

What Does The Future Hold for Hypervisor Security?

Marc Lacoste Orange Labs

Workshop on Trustworthy Clouds, ESORICS 2013. Royal Holloway, University of London, UK, September 12th, 2013.

Major Evolutions in IaaS Architecture Ahead!

• Virtualization:

- Fuels growth of cloud computing...
- ...but raises many security concerns.
- Architecture is fundamental for laaS security...
- **•** ... But hypervisor architecture is changing rapidly!
 - New hypervisor architectures are defined to mitigate new threats.
 - Virtualization is expanding outside the data center.

Major Evolutions in IaaS Architecture Ahead!

• Virtualization:

- Fuels growth of cloud computing...
- ...but raises many security concerns.
- Architecture is fundamental for laaS security...
- But hypervisor architecture is changing rapidly!
 - Ne Are current architectures addressing upcoming threats?
 - Vir What is the overall view of such evolutions?

Orange Labs

Major Evolutions in IaaS Architecture Ahead!

• Virtualization:

- Fuels growth of cloud computing...
- ...but raises many security concerns.
- Architecture is fundamental for laaS security...
- **•** ... But hypervisor architecture is changing rapidly!
 - New hypervisor architectures are defined to mitigate new threats.
 - Virtualization is expanding outside the data center.

Contributions:

- 1. Identify some major disruptions shaping up the future of hypervisor security.
- 2. Abstract hypervisor evolution into a consistent roadmap.
- 3. Give an overview of challenges, benefits, limitations of each architectural approach.

Orange Labs

Outline

• A Big Picture.

- **•** Trend #1: Extension to Embedded Systems.
- **•** Trend #2: Migration of Security Towards the Hardware.
- **•** Trend #3: Evolution towards Multi-Clouds.
- **•** Conclusion.

A Big Picture

Orange Labs

6

Changes in Hypervisor Security Architecture

Some bottom-line technological trends:

- Availability of increasingly small-scale devices.
- Rising software complexity, commoditization of hardware for dedicated processing.
- Fall of barriers between virtualized systems, increasingly distributed.

• Two dimensions in change:

- Scale.
- Abstraction-level.

Changes in Hypervisor Security Architecture

Some bottom-line technological trends:

- Availability of increasingly small-scale devices.
- Rising software complexity, commoditization of hardware for dedicated processing.
- Fall of barriers between virtualized systems, increasingly distributed.

• Two dimensions in change:

- Scale.
- Abstraction-level.

Three main trends

- 1. Virtualization goes embedded.
- 2. Security moves towards the hardware.
- 3. The cloud becomes user-centric.

A Big Picture

Orange Labs

orange[™]

Disruption #1: Virtualization Goes Embedded

orange[™]

Disruption #1: Virtualization Goes Embedded

orange

Embedded Hypervisors

Embedded systems features

Rising complexity Expanding code size Heterogeneous sub-systems Hardware diversityOpen architectures Feature-rich platforms Security issues

Key design challenges

- Resource abstraction: overcome resource heterogeneity (multicore support, multiple OSes on same platform...).
- Isolation: contain faults/attacks between sub-systems.
- Performance: efficient inter- sub-system communication.
- Minimal TCB: reduce attack surface, strong assurance.
- Real-time guarantees: unique scheduling control point.
- Modularity: facilitate code reuse in open ecosystems.
- Fine-grained resource control: unique control point of security policy enforcement

Source: OpenSygergy, COQOS platform.

Source: N. Navet, B. Delord, M. Baumeister. Virtualization in Automotive Embedded Systems: an Outlook, ERTS 2010.

Source: GreenHills software, Integrity multivisor.

Embedded Hypervisors

Which Architecture?

- Hypervisors have strong limitations.
- Micro-kernels seem better suited.
- Micro-visors might be even better...

Embedded Hypervisor Cloud-on-chip hypervisors

Microvisor Architectures

Microvisor = convergence of hypervisors and micro-kernels:

14

Embedded Hypervisor Cloud-on-chip hypervisors

Towards the Cloud-on-Chip

Hypervisors for multi-core architectures

Source: Intel.

Source: Y. Dai et al. A Lightweight VMM on Many Core for High Performance Computing, *VEE 2013*.

