n cients, plus ADT authenticator

■ Additionally, support for commuting concurrent operations [CO13]
– If an operation commutes with other operations not yet committed (by other

clients), then they can be executed concurrently

66 © 2014 IBM Corporation

Hash chain instead of vector clock

■ Replace vector clock by a hash chain
– Compact representation of complete operation history

■ Reduces communication overhead from O(n) to constant
– Complicates the protocol when operations execute concurrently

■ Used in multiple protocols and systems for fork-linearizable authenticated
generic computation (Blind stone tablet, SPORC ...)

67 © 2014 IBM Corporation

Collaboration systems with forking consistency

■ Blind Stone Tablet [WSS09]
– Runs a relational database
– Considers that some operations commute, but no proofs

■ SPORC: Group Collaboration using Untrusted Cloud Resources [FZFF10]
– Editor for shared documents
– Operational transforms

■ Commutative-operation verification protocol (COP) [CO13]
– Commuting operation sequences proceed without waiting
– Authenticated data types for complex operations

68 © 2014 IBM Corporation

Conclusion

69 © 2014 IBM Corporation

Conclusion

■ Integrity is often more important than confidentiality

■ Diverse techniques address the problem

– Single-client verifiable computation (for generic computations)

– Single-writer, multiple-reader authenticated data types (specific schemes)

– Multiple-client interactive computation (for storage and specific schemes)

■ Active research area, combines cryptography, distributed systems, and security

70 © 2014 IBM Corporation

More about distributed computing

Introduction to Reliable and Secure
Distributed Programming

■ C. Cachin, R. Guerraoui, L. Rodrigues

■ 2nd ed. of Introduction to Reliable Distrib-
uted Programming

■ Springer, 2011

www.distributedprogramming.net

71 © 2014 IBM Corporation

Literature (Verifiable computation 1)

[BCG+13] E. Ben-Sasson, A. Chiesa, D. Genkin et al., "SNARKs for C: Verifying
program executions succinctly and in zero knowledge," CRYPTO 2013.

[BFR+13] B. Braun, A. J. Feldman, Z. Ren et al., “Verifying computations with
state,” SOSP 2013.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified
computation with streaming interactive proofs,” ITCS 2012.

[GGP10] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” CRYPTO 2010.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct NIZKs without PCPs,” EUROCRYPT 2013.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: Interactive proofs for muggles,” STOC 2008.

72 © 2014 IBM Corporation

Literature (Verifiable computation 2)

[IKO07] Y. Ishai, E. Kushilevitz, and R. Ostrovsky, "Efficient arguments without
short PCPs," Computational Complexity (CCC), 2007.

[PGHR13] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” IEEE Security & Privacy 2013.

[SBB+13] S. Setty, B. Braun, A. Blumberg et al., "Resolving the conflict between
generality and plausibility in verified computation," Eurosys 2013.

[SVP+12] S. Setty, V. Vu, N. Panpalia et al., “Taking proof-based verified
computation a few steps closer to practicality,” USENIX Security, 2012.

[VSBW13] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish, “A hybrid architecture
for interactive verifiable computation,” IEEE Security & Privacy 2013.

[WB13] M. Walfish and A. Blumberg, "Verifying computations without reexecuting
them: from theoretical possibility to near practicality," ECCC, Report 165, 2013. To
appear in CACM.

73 © 2014 IBM Corporation

Literature (Authenticated data types 1)

[BEGKN94] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking
the correctness of memories,” Algorithmica, vol. 12, pp. 225–244, 1994.

[BP97] N. Baric and B. Pfitzmann, “Collision-free accumulators and fail-stop
signature schemes without trees,” in EUROCRYPT ’97, LNCS 1233, 1997.

[CL02] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and
application to efficient revocation of anonymous credentials,” CRYPTO 2002.

[CPPT14] R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos,
“Verifiable set operations over outsourced databases,” in Proc. PKC 2014.

[CW11] S. A. Crosby and D. S. Wallach, “Authenticated dictionaries: Real-world
costs and trade-offs," ACM TISSEC, vol. 14, no. 2, 2011.

[GTH02] M. T. Goodrich, R. Tamassia, and J. Hasic, “An efficient dynamic and
distributed cryptographic accumulator,” in Proc. ISC, LNCS 2433, Springer, 2002.

74 © 2014 IBM Corporation

Literature (Authenticated data types 2)

[GTT09] M. T. Goodrich, R. Tamassia, and N. Triandopoulos, “Efficient
authenticated data structures for graph connectivity and geometric search
problems,” Algorithmica, vol. 60, pp. 505–552, 2011.

[MND+04] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine, “A general model for authenticated data structures,” Algorithmica,
vol. 39, pp. 21–41, 2004.

[NN00] M. Naor and K. Nissim, “Certificate revocation and certificate update,”
IEEE J. Selected Areas in Communications, vol. 18, pp. 561–570, Apr. 2000.

[PTT08] C. Papamanthou, R. Tamassia, and N. Triandopoulos, "Authenticated
hash tables," ACM CCS 2008.

75 © 2014 IBM Corporation

Literature (Distributed consistency 1)

[C11] C. Cachin, "Integrity and consistency for untrusted services," in Proc.
Current Trends in Theory and Practice of Computer Science (SOFSEM 2011),
LNCS 6543, 2011.

[CG09] C. Cachin and M. Geisler, "Integrity protection for revision control," in
Proc. ACNS, LNCS 5536, 2009.

[CKS11] C. Cachin, I. Keidar, and A. Shraer, "Fail-aware untrusted storage," SIAM
Journal on Computing, vol. 40, Apr. 2011.

[CO13] C. Cachin and O. Ohrimenko, "On verifying the consistency of remote
untrusted services," IBM Research Report (2013) and OPODIS 2014 (to appear).

[CSS07] C. Cachin, A. Shelat, and A. Shraer, "Efficient fork-linearizable access to
untrusted shared memory," in Proc. PODC, 2007.

76 © 2014 IBM Corporation

Literature (Distributed consistency 2)

[FZFF10] A. Feldman, P. Zeller, M. Freedman, E. Felten, "SPORC: Group
Collaboration using Untrusted Cloud Resources", OSDI 2010.

[LKMS04] J. Li, M. Krohn, D. Mazieres, and D. Shasha, "Secure untrusted data
repository (SUNDR)," OSDI 2004.

[MSL+11] P. Mahajan, S. Setty, S. Lee et al., "Depot: Cloud Storage with Minimal
Trust", ACM Transactions on Computing Systems, vol. 29, no. 4, 2011.

[MS02] D. Mazieres and D. Shasha, "Building secure file systems out of
Byzantine storage," PODC 2002.

[WSS09] P. Williams, R. Sion, and D. Shasha, “The blind stone tablet:
Outsourcing durability to untrusted parties,” in Proc. NDSS, 2009.

[SCC+10] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D.
Shaket, "Venus: Verification for untrusted cloud storage," CCSW 2010.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

