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Cloud computing everywhere

Network

Compute

Storage
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Computing as a utility

Google data center
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Physical location irrelevant

Data center, Luleå (SE), near the Arctic circle
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Verification, integrity, and consistency



6   © 2014 IBM Corporation

Verification of responses by remote server

■ One or more clients interact with server

■ Server
– Computes
– Responds to requests
– Maintains state

■ Clients
– Request operations and obtain 

responses
– Verify correctness of responses
– Maintain some (small) state

■ No assumptions about server
– Usually response is correct ... but 

sometimes not
– No audits, no trusted hardware,

no trusted 3rd party ...

Client
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Many dimensions of verification

■ Server state
– Server may maintain state across requests

■ Server functionality F
– Arbitrary (polynomial-time computable)
– Specific data structures (maps, tables, ...)
– Storage (only reads and writes)

■ Single-client vs. multiple clients
– With multiple clients, who verifies?
– Clients need to agree on "correct" verification

■ Prototypes and implementation
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Part 1 ― Verifiable computation

■ One client

■ Arbitrary functionality F

■ No server state (mostly)

■ Challenge
– Verification should be faster than 

client recomputing the result by itself

Client
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Part 2 ― Authenticated data types

■ One client writes

■ Many clients read

■ Specific class of functions F
– Mostly related to queries over a 

database

■ Server keeps state

■ Challenge
– Efficiency of verification operation
– Generality of operations on data

Writer
Reader

Reader
Reader
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Part 3 ― Distributed consistency enforcement

■ All clients may write

■ All clients may read

■ Generic functions F
– Data storage is an important 

special case

■ Server keeps state

■ Challenge
– Some attacks cannot be prevented
– How consistent are the views of the 

different clients?Client
Client Client

Client
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Verifiable computation
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Cloud computing ― Do you get the correct answer?

■ Clients depend on the results and 
outputs of remote computations

■ Remote servers may not always 
give the correct response

■ How can clients verify that a reply is 
correct?
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Verifiable computation (VC) ― Definition [GGP10]

■ KeyGen(F, κ) → (EKF, VKF, SKF)

– Generates evaluation key EKF, 
public verification key VKF, secret key SKF 

■ ProblemGen(SKF, x) → (σx, ωx)
– Client encodes problem instance x of F 

into σx, given to S, and secret ωx

■ Compute(EKF, σx) → (σy)
– Server computes encoded result σy 

■ Verify(VKF, ωx, σy) → y
– Client obtains result y, where y = ⊥ denotes that verification failed

■ Designated verifier (as stated)
– Only holder of secret keys may verify result

■ Publicly verifiable (no secret keys, i.e., SKF = ⊥ and ωx = ⊥)
– Everyone can verify result

Client

KeyGen()

ProblemGen(x)

Compute()

Verify() → y
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Verifiable computation ― Properties

■ Correctness
– For any polynomial-time functionality F and input x, run 

KeyGen(F, κ), ProblemGen(∙∙∙x), Compute(∙∙∙σx), Verify(∙∙∙σy) → y
– Then y = F(x)

■ Security
– For any F and any adversary A:

• Run KeyGen(F, κ)
• Repeatedly, A picks x' and obtains σx' from ProblemGen(∙∙∙x')
• A outputs x* and σy*, compute y* ← Verify(∙∙∙σy*)
• With overwhelming probability: y* ≠ ⊥ → y* = F(x*) 

■ Efficiency
– Running ProblemGen() and Verify() takes less time together than evaluating 

F(x) directly
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Background

■ Zero-Knowledge Proofs (ZKPs)
– Have similar goals as VC but generally do not achieve efficiency

■ Probabilistically Checkable Proofs (PCPs)
– Cost was prohibitive for a long time
– Many improvements recently make this near-practical

■ Technically VC is closely related to a SNARK
– Succinct Non-interactive ARgument of Knowledge
– Assume that prover is computationally bounded

→ VC from SNARK is immediate

→ Implementations of VC first construct a SNARK
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Implementing verifiable computation

Client

F(x):
...
for i=1...n do
   a ← a+x*b[i]
y ← c(a)
return y

+ •

•

Encoded
transcript 
(ET)

Circuit C
for F(x)

Program F
Input x

Transcript
of circuit
evaluation

Queries 
about ET

Verify responses 
on ET w.r.t. y=F(x)

C

■ Efficient program for F(x) is compiled into a circuit C for F(x)
– Arithmetic or boolean gates

■ Server evaluates C and proves that valid assignment exists (= transcript)

■ Client verifies that transcript matches result y and y=F(x)
– Must be faster than recomputing F or evaluating C

(This condition rules out the existing interactive proof techniques)
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How to verify the encoded transcript?