Key challenges

- Resource sharing limitation.
 - Poor physical isolation (memory, storage, CPU, I/O).
 - Failure/attack propagation.
- Massive scalability.
 - Hyperscale server consolidation.
 - Synchronization.
 - Fair resource allocation.

Single hypervisor for multi-cores

- Multi-core management in guest OS: strong scalability restrictions.
- Multi-core management in hypervisor: scalability and security limitations, e.g.,
 - Risk of resource starvation.
 - System-wide hypervisor state sharing.
 - Hypervisor = single point of failure.
 - Hypervisor vulnerabilities poorly confined.

Embedded Hypervisor

Source: W. Shi. Architectural Support of Multiple Hypervisors over Single Platforms for Enhancing Cloud Computing Security. *ACM International Conference on Computing Frontiers (CF)*, 2012.

Multiple hypervisors on same chip

- Independent security realms
 - per hypervisor,
 - with dedicated cores and memory.
- Two-level resource management:
 - Intra-hypervisor for VMs.
 - Inter-hypervisor using multiplexing HAL.

Benefits

- Increased resilience:
 - Avoid platform-wide bug/attack propagation through realm confinement.
- Better scalability:
 - Hardware platform = distributed system.
 - Decentralize VMM functionalities for finer-grained control.

Disruption #2: Security Moves Towards the Hardware

17

orange

Disruption #2: Security Moves Towards the Hardware

Orange Labs

orange

VM Introspection

Trusted Hypervisor

...

Compute, network, storage introspection... Fast path, slow path, hybrid path architectures... VM Introspection Idea: use the capabilities of the hypervisor to supervise VM behaviors

Some Systems

- 1. In-VM monitoring: SIM
- 2, 3. With no hooks in VM: CloudSec
- 2,3. With hooks in VM: Lares, XenAccess, KVMSec

Orange Labs

An Example

Trusted Hypervisor

Untrusted hypervisor

orange[™]

vShield = VMware's laaS security suite

vShield Endpoint

- Security features: anti-malware, integrity monitoring, firewall, Deep Packet Inspection (DPI), log inspection.
- **• Policy-based management.**
- **Cross-layering:** module in hypervisor + security appliance.
- **Openness:** EPSec API.

Orange Labs

TCB Hardening: Trusted Computing Architectures

Security objective: trustworthy VMM, with high assurance for authenticity and integrity.

Trusted computing technologies.

Provide attestation of integrity of software/hardware components relying on chain of trust.

For the Hypervisor

TCB Hardening: Trusted Computing Architectures

TCB Hardening: Trusted Computing Architectures

Benefits and Limitations

Orange Labs

TCB Hardening: Driver Sandboxing

Micro-Hypervisors

Target VM

VMM

The problem

Hypervisors are too big, too complex.

Source of vulnerabilities: **bounce attacks**.

Driver

Attacker

VM

3. VMM compromise

DC Hypervisor

Solutions

TCB hardening: mechanisms

Protect « by hand » hypervisor from subversion.

- ⇒ Trusted computing, language techniques, sandboxing...
- **TCB reduction:** architectures Reduce code size and complexity and increase modularity.
 - ⇒ For the core hypervisor: Micro-hypervisors.
 - ⇒ For the management VM: Disaggregated hypervisors.

Reducing the TCB

Orange Labs

Micro-Hypervisors

Target VM

VMM

The problem

Hypervisors are too big, too complex.

Source of vulnerabilities: **bounce attacks**.

Driver

Attacker

VM

3. VMM compromise

DC Hypervisor

Solutions

TCB hardening: mechanisms

Protect « by hand » hypervisor from subversion.

- ⇒ Trusted computing, language techniques, sandboxing...
- TCB reduction: architectures
 Reduce code size and complexity and increase modularity.
 - ⇒ For the core hypervisor: Micro-hypervisors.
 - ⇒ For the management VM: Disaggregated hypervisors.

Reducing the TCB

Management VM: componentization XOAR, MinV, Disaggregated Xen

Transform Dom0 into a set of service VMs, limiting resource sharing, reducing privileges.

- Improved security, flexibility, and control.
 Does not limit operational services.
- ⇒ More ready to apply to legacy hypervisors.

Orange Labs

Some Examples

NOVA Architecture

Source: U. Steinberg and B. Kauer. NOVA: A Microhypervisor Based Secure Virtualization Architecture. EUROSYS 2010.

