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Abstract

Cloud-based storage services have established themselves as a paradigm of choice for supporting bulk storage
needs of modern networked services and applications. Although individual storage service providers can be trusted to
do their best to reliably store the user data, exclusive reliance on any single provider or storage service leaves the users
inherently at risk of being locked out of their data due to outages, connectivity problems, and unforeseen alterations
of the service contracts. An emerging multi-cloud storage paradigm addresses these concerns by replicating data
across multiple cloud storage services, potentially operated by distinct providers. In this position paper, we report
on our recent study seeking to shed light on fundamental capabilities and limitations of building robust multi-cloud
storage services out of a collection of fault-prone cloud stores. We outline the initial results we have obtained so far,
and propose directions for future exploration.

1 Introduction
A rapidly growing number of Internet companies offer Storage-As-A-Service to their customers. These include
big corporations such as Amazon, Google, Microsoft, Apple, EMC, HP, IBM, AT&T, as well as numerous smaller
providers such as Dropbox, Box, Rackspace, Nirvanix and many others. The popularity of cloud storage stems from
its flexible deployment, convenient pay-per-use model, and little (if any) administrative overhead. This is especially
attractive for smaller businesses, who cannot afford the costs of deploying and administering enterprise-scale storage
infrastructure on their premises, and would rather outsource this task to an external entity.

Although cloud storage providers make tremendous investments into ensuring reliability and security of the service
they offer, most of them have suffered from well-publicized outages where the integrity and/or availability of data
have been compromised for prolonged periods of time [27, 12, 23]. In addition, even in the absence of outages, the
customers can still lose access to their data due to connectivity problems, or unexpected alterations in the service
contract. In fact, the problem of data lock-in [6] in which the customers become critically dependent on a specific
cloud provider for all their data storage needs has long been considered a major roadblock to a wider adoption of cloud
storage for sensitive data such as banking, medical, or critical infrastructure domains.

To address these concerns, multi-cloud storage systems whereupon the data is replicated across multiple cloud
storage services (potentially operated by distinct providers) have recently become a hot topic in the systems commu-
nity [29, 1, 38, 10, 9]. Note that since in this setup, the individual stores can be hosted by different cloud providers,
the service implementation becomes the sole responsibility of a user-side proxy (such as a client library, or a middle
tier) whose goal is to mediate between the users and the individual cloud stores so as to ensure data availability in the
face of asynchrony, concurrency, and failures of both individual services and users.



Cloud Store API Comments
Yahoo! PNUTS [15] Test-and-Set-Write(required

version)
Write if and only if the present
version is equal to required ver-
sion

Amazon SimpleDB [34] PutAttributes Update iff specified at-
tribute/value match the existing
one

Amazon DynamoDB [17] PutItem Replace an existing item if it has
certain attribute values

MongoDB [28] Update if current
Google Cloud Storage [35] Conditional Write based on

monotonically increasing ver-
sions

Windows Azure Storage [36] Update/Delete with if-match
Riak [31] Update/Delete with if-match
Yahoo! Zookeeper [21] setData(String path, byte[] data,

int version)
IBM Spinnaker [30] TAS, TAS-multi-put Inserts values into specified

columns if a list of “col-
umn=timestamp” tests succeed

Table 1: Conditional Update Primitives Exposed by the Existing Cloud Data Stores

Although a significant progress has so far been made in building practical multi-cloud storage systems [1, 10, 9],
as of today, little is known about their fundamental capabilities and limitations. The primary challenge lies in a wide
variety of the storage interfaces and consistency semantics offered by different cloud providers to their external users.
For example, whereas Amazon S3 [32] supports a simple read/write interface, other storage services also expose a
selection of more advanced transactional primitives, such as conditional writes (see Table 1).

In this position paper, we report on our recent study [13] seeking to shed light on fundamental capabilities and
limitations of building robust multi-cloud storage services out of a collection of fault-prone cloud stores. We outline
the initial results we have obtained so far (see Section 3), and propose directions for future exploration (see Section 4).