■ Client and server run (randomized) interactive proof
– May require interaction or large communication
– As pioneered in "Interactive Proofs for Muggles" [GKR08]
– Extended and implemented by "streaming" interactive proofs [Thaler et al., 

multiple works]

■ Server commits to ET, client checks commitment probabilistically (PCP)
– Based on ZK arguments and "short PCPs" [IKO07]
– Implemented by Blumberg, Setty, Walfish et al. (multiple works)

■ Client sends query in encrypted form
– Server computes response and output without knowing checked locations

(related to private query to databases - PIR)
– Server uses FHE to blindly evaluate a garbled circuit for F [GGP10]
– Realized by encoding F into a Quadratic Program [GGPR13]

• Implemented by "Pinocchio" [PGHR13]
• Coupled with a specific circuit compiler, in "SNARKs for C" [BCGTV13]

→ Focus here
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Quadratic Programs (QPs) for circuits [GGPR13, PGHR13]

■ Consider an arithmetic circuit C for F over a finite field F (also boolean circuit)
– Quadratic Arithmetic Program (QAP)

■ Main result [GGPR13] ― There is a QAP of size O(|C|) that computes F.

■ Define how a QAP computes F: F → F (one input and one output, wlog):

y = F(x) holds iff there exists (c3,...,cN)  FN , with (c0, c1, c2) = (1, x, y), s.t.

a given target polynomial t(z) divides p(z),

where p(z) = (k ck vk(z)) • (k ck wk(z)) – (k ck yk(z)).

■ QAP = [ V={vk(z)}k, W={vk(z)}k, Y={vk(z)}k, t(z) ]

■ Key step ―  t(z) divides p(z)  ≡  ∃ h(z): h(z) • t(z) = p(z)
– Server (prover) picks h(z) based on wires that satisfy C
– Client (verifier) checks identity of polynomials efficiently, at random point
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c6

Converting a circuit to a QAP

■ Pick a root r in F for each multiplication gate c

– r5 for c5, r6 for c6 ...

■ Set t(z) = (z–r5) (z–r6) 

■ Set p(z) from V={vk(z)}k, W={vk(z)}k, Y={vk(z)}k , 
one polynomial for each gate g (input and mult. gate),
all other points on the polynomials are 0

Circuit for F(x)

+
c5

c5 = c3 • c4

c4c3c2c1

c6 = c5 • (c1 + c2)

...

z=r5  z=r6
v1(z) 0 1
v2(z) 0 1
v3(z) 1 0
v4(z) 0 0
v5(z) 0 0
v6(z) 0 0

z=r5  z=r6
w1(z) 0 0
w2(z) 0 0
w3(z) 0 0
w4(z) 1 0
w5(z) 0 1
w6(z) 0 0

z=r5  z=r6
y1(z) 0 0
y2(z) 0 0
y3(z) 0 0
y4(z) 0 0
y5(z) 1 0
y6(z) 0 1

wire is left input wire is right input wire is gate output

•

•
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c6

QAP computation of y = F(x)

Circuit for F(x)

+
c5

c5 = c3 • c4

c4c3c2c1

c6 = c5 • (c1 + c2)

...

