
Security Analysis of Dynamic Infrastructure Clouds

Sören Bleikertz∗1, Thomas Groß†2, and Sebastian Mödersheim‡3

1IBM Research - Zurich
2University of Newcastle upon Tyne

3DTU Informatics

1 Introduction
Multi-tenant infrastructure clouds can bear great complexity and can be exposed to security issues.
Even if one only analyzes the static configuration of hosts, VMs, network and storage as well as their
inter-connectivity, one faces a complex system. Configuration and topology changes make the system
a moving target and can introduce violations of a security policy, for instance, manifest in incorrect
deployment or isolation breaches. Although there have been analyses of isolation failures in complex
static configurations of clouds, such as Bleikertz et al. [3], the analysis of dynamic configuration changes
is largely missing [2].

Misconfigurations and Insider Attacks Even if committed unintentionally, misconfigurations are
among the most prominent causes for security failures in infrastructure clouds. The ENISA report on
cloud security risks [5] names isolation failure as major technical risk, with misconfiguration, lack of
resource isolation and ill-defined role-based access policies as notable root vulnerabilities. If committed
intentionally by a malicious insider, misconfigurations expose the infrastructure to greater risks. The CSA
threat report [4] as well as the ENISA report agree to insider attacks as a TOP 10 cloud security risk
as well as malicious insiders as a “very high impact” technical risk [5]. The analysis of all configuration
changes is crucial here, as the insider could create a transient insecure state to attack the system and
change it to a secure configuration before the next security analysis. Therefore, there is a need to analyze
management operations for their security properties and to achieve overall accountability for administrator
actions. The question is: How can we model configuration changes induced by management operations of
cloud administrators and check these changes for violations of a security policy?

Analysis of Dynamic Infrastructure Clouds The concrete aim of our research is mitigate the
security impact of misconfigurations: (a) We enable honest administrators to create a change plan for
an infrastructure in advance and have this change plan checked for violations of the security policy in a
what-if analysis. (b) We establish an authorization proxy to have all configuration changes independently
checked for violations of the security policy, creating a run-time audit for misconfigurations and their
security impact. (c) We direct this research towards the run-time mitigation of misconfigurations and
enforcement of security policies. Whereas (b) only establishes an audit log of misconfigurations causing
security problems, (c) is aiming at enforcing the security policy.

To achieve this analysis, we need multiple ingredients. First, we need a faithful representation of the
topology and configuration of the virtualized infrastructure, which we call a realization model. Second,
we need a description of information flow traversal of infrastructure components to evaluate information
flow as the key security aspect. We draw upon the work of Bleikertz et al. [3] for both points. Third, we
∗sbl@zurich.ibm.com
†thomas.gross@newcastle.ac.uk
‡samo@dtu.dk

1

sbl@zurich.ibm.com
thomas.gross@newcastle.ac.uk
samo@dtu.dk


need a language to specify security goals for virtualized infrastructures, where we resort to the language
VALID [1], already used in research prototypes for that very purpose.

A crucial piece missing for a dynamic system analysis, however, is a formal model of topology and
configuration changes in infrastructure clouds. The model needs to capture how relevant operations change
the topology and its security properties. Such a model needs to capture basic operations, such as VMware’s
UpdatePortGroup as an operation that changes the VLAN configuration, or larger asynchronously executed
tasks, such as creating or migrating a virtual machine. Expressing such cloud operations in a formal
system is challenging: If the model is too abstract, it may fail to capture many significant attacks, while
if it is too detailed, formal reasoning about security in the model becomes infeasible—both for manual
and for automated verification. The main contribution of this paper is to develop an operations model,
which enables us to establish an analysis system for misconfigurations.

Our approach builds upon graph rewriting, where topology, security goals and configuration changes
are expressed as graphs and transformations of graphs. This methodology allows us to check efficiently
whether configuration changes applied to a given topology will violate the security goals or not. We
realize a prototype tool for this analysis as well as application cases in change planning and run-time
audit of misconfigurations and establish this analysis in a practical environment with VMware.