2 System Model
For the sake of formal analysis, we model a multi-cloud storage system as an asynchronous fault-prone shared memory
system of Jayanti et al. [22]. Specifically, we abstract individual cloud stores as fault-prone shared objects (to which
we refer as base objects), cloud users as processes accessing these objects, and a reliable multi-cloud storage service
as a fault-tolerant object emulation consisting of the process algorithms interacting with the base objects.

3 Initial Results
In this section, we outline the results of our recent study [13] that explored the space and time complexity of building
multi-cloud storage services abstracted as fault-tolerant object emulations as a function of the following parameters:

1. emulated object type,

2. the number of supported processes, and

3. the safety properties offered by the individual base objects being used.
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3.1 Space Requirements for Supporting Multiple Clients
Our first result establishes a lower bound on the space required to emulate a reliable wait-free multi-writer/single-
reader register supporting safe consistency [25, 24, 33], which is one of the most basic guarantees one could expect
from a storage service. We assume underlying storage services supporting read/write and list primitives1, which we
model as multi-writer/multi-reader (MWMR) atomic snapshot objects [2, 4, 5]. In [13], we prove the following

Theorem 3.1 Let A be an implementation of a wait-free multi-writer/1-reader safe register out of a collection of n
base wait-free atomic multi-writer/multi-reader snapshot objects [2, 4, 5] each of which storing vectors consisting
of m > 0 entries. Suppose that at most t > 0 base objects can crash, and n > t. Then, there exists a failure-free
execution α of A consisting of a sequence W1,W2, . . . ,Wk of write operations Wi invoked by processes P1, . . . , Pn

respectively such that

1. Wi is invoked after Wj returns for all i > j,

2. Pi 6= Pj for all i 6= j,

3. k = b(nm− t− 1)/tc, and

4. There does not exist an extension α′ of α in which a new process P 6∈ {P1, . . . , Pk} invokes a write operation
after Wk returns.

That is, irrespective of the number of failures being tolerated by the emulation, the maximum number of distinct
processes (i.e., k) that could ever write the emulated register (either concurrently or not) is bounded by a quantity,
which is linear in the number of entries supported by the underlying snapshot objects.

In other words, the space overhead associated with storing each individual data item (such as e.g., a single
key/value) is proportional to the maximum number of clients that could ever update this item, and in particular, can-
not be optimized under the assumption of bounded maximum concurrency (i.e., point contention [3, 8]). In practice,
this means that architects of the multi-cloud storage services should avoid using speculative techniques that stipulate
bounded peak load (such as e.g., memory overcommit [37, 11, 20]), but rather focus on limiting the total number of
writers (e.g., through deploying proxies, or access control mechanisms) as the means of optimizing the space usage.

In particular, our result explains the space overheads incurred by practical implementations of reliable multi-cloud
data stores recently published by Basescu et. al [9] and Ye et al. [38]. Their algorithms incur worst-case space
complexity proportional to the number of writers (regardless of concurrency), which matches our lower bound.

An important theoretical consequence of our space bound is that it shows that shared memory algorithms based
on reliable multi-writer registers are subject to a linear (in the number of writers) space blow-up when transformed
to a fault-prone shared memory. This means that failures cause multi-writer registers to “lose” their ability to support
multiple writers using constant space, rendering them equivalent to single-writer registers. Note that since our proof
assumes base objects supporting multi-writer atomic snapshot, which is in a sense, the strongest possible read/write
memory abstraction, our result also carries over to other multi-writer object emulations in this model, such as e.g.,
consensus, and multi-writer snapshots.

3.2 Space-Efficient Emulations Using Conditional Writes
We next turn to emulating reliable registers over storage services supporting transactional update primitives. First, it is
well known that a constant number of read-modify-write objects is indeed sufficient to reliably emulate a multi-writer
atomic register [7, 18]. This implies that strengthening the underlying object semantics is indeed essential to avoid
linear dependency on the number of writers implied by the lower bound in Section 3.1.

However, the read-modify-write objects employed by the existing implementations are too specialized to be ex-
posed by the commodity cloud storage interfaces. For example, the write operation implementation of the ABD
protocol [7, 18] relies on a read-modify-write primitive which performs the following two steps as a single atomic

1The list primitive is supported by Amazon S3
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operation: (1) test the timestamp associated with the value supplied in the write operation against the one associated
with the stored value, and (2) update the stored value with the supplied one only if the supplied timestamp is strictly
greater than the stored one.

