
1 

Outsourced Symmetric  
Private Information Retrieval 

 

= 
 

Searchable Encryption  
in Multi-Client Setting 

David Cash,  Stanislaw Jarecki,  Charanjit Jutla, 

Hugo Krawczyk, Marcel Rosu,  Michael Steiner 
 

Supported by US IARPA SPAR Program 

CRYPTO’13, CCS’13, on-going (submission/preparation) 



Talk Plan 

 Encrypted Cloud Storage and Searchable Encryption 

 The IARPA SPAR Searchable Encryption Project 

 Technical Overview             

(conjunctive search on encrypted data) 

 Research Challenges 

2 



The Data-in-the-Cloud Conundrum 

 Our data in the cloud: email, file backups, financial info, etc. 

 Data is visible to the cloud server (hopefully encrypted but with  

their keys), and to anyone with access to that server  

 

 Q: Why not encrypt it with your (data owner) own keys? 

 A: Because we want the cloud to search the data (e.g. gmail) 

 Can we keep the data encrypted and search it too? 

 

 

 
3 



Encrypted Search I (SSE) 

 DB owner outsources its data to a cloud server such that: 

 Data Owner: 

 pre-processes data, outsources to cloud server, keeps only a cryptographic 

key, later runs queries to retrieve/decrypt matching documents 

 Cloud Server: 

 

 gets index information (metadata) in encrypted form 

 responds to read queries by returning matching encrypted records 

 does not learn the searched terms or DB plaintext information                    

(but assume that some leakage on data-access and query patterns allowed) 

 
4 

 gets all DB documents in encrypted form 



Encrypted Search II (Multi-Client SSE) 

 Data Owner outsources DB to cloud server which (as before): 

 keeps all records and index information in encrypted