2 System and Threat Model
2.1 A Graph Model of Virtualized Infrastructures
A graph-based model of static virtualized infrastructures has been proposed in [3]. The vertices of such
a graph represents the virtualized infrastructure elements, e.g., physical servers or virtual machines,
and the edges model the relationship among the elements, thereby capturing the topology of the
system. Furthermore, nodes are typed, e.g., vMachine, and attributed to capture further properties and
configuration aspects of each element. We consider the model as a directed, node and edge typed, and
attributed graph.

In order to build the model we require sufficient information on the topology and configuration of a
virtualized infrastructure. The authors of [3] describe two steps for their model construction: Discovery
(§4.1) and Translation (§4.2). The discovery extracts the configuration from the hypervisors or management
system of heterogeneous virtualized infrastructures, and translates the extracted configuration data into
the model.

2.2 Threat Model
As core threat, we model non-malicious (deliberate and non-deliberate, accidental and incompetence)
human-made faults. Even if administrators are honest, they can still make mistakes that lead to a security
breach. Therefore, their behavior is not malicious and byzantine, but comes with some fairness constraints:
A provider administrator will attempt to issue commands in a well-defined way through the service
interface. A provider’s behavior will take feedback from a security analysis or an audit into account.
As part of the system foundations, we require that the analysis probes discovering the infrastructure
configuration get an authentic view of the configuration.

In general, the analysis method proposed is capable to handle malicious, byzantine adversaries as
well. To protect against those, the infrastructure needs to be modified to enforce sole access through the
management interface (and prevent circumvention approaches, such as a direct SSH log-in to the physical
hosts). Also, the security validation needs to be mandatory for all management operations, which is part
of future work.

3 Modeling and Analysis of Dynamic Infrastructure Clouds
3.1 A Model of Dynamic Virtualized Infrastructures
The core of our model are graph transformations and we introduce a novel modeling of management
operations and their impact on the configuration and topology of a virtualized infrastructure given
as a graph. Furthermore, we integrate existing approaches [1, 3] for the formalization and analysis

2



int

∀

int

string
?1

string
?0

vswitch

vswitch

host

string
?3

vport

int
?2

vlanId
name

real

real

name

vlanId

real

vlanId

@

vlanId

name

@

Figure 1: UpdatePortGroup

of security goals for virtualized infrastructure in our model, thereby establishing a unified approach.
Additionally, these existing approaches are extended to enable the security analysis of dynamic virtualized
infrastructures.

The basic idea of graph transformation is as follows. We have a graph transformation rule p, also
called a production, in the form of p : L

r−→ R, where graphs L and R are denoted the left hand side
(LHS) and right hand side (RHS), respectively. A partial graph morphism r, the production morphism,
establishes a partial correspondence between elements in the LHS and the RHS of a production, which
determines the nodes and edges that have to be preserved, deleted, or created. A match m finds an
occurrence of L in a given graph G, then G

p,m==⇒ H is an application of a production p, where H is a
derived graph. H is obtained by replacing the occurrence of L in G with R.

Our unified model forms a graph grammar that consists of a start graph and a collection of productions,
which transform the start graph. In our case, the start graph is a graph model of the virtualized
infrastructure, and the productions represent our model of topological changes, information flow analysis,
and policy specification.

3.1.1 Modeling of Infrastructure Changes

The Operations Transition Model captures the changes to the topology and configuration of a virtualized
infrastructure through management operations. Our goal is a practical security system for virtualized
infrastructures, therefore we focus our modeling efforts, as an example, on VMware and its management
operations. Each management operation is modeled as a graph production that transforms the virtualized
infrastructures, which is modeled as a graph, into a modified one.