Instead, the cloud storage providers typically expose general purpose read-modify-write primitives, such as those
summarized in Table 1. These primitives are variants of conditional writes, and therefore, essentially equivalent to
compare-and-swap (CAS). We therefore, adopt a shared memory system with fault-prone CAS objects as our model
of cloud storage services supporting conditional writes, and study reliable object emulations in this environment. In
particular, in [13], we show that there exist reliable constant space implementations of the following two objects:

• multi-writer atomic register, which requires the underlying clouds to only support a single CAS object per
stored value, is adaptive to point contention (i.e., the maximum number of clients executing concurrently with
the operation), and tolerates up to a minority of base object failures, and

• Ranked Register (RR) [14] using a single fault-prone CAS object. A collection of such Ranked Registers can be
used to construct a reliable Ranked Register, from which agreement is built [14]. Our construction thus obtains a
multi-cloud state machine replication service capable of supporting infinitely many clients using constant space.

4 Open Questions
We believe that our work opens several interesting new avenues for future research. Below, we enumerate several open
questions naturally arising from, or extending our initial results above:

• The step complexity of our atomic register implementation is quadratic in point contention. Is this optimal
for emulating atomic registers? Interestingly, if this question can be answered in the affirmative, and since
an atomic object is known to be implementable in constant space from generic read-modify-write primitives
(ABD [7, 18]), this would imply that there is a time complexity separation between CAS and generic read-
modify-write primitive, which have been previously thought to be equivalent in all other respects (such as e.g.,
the power to implement consensus [19]).

• If the step complexity of our atomic register implementation is optimal, is the same true for weaker consistency
variants (such as regular, safe, or timeline)?

• Is it possible to improve the running time of the atomic register implementation under contention by leveraging
timeliness assumption (e.g., loosely synchronised clocks), or randomization?

• Are there any benefits with respect to space or time complexity for mixing replicas exposing read/write primi-
tives with those exposing conditional write primitives?

• Our space bound is shown for safe registers which, despite being weaker than atomic and regular registers, still
require that a read returns the value of a most recently completed write (if it does not overlap the write). It
remains open whether a similar bound also applies to weaker forms of consistency, such as e.g., sequential [26],
timeline [15], or causal consistency.

• The proof of our space bound in [13] crucially depends on a capability to terminate each high-level write
operation without waiting for the responses from the base object writes that were invoked in the course of
the prior write invocations but have been left “hung” (due to a possibility of the object failure). Note that
this capability is no longer available if each WRITE is guaranteed to terminate, or in other words, all writers
are correct. Since the writer reliability can be enforced in many practical settings, it will be interesting to see
whether a constant memory algorithm can be constructed under the assumption of reliable writers, or the space
bound can be further strengthened to also apply in this case.

• We conjecture that there is a simple algorithm implementing a k ∗m-writer/multi-reader atomic register out of
n > (k + 1)t atomic snapshot objects of length m. This algorithm will use each “row” of n snapshot slots to
support k writers using an algorithm similar to ABD. Thus, the number of supported writers can be bounded
from below by (d(n− 2t)/te)m.
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• We further conjecture that the above bound is tight since it is possible to choose (d(n−2t)/te) subsets Si out of
n > t snapshot objects each of which consisting of t objects so that any implementation will have a run where
each high-level write invocation invocation terminates while leaving base object write invocations pending on
all objects in one of the sets Si.

• Our initial results assume a benign failure model for both base objects and clients. An interesting research
direction will be to strengthen the failure model to include Byzantine failures, and study the consistency and
complexity tradeoffs involved in implementing a reliable multi-cloud store in this environment.

• Finally, it will be interesting to explore performance tradeoffs involved in implementing a reliable multi-cloud
key-value store out of commodity data stores supporting conditional write primitives of various types. Possible
questions to study in this context include the performance impact of storage interfaces supported by different
vendors, and the implications of the write contention as found in the commonly used cloud store benchmarks,
such as YCSB [16]. A natural next step will be to leverage the reliable multi-cloud read/write primitives for
implementing multi-object transactions.
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