z=r5  z=r6
v1(z) 0 1
v2(z) 0 1
v3(z) 1 0
v4(z) 0 0
v5(z) 0 0
v6(z) 0 0

z=r5  z=r6
w1(z) 0 0
w2(z) 0 0
w3(z) 0 0
w4(z) 1 0
w5(z) 0 1
w6(z) 0 0

z=r5  z=r6
y1(z) 0 0
y2(z) 0 0
y3(z) 0 0
y4(z) 0 0
y5(z) 1 0
y6(z) 0 1

wire is left input wire is right input wire is gate output

•

•

■ Note t(z) | p(z)  iff  ∀ gates g: t(rg) = 0    p(rg) = 0

■ The polynomials are "extremely sparse"
– t(r5) = 0 p(r5) = (c3) • (c4) – (c5)

– t(r6) = 0 p(r6) = (c1+c2) • (c5) – (c6)

■ Thus, p(z) encodes the satisfying assignment of C 
whenever C computes y = F(x)
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Verifiable computation from a QAP (1)

■ Idea ― Check polynomial identity h(z) • t(z) = p(z) at s R F, 
– s is secret from server
– Map h(s), t(s), p(s) into exponents of a DL group G=<g> with bilinear map e()
– Client uses bilinear map (pairing operation) to check equality

■ Client computes KeyGen(F) and ProblemGen(∙∙∙)
– Create a QAP for F
– Choose s R F (randomly)

– EKF ← [ {gvk(s)}k , {gwk(s)}k , {gyk(s)}k , g(s)**i for i=1...deg, ... ]

– VKF ← [ {gyk(s)}k , gt(s), ...  ]

■ Note client's setup complexity must be amortized over many computations
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Verifiable computation from a QAP (2)

■ Server computes y = F(x) and a wire assignment {ck}k for C
– Solves for h(z) such that h(z) • t(z) = p(z)
– Computes gv(s) = ∏ gvk(s)•ck   ... only by linear operations "in the exponent"
– Similarly, gw(s) = ∏ gwk(s)•ck and gy(s) = ∏ gyk(s)•ck  
– Proof is short

[  gv(s), gw(s), gy(s), gh(s)  ]

■ Client verifies divisibility and other checks with a few pairing operations, e.g.,
e( gv(s), gw(s) ) / e( gy(s), g )  =  e( gh(s), gt(s) )

■ Remarks
– Security holds under the d-PKE, q-PDH, and 2q-SDH assumptions

(d-power knowledge of exponent; q-power Diffie-Hellman; 2q-strong DH)
– Proof can be as short as 7 group elements (in G)
– Server needs O(|C|) cryptographic and O(|C| ∙ log2 |C|) other operations
– Actual protocol is more complex
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Efficiency comparison

Circuit C of size T, input of size N Rounds Server/proof Client/verif.

With (randomized) interactive proofs
"Muggles" [GKR08] d log(N) poly(T) O(N+log d)
CMT [Thaler et al.] streaming O(T log T) O(log2 N)

Based on PCPs
Blumberg, Setty, Walfish et al. 1 O(T1.5) polylog

Encrypted queries based on QAP
[GGPR13] 1 O(T log2 T) const
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Systems for verifiable computation

■ Ginger [SVP+12], Zaatar [SBV+13], based on PCPs
– For a C-like language (going back to FairPlay)

■ CMT, implementing a streaming interactive protocol [Thaler et al.]

■ Pinocchio [PGHR13], based on QAPs
– Compiles a subset of C into a QAP

■ SNARKs for C [BCG+13], based on QAPs
– With a specific TinyRAM compiler that produces "good" circuits

■ Allspice [VSBW13], a hybrid design, combining the best of PCPs and CMT

■ Etc.
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Typical performance

■ Pinocchio [PGHR13]:
– Evaluate a 5-var. multivariate polynomial with deg. 10 and 644k coefficients
– Setup (KeyGen/ProblemGen): 42s
– Compute: 246s
– Verify: 12.5ms
– |EK| = 56MB, |VK| = 640B, |Proof| = 288B

■ Other systems are similar, Pinocchio is one of the most efficient

■ Useful only for computations amortized over many instances
– Setup for client exists always

■ None is really practical today

■ Server cost is much, much bigger than simply computing F
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Cross-over points where amortization makes VC rational

■ Figure source: [WB13],

■ Multiplication of two 128x128 matrices, 64-bit floating point numbers

■ Number of instances must be "large" before VC is cheaper than evaluating 
problem itself
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Authenticated data types
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Protecting outsourced data

■ Data stored remotely
– Access from everywhere
– Disaster recovery
– Long-term archiving

■ Data distributed over remote provider
– Authorized publication
– Protect critical information

■ Database records, reports, files, audit 
logs ...