For any existing real-world virtualized infrastructures like VMware, the API documentation does not
provide a precise formal description and model, but rather a semi-formal description of the operations,
parameters, as well as the preconditions and effects that the operations have. A contribution of this paper
is to obtain a formal model that allows for precise statements to be made and proved or refuted. It is
of course not possible to formally prove the correctness of such a model itself, however there is a good
methodology to obtain a “good” model by combining two directions.

The first direction is to follow the documentation and translate the documented effects into our
(abstract) graph model. The second is to experiment with the real implementation, to verify that the
operations indeed do have the effect on the infrastructure that our model predicts. To study these
experiments we need to translate the real infrastructure topology into our abstract graph before and after
the operation has been performed, and check that the resulting graph transformation coincides with our
model of the operation.

An example of a operations model for the VMware operation UpdatePortGroup is given in Figure 1.
Using this operation, an administrator can change the configuration on an existing portgroup. The
portgroup is identified by its name, as well as the host where it resides on, and the operation allows to
change the portgroup’s name and VLAN ID. Changing attributes is modeled as changing the edges to
different data nodes based on the input parameters. In order to maintain compatibility with the existing
graph model, not only does the portgroup node contain the VLAN ID, but also the associated vport nodes,
i.e., virtual switch ports. Therefore, changing the VLAN ID of the portgroup also requires to change the

3



VLAN ID of all virtual ports associated to that portgroup. For this we use a universal quantifier ∀ that
updates the vlanId attributed of all matching vport nodes [9].

3.1.2 Dynamic Information Flow Analysis & Security Policies

An approach that has been presented in [3] performs an information flow analysis on a graph-based model
of a virtualized infrastructure, in order to detect isolation failures. The approach consists of a set of
traversal rules that captures how elements in the infrastructure provide isolation, e.g., VLANs provide
network isolation. A graph traversal guided by the set of traversal rules computes the transitive closure
and determines the information flow in the system.

This information flow analysis is so far limited to a static snapshot of the network and thus unable to
deal with the dynamic nature and frequent changes of such infrastructures. We need to integrate this
information flow analysis into our dynamic graph model and thus obtain a dynamic information flow
analysis. We do so by expressing the traversal rules of the information flow analysis as graph production
rules. We use the graph rewriting control language of GROOVE to compose the information flow analysis
from the rules.

The final part of our unified model deals with the formalization of security policies, which describe
properties of the topology and configuration of an infrastructure cloud. We follow here the approach of
the policy language VALID [1]. Such policies can also be expressed as graph production rules, where
a rule matches parts of the graph with potential additional conditions on this match. Typically, one
would express a violation of a security policy as a graph production rule, and try to match the rule on
the evolving graph. Once a match is found, a violation of the security policy is found.

3.2 Automated Analysis using GROOVE
Many graph transformation tools have been developed in the past, among them: GROOVE [7, 8],
AGG [11], GRGen [6], and PROGRES [10]. For this work, we decided to use GROOVE as our graph
transformation environment. GROOVE is a general-purpose graph transformation tool that enables an
expressive specification of production rules, e.g., by providing nested quantifications and path constructions
using regular expressions on edge labels. Furthermore, an imperative control language allows to schedule
the application of rules, which also allows more complex control flow constructions, as well as enabling
parametrized rules, where parameters are passed from a control program to a production rule. We refer
to a detailed comparison between different graph transformation tools to [7].

3.3 Application Scenarios of our Analysis System
3.3.1 Change Planning

The administrator specifies the sequence of change requests (either directly as a change program in
GROOVE ’s control language or in a proprietary provisioning language, translated to it). Once the change
program is submitted to GROOVE , the tool will apply the changes to the realization model, derived
from the actual infrastructure. By that, the tool can establish a what-if analysis and determine what
security impact the intended changes will have on the infrastructure.