Xoar: Architecture Active Runtime **Dependencies** Self-Destructing VMs Restartable VMs Long-lived VM Components of TCB Components where freshness is imposed XenStore-State: that are destroyed using periodic restarts. In-memory contents after initialization. of XenStore. XenStore-Logic: PCIBack: Toolstack: BlkBack: **Guest VM:** Qemu Virtualizes access Handles Processes requests Physical storage **HVM Windows** to PCI Bus config. for inter-VM comms management driver exported to and config state. requests. quest VMs. **Bootstrapper:** Builder: NetBack: Guest VM: Qemu Coordinate booting Physical network Instantiate other **HVM Linux** of the rest of the driver exported to **Restarted** on VMs. **Restarted** on system. guest VMs. each request a timer Xen

XOAR Architecture

Source: P. Colp et al. Breaking Up is Hard to Do: Security and Functionality in a Commodity Hypervisor. SOSP 2011.

Orange Labs

Micro-hypervisors

DC Hypervisor

For Automated Hardening...

Some hard problems

security component heterogeneity between layers and domains.

infrastructure complexity ⇒ impossibility of manual administration.

orange

VESPA: Multi-Layer IaaS Self-Protection

Virtual Environments Self-Protecting Architecture

An autonomic security framework for regulating protection of laaS resources.

Implementation: KVM-based laaS infrastructure.

Output Application to hypervisor self-protection: in progress.

orange

orange[∞]

Example: The VESPA Framework

Key points

- VESPA: architecture for effective and flexible laaS self-protection.
- Two-level tuning of security policies, within and across layers.
- Coordination of multiple loops for rich spectrum of defense strategy.
- Multi-plane open design for easy integration of detection/reaction COTS.

Flexible confinement of VMs according to risk level

Realize quarantine by control of inter-VM communications

Virtualized Hypervisors

The problem

laaS infrastructures lack:

Vertically: security

- Untrustworthy, vulnerable layers.

Horizontally: flexibility, interoperability

- (Security) features not deployed.
- Too monolithic for customization.

Micro-hypervisor

Virtualized Hypervisors

Idea: Virtualize the hypervisor

Hypervisor-Secure Virtualization (HSV):

- The hypervisor is no longer part of the TCB.
- Protection by a security layer underneath.
- Separation of resource management from security.

Software HSV approach: nested virtualization.

Source: IBM, Turtles project, OSDI'10.

Virtualized Hypervisors

Source: Zhang et al., CloudVisor, SOSP'11.

Source: J. Szefer and R. Lee, Architectural Support for Hypervisor-Secure Virtualization, ASPLOS, 2012.

Disruption #3: Evolution Towards Multi-Clouds

orange[™]

Towards User-Centric Clouds

Provider-centric cloud deficiencies

- Lack of unified control: vendor lock-in, monolithic infrastructures
- Lack of interoperability: for infrastructure services

orange

Towards User-Centric Clouds

orange

Towards User-Centric Clouds

Split infrastructure into provider- / user-controlled domains/modules.

Some design alternatives:

- ✓ Extensible hypervisors [« Unshackle the Cloud! », HotCloud'11].
- ✓ Modular management interface [« Towards Self-Service Clouds », CCS'12].
- ✓ **Nested virtualization** [XenBlanket, EUROSYS'12;Inception, USENIX ATC'13].

- Exploitation of virtualization vulnerabilities are some of the most serious cloud threats, making the hypervisor a keystone component of cloud security.
- **b** Looking back...

- The main challenges are rising infrastructure complexity and rapid threat evolution.
- Mechanisms are not well integrated. New architectures are promising but far from mature.
- Two ultimate goals are cross-layer protection and end-to-end security.

Orange Labs

- The main challenges are rising infrastructure complexity and rapid threat evolution.
- Mechanisms are not well integrated. New architectures are promising but far from mature.
- Two ultimate goals are **cross-layer protection** and **end-to-end security**.
- As virtualization expands, **not one but multiple** « good » security architectures.
- ⇒ A fast moving research domain...
- ⇒ …critical to monitor to protect future cloud systems.
 Orange Labs

Thanks!

Contact:

Marc Lacoste Orange Labs Senior Research Scientist 38-40 rue du Général Leclerc 92794 Issy-Les-Moulineaux, France marc.lacoste@orange.com