■ How to prevent tampering by storage 
hosting provider or by the 
content-distribution service?
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Authentication of remote data

■ Writer publishes data
– Issues incremental updates
– Data is large

■ Server (untrusted)
– Stores data
– Processes updates
– Responds to queries

■ Multiple readers
– Selectively retrieve data

with queries
– Verify authenticity w.r.t. short 

authenticator α produced by 
writer Writer Reader

Reader
Reader

Update()
Query()

Verify() → yα
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Database service model

■ Generic function F with state in X and operations O

F(x, o) → (x', r)

– State x  X
– Operation o  O
– New state x'  X
– Response r  R

■ Operations contain updates U and queries Q with O = U  Q
– Updates do not give a response: for u  U, it holds F(x, u) = (x', ⊥)
– Queries never change the state: for q  Q, it holds F(x, q) = (x, r)
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Authenticated data types (ADT) ― Model and setup

■ KeyGen(κ) → (pk, sk)
– Generates a public/secret key pair

■ InitF(pk, sk, x) → (α, σx)
– Writer transforms state x of F into encoded σx, obtains authenticator α 

■ UpdateF(u, α, [x,] σx, pk, sk) → (α', [x',] σx')
– Writer performs update u, obtains new α' and σx' , possibly also x

■ RefreshF(u, α, σx, pk) → (α', σx')
– Server performs update u on encoded state, σx → σx', uses no secret key

Writer Reader

Update(u) → α', [x',] σx'

Query()

Verify()

α'

u, α, σx'

[x,] α, sk, pk
σx

Refresh(u) → x', σx'

r

α
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Authenticated data types (ADT) ― Retrieval

■ QueryF(q, α, σx, pk) → (r, φ)
– Server produces response r and proof φ for query q 

■ VerifyF(q, r, α, φ, pk) → {0, 1}
– Client verifies response r and proof φ w.r.t. authenticator α 

■ Intuition ― Server cannot forge a response and proof such that client accepts 
wrong value

Writer Reader
q

Verify(q, r, α, φ)?

α
σx

Query(q, α, σx) → r, φ

r, φ

[x,] α, sk, pk
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Authenticated data types (ADT) ― Properties

■ Correctness
– Set up and perform updates, resulting in state x and α 
– For all queries q, and responses r from Query(q, ∙∙∙)

Verify(q, r, ∙∙∙) = 1 iff F(x,q) = (∙∙∙, r)

■ Security
– Adversary A lets writer execute operations to produce state x and α 
– Then, A cannot forge q, r, φ, such that 

VerifyF(q, r, α, φ, pk) = 1 but F(x, q) ≠ (∙∙∙, r)

■ Efficiency ― Sizes of α and φ << size of x

Writer Reader

Verify()?

α
x, σx

Query()
Update()

Refresh()

q

r, φ

[x,] α, sk, pk
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Examples of ADT schemes

■ Original motivation ― certificate revocation lists (CRL) [NN00, MND+04]

■ Merkle hash tree
– Application to memory checking [BEGKN94]

■ Authenticated dictionaries

■ Many hierarchical indexing structures [GTT09]
– Authenticated skip lists
– B-trees etc.
– Supporting 1-d and multi-dimensional range queries

■ Sets with verifiable operations [CPPT14]

■ Simple database functions
– Updates and queries
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Key-value store (KVS) ― Authenticated dictionary

■ Popular storage interface using unstructured objects ("blobs")
– Every object ("value") identified by a unique name ("key")
– Objects may be grouped into containers

■ Practical use in many cloud storage systems (AWS S3, OpenStack Swift ...)