If the new realization model obtained from the execution of the change program violates the VALID
security goals, the tool notifies the administrator to reject the proposed change requests and provides the
GROOVE output of the matched attack sub-graph as diagnosis. Otherwise, the tool returns that the
intended changes are compliant with the security goals, after which the administrator can provision the
changes to the infrastructure.

3.3.2 Runtime Audit of Misconfigurations

Run-time audit of misconfigurations expands on the principles of the change planning. Whereas change
planning requires the administrator to devise the changes in advance and have them checked by our
analysis statically, the run-time audit intercepts change requests dynamically at an authorization proxy
and checks them concurrently as they occur. The idea of the run-time auditing is to establish accountability
for administrator actions: administrator’s configuration changes are validated against the security policy

4



and the results of these checks entered into the audit logs along with the administrator’s username and
the committed commands.

We introduce an authorization proxy as wrapper of the administration API, which acts as policy
enforcement point (PEP) and auditor on configuration changes, and employ our analysis as part of the
policy decision mechanism.

Authorization Proxy

Decision

EnforcementAdmin

Officer

Cloud

Weatherman

Policy

Operation

Allowed?

Compliant?

Authorized
Operation

Figure 2: Architecture for Run-time Audit.

Acknowledgments
This research has been partially supported by the TClouds project1 funded by the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement number ICT-257243.

References
[1] Bleikertz, S., and Groß, T. A Virtualization Assurance Language for Isolation and Deployment. In

IEEE International Symposium on Policies for Distributed Systems and Networks (POLICY’11) (Jun 2011),
IEEE.

[2] Bleikertz, S., Groß, T., and Mödersheim, S. Automated Verification of Virtualized Infrastructures. In
ACM Cloud Computing Security Workshop (CCSW’11) (Oct 2011), ACM.

[3] Bleikertz, S., Groß, T., Schunter, M., and Eriksson, K. Automated Information Flow Analysis of
Virtualized Infrastructures. In 16th European Symposium on Research in Computer Security (ESORICS’11)
(Sep 2011), Springer.

[4] CSA. Top threats to cloud computing v1.0. Tech. rep., Cloud Security Alliance (CSA), mar 2010.
[5] ENISA. Cloud computing: Benefits, risks and recommendations for information security. Tech. rep.,

European Network and Information Security Agency (ENISA), nov 2009.
[6] Geiß, R., Batz, G. V., Grund, D., Hack, S., and Szalkowski, A. GrGen: A Fast SPO-Based

Graph Rewriting Tool. In Third International Conference on Graph Transformation (ICGT 2006) (2006),
A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, Eds., vol. 4178 of Lecture Notes in
Computer Science, Springer, pp. 383–397.

[7] Ghamarian, A. H., de, M. M., Rensink, A., Zambon, E., and Zimakova, M. Modelling and analysis
using GROOVE. International Journal on Software Tools for Technology Transfer (STTT) (March 2011).

[8] Rensink, A. GROOVE: GRaphs for Object-Oriented VErification. http://groove.cs.utwente.nl/.
[9] Rensink, A., and Kuperus, J.-H. Repotting the geraniums: on nested graph transformation rules. In

Graph transformation and visual modelling techniques, York, U.K. (2009), A. Boronat and R. Heckel, Eds.,
vol. 18 of Electronic Communications of the EASST, EASST.

[10] Schürr, A., Winter, A. J., and Zündorf, A. The PROGRES approach: Language and environment. In
Handbook of graph grammars and computing by graph transformation: vol. 2: applications, languages, and
tools, H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1999.

[11] Taentzer, G. AGG: A Graph Transformation Environment for Modeling and Validation of Software.
In Applications of Graph Transformations with Industrial Relevance (AGTIVE 2003) (2003), J. L. Pfaltz,
M. Nagl, and B. Böhlen, Eds., vol. 3062 of Lecture Notes in Computer Science, Springer, pp. 446–453.

1http://www.tclouds-project.eu

5

http://groove.cs.utwente.nl/
http://www.tclouds-project.eu