■ Operations
– put(key, val)
– get(key) → val
– list() → {keys ...}
– remove(key)

key
object
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(Merkle) Hash trees

■ Parent node is hash of its children 

■ Top hash value (root) commits all
data items x1, ..., xn

– Root hash is authenticated,
cryptographically protected or in 
trusted memory

– Tree is on extra untrusted storage

■ To verify xi, recompute path from xi to 
root with sibling nodes and compare 
to root

■ To update xi, recompute new root 
hash and nodes along path from xi to 
root

root

H0 H1

x1

H00 H01 H10 H11

x2 x3 x4
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Authenticated dictionary using a hash tree

■ Dictionary stores key/value entries (k, v) 

■ Store (k, v) in hash tree leaves?
No ― does not allow to prove absence of a key

■ For proving membership and non-membership, hash tree contains tuples
(ki, ki+1, vi) 

■ Uses only a cryptographic hash function, no keys

■ Update, Refresh
– Recompute all nodes along path from modified entry to root
– Authenticator α is the root hash of tree
– Hash tree is stored by untrusted server

■ Query, Verify
– Proof φ consists of sibling nodes along path from entry to root
– Verification recomputes root hash and compares to α
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Dynamic cryptographic accumulators [BP97, CL02]

■ A dynamic accumulator is a cryptographic abstraction for collecting data values 
into a short digest and for checking their presence efficiently:

– Init() → (a, pk, sk)  ―  generates accumulator value a and a key pair pk/sk
– Add(a, x, pk) → a'  ―  adds x to accumulator
– Delete(a, x, pk, sk) → a'  ―  removes x from accumulator
– Witness(a, x, pk) → w  ―  produces a witness w for presence of x
– Verify(a, x, w, pk) → {0, 1}  ―  checks if witness w is valid for x and proves 

that x was added to accumulator

■ History independence ― The accumulator value a does not depend on the 
order of adding values, that is, adding values x and y is quasi-commutative:

Add(Add(a, x, pk), y, pk) = Add(Add(a, y, pk), x, pk)

■ Security ― Given an accumulator value a (produced "under influence" of the 
adversary), it is infeasible to create  x', w' without sk such that

Verify(a, x', w', pk) = 1 
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Accumulator based on the strong RSA problem [CL02,GTH02]

■ Take an RSA modulus N = P ∙ Q (with P, Q safe primes), and r ∈ ZN

– Secret key consists of factorization (P, Q)

■ Strong RSA assumption ― It is infeasible to find a, b s.t. ab = r  mod N

■ Accumulator α that "contains" x1, ..., xn is α = r H(x1) • ∙∙∙ • H(xn)  mod N 
– Hash function H maps entries to distinct primes

– Add an element xi to α by computing α' ← α H(xi)  mod N 

– Delete an element xi from α by computing α' ← α 1/H(xi)  mod N (secret key!)

– Witness for xi in α is wi ← α 1/H(xi)  mod N
• Witness may also be computed without the secret key

wi ← r H(x1) • ∙∙∙ H(x[i-1]) • H(x[i+1]) • ∙∙∙ • H(xn)   mod N

– Verify that xi is contained in α by checking wi H(xi) = α  mod N ?
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Authenticated dictionary using the dynamic accumulator

■ For key/value pairs (k, v) the dictionary contains tuples (ki, ki+1, v) 

■ The authenticator is the accumulator value α 
– Writer needs the secret key for updates

■ Update
– For put(), the writer adds the new tuple to α, perhaps removes the old first
– For remove(), the writer removes the tuple from α, updates predecessor

■ Refresh
– Server recomputes all witnesses (expensive!)

• Needs Θ(n) exponentiations (can be improved to O(1) and sublinear 
query-response cost, when amortized and server keeps state [PTT08])

■ Query, Verify
– Proof φ consists witness w for the key in get() and the accumulator α
– Verification works according to accumulator's Verify()
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Efficiency comparison

Authenticated dictionary of size n  Hash tree Accumulator

Update time O(log(n)) O(1)

Refresh time  O(log(n)) O(n)     (!)

Verify time  O(log(n)) O(1)

Proof size  O(log(n)) O(1)

■ In practice, public-key operations in accumulator scheme dominate cost [CW11]
– Accumulator schemes are "unsuitable for production use"

■ In a direct comparison, the small proofs of accumulators do not pay off [CW11]
– One RSA modulus would correspond to a path in a hash tree of depth 17, 

holding 256'000 keys



42   © 2014 IBM Corporation

Distributed consistency enforcement
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Cloud storage integrity ― consistent to multiple clients?

■ Kernel.org Linux repository was compromised

– Linux kernel sources exposed, but public open-source anyway

– Thanks to cryptographic integrity protection in revision control system (git), 
kernel code modifications could be detected

– Who determines the "true" kernel sources?

– What if cloud service is subverted or client data are modified?
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System modelSystem model

■ Server S
– Normally correct
– Sometimes faulty (untrusted, 

potentially malicious ... Byzantine)

■ Clients: A, B, C ...  (n in total)
– Correct, may crash
– Invoke operations on server
– Disconnected
– Small trusted memory

■ Asynchronous

■ No client-to-client communicationBobAlice Charlie
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Consistency among verifiers?

■ Verifiers need to be synchronized
– In ADT, the writer publishes authenticator through a trusted channel
– Applies also to stateful VC

■ In principle, verifiers could agree among themselves on "the" authenticator
– However, clients often cannot communicate
– Contradicts the model of outsourced computation

■ Thus, clients may observe different views → distributed computing
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An abstract storage service

■ Storage functionality MEM
– Array of registers x1, ..., xn // one register for every client
– A register has two operations

• Write(i, x) → ok // updates stored value xi to x

• Read(i) → xi // returns value xi stored at index i

■ Popular model for shared storage

■ Clients access MEM asynchronously
– Every operation defined through an invocation and a response

■ Consistency properties when operations execute concurrently
– Sequential consistency
– Regular semantics
– Atomic semantics (linearizability)
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Semantics of concurrent operations [L86, HW90]

Alice

Bob

Charlie

wA(x) wA(u)

rB(A) → x rB(A) → u

rC(A) → u rC(A) → 

?

■ (Safe ― Every read not concurrent with a write returns the most recently written 
value.)

■ (Regular ― Safe & a read concurrent with a write returns the most recently 
written value or the concurrently written value. rC(A) → x or u.)

■ Atomic (linearizable) ― Regular & all read and write operations occur 
atomically; all clients observe the same sequence of operations. rC(A) → u !  

Linearization points
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Linearizability formally

■ A history σ is linearizable (w.r.t. F)

↔ ∃ a permutation π of σ such that

• π is sequential and adheres to the sequential specification (of F)

• ∀ clients c, the operations of c are in σ

• π preserves the real-time order of σ.
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Data on untrusted storage

■ Suppose clients can only write to and read
from untrusted server

– No outside communication or synchronization

■ Adding cryptographic authentication (digital
signatures or MACs) protects clients' data

– Server cannot forge values out of the blue

– But, answer with an outdated value:
"Replay attack" violates consistency

– But, send different values (some outdated) to different clients:
Violates consistency

Alice Bob Charlie
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Problem illustration

Alice

Bob

Charlie

wA(x) wA(u)

wB(v) rB(A)→x

rC(A)→u rC(B)→w

violation

wA(t)

wB(w)

violation

Alice Bob Charlie

■ Bob cannot detect the
replay attack, rB(A)→x

■ Charlie cannot detect the
inconsistency between
rC(A)→u and rC(B)→w 
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Fork-linearizability as a solution

■ Server may replay old state and present different views to clients
– Thereby "fork" their views of history
– Clients cannot detect this unless they communicate

■ A protocol that imposes fork-linearizability ensures
– If the views of two clients are forked once, they are forked forever

• They never again see each other's updates
– Or they can detect the server's violation

■ Every consistency violation results in a fork
– Best achievable guarantee with an untrusted server

■ Forks can be exposed on an external channel with low capacity and security
– Synchronized clocks
– Periodic gossip

■ Introduced by Mazières and Shasha in SUNDR [MS02]
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Fork-linearizability illustrated

Alice

Bob

Charlie

wA(x) wA(u)

wB(v) rB(A)→x

rC(A)→u rC(B)→w

violation

wA(t)

wB(w)

violation

wA(x) wB(v)

wB(w)rB(A)→x

rC(A)→u

rC(B)→w

wA(u)

wA(u)

■ Cannot prevent forks: violation at rB(A) → x

■ Prevents joins: violation at rC(B) → w 

View of Alice

View of Bob

View of Charlie
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Fork-linearizability formally [MS02, CSS07]

■ A history σ is fork-linearizable (w.r.t. F)

↔ ∀ clients c, ∃ a subset σ(c) ⊆ σ and a permutation π(c) of σ(c) s.t.

• The operations of c are in σ(c);

• π(c) is sequential and adheres to the specification (of F);

• π(c) preserves the real-time order of σ(c); and

• If o ∈ π(c)  π(c'), then π(c) = π(c') up to o.

■ If two clients both observe the same operation o, then their views are the same 
up to to o.
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Fork-linearizable Byzantine emulations [CSS07]

■ Protocol P emulates functionality F on a Byzantine server S
with fork-linearizability whenever

– If S is correct, then the history of every (...) execution of P is
linearizable w.r.t. F;

– The history of every (...) execution of P is fork-linearizable w.r.t. F.
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Trivial protocol to ensure fork-linearizability

■ Suppose clients may cryptographically authenticate messags
– Digital signature schemes
– Alternatively, they share the key for a MAC

■ Idea ― Sign the complete history [MS02]
– Server sends history with all signatures (one sig. on every prefix)
– Client verifies all operations and all signatures
– Client adds its operation, signs new history
– Client sends back operation and signature

■ Provides a fork-linearizable Byzantine emulation

■ Not practical because messages and history grow with system age
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Efficient fork-linearizable storage (1)

■ Client C
– Stores timestamp (counter) tC
– Stores version (vector of timestamps) T, where T[C] = tC 

– At every operation, client increments tC and updates T 
– Signs operations and versions

■ Versions order operations
– For every operation, client increments timestamp, signs version and data

■ Check consistency between V of current op. and version T of last completed op.
– Version of subsequent operation must be  V ≥ T 
– Cryptographic authentication must be valid

V = 

vA

vB

vC
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Efficient fork-linearizable storage (2)

Alice

T = 

tA
tB
tC

V ← T
φ ← ω
d ← A

[REPLY, V, ...x', d, φ]

[SUBMIT, read, c']

[COMMIT, T, ω]

Values x, y, z ...
Signature φ of last op. by
some cient d

V = 

vA

vB

vC

V >= T ?
verify vA = tA ?
verify (φ, V|...x') ?
if not then abort()

T ← V
tA ← tA + 1
ω ← sign(T|...xA)

return(x')
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Efficient fork-linearizable storage (3)

■ If clients are forked, they will sign and store incomparable versions

■ Authentication of versions and values prevents any other server manipulation
– With n clients, protocol uses O(n) extra memory for emulating 

fork-linearizable shared memory on an untrusted server

■ Clients must proceed in lock-step mode
– Clients may be blocked
– Wait-free protocols would be desirable instead

■ How to increase concurrency? → See later

???

vA vA+1

vC

vB

vC

vB+1
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Benefits of fork-linearizable protocol

■ Suppose client A writes many values: u, v, w, x, y, z ...

■ Without distributed consistency enforcement
– Server can show any of these values to another client B

■ With fork-linearizable emulation
– Client A writes z and tells B out-of-band
– Client B reads r from location of z

• If r = z, then all values that B read so far were correct
• If r ≠ z, then server is faulty and has violated consistency

– Out-of-band communication might be only synchronized clocks
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Fork-linearizable protocols are blocking

■ All fork-linearizable emulations of storage have executions with a correct S, 
where some client A must wait for a client B [CSS07]

– Due to conflicting operations

■ Blocking needed also beyond fork-linearizability
– Fork-sequentially consistent storage emulations are blocking
– Fork-*-consistent [LM07] storage emulations are blocking

■ Weak fork-linearizability, as implemented in FAUST, eliminates the need 
for blocking [CKS11]

– Leaves out last operation of a client
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Storage systems with forking consistency notions

■ SUNDR [MS02, LKMS04]
– Secure untrusted data repository
– Overlay to an NFS file system, O(n2) space overhead

■ CSVN [CG09]
– Integrity-protecting Subversion revision-control system
– O(n) space overhead based on [CSS07]

■ FAUST ― Fail-aware untrusted storage [CKS11]
– Never blocks, but weaker semantics
– Uses sporadic client-to-client messages

■ Venus [SCC+10]
– Integrity protection for simple cloud object storage
– Implements protocol very similar to FAUST

■ Depot: Cloud storage with minimal trust [MSL+11]
– Fork-causal consistency
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Forking consistency for generic computations

■ Consider generic function F that supports an authenticated data type

■ Recall F with state in X and operations O

F(x, o) → (x', r)

– State x  X, operation o  O, new state x'  X, response r  R

■ Operations contain updates U and queries Q with O = U  Q
– Queries never change the state: for q  Q, it holds F(x, q) = (x, • )

■ Recall ADT operations: InitF(), UpdateF(), RefreshF(), QueryF(), VerifyF() .



63   © 2014 IBM Corporation

Approach [C11]

■ Extend the fork-linearizable storage protocol
– Server stores the state of F
– Clients maintain only versions

■ Fork-linearizable operation execution
– Client announces operation o = u or o = q to S
– For an update u:

• S extracts necessary state for UpdateF() and sends to client

• Client runs UpdateF(), signs new authenticator, and sends to S

• S runs RefreshF() 
– For a query q:

• S runs QueryF() and sends response to client

• Client runs RefreshF() and outputs response
• Client signs authenticator again, and sends to S

■ Protocol is lock-step
– Wait-free progress is possible when operations commute [WSS09, CO13]
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Fork-linearizable authenticated computation

Alice

T = 

tA
tB
tC

--RefreshF(u, α, ...)

V ← T
φ ← ω
d ← A

[REPLY, V, α, state/q, d, φ]

[SUBMIT, o]

[COMMIT, T, ω, α]

State x
Authenticator α
Signature φ of last op. by d
If o = update, then extract state
If o = query, then r ← QueryF(s)

V = 

vA

vB

vC

V >= T ?
verify vA = tA ?
verify (φ, V|α) ?
--verifyF(q, r, α) ?
if not then abort()

--α ← UpdateF(u, α)

T ← V
tA ← tA + 1
ω ← sign(T|α)

return(x')
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Protocol properties

■ If server is correct, then all executions are linearizable
– Correct server schedules operations in as they arrive

■ With faulty server, executions are fork-linearizable w.r.t. F
– Follows from versions and from authenticated data type for F

■ Complexity
– Three messages
– Size O(n) with n cients, plus ADT authenticator 

■ Additionally, support for commuting concurrent operations [CO13]
– If an operation commutes with other operations not yet committed (by other 

clients), then they can be executed concurrently
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Hash chain instead of vector clock

■ Replace vector clock by a hash chain
– Compact representation of complete operation history

■ Reduces communication overhead from O(n) to constant
– Complicates the protocol when operations execute concurrently

■ Used in multiple protocols and systems for fork-linearizable authenticated 
generic computation (Blind stone tablet, SPORC ...)
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Collaboration systems with forking consistency

■ Blind Stone Tablet [WSS09]
– Runs a relational database
– Considers that some operations commute, but no proofs

■ SPORC: Group Collaboration using Untrusted Cloud Resources [FZFF10]
– Editor for shared documents
– Operational transforms

■ Commutative-operation verification protocol (COP) [CO13]
– Commuting operation sequences proceed without waiting
– Authenticated data types for complex operations
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Conclusion
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Conclusion

■ Integrity is often more important than confidentiality

■ Diverse techniques address the problem

– Single-client verifiable computation (for generic computations)

– Single-writer, multiple-reader authenticated data types (specific schemes)

– Multiple-client interactive computation (for storage and specific schemes)

■ Active research area, combines cryptography, distributed systems, and security
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More about distributed computing

Introduction to Reliable and Secure 
Distributed Programming

■ C. Cachin, R. Guerraoui, L. Rodrigues

■ 2nd ed. of Introduction to Reliable Distrib-
uted Programming

■ Springer, 2011

www.distributedprogramming.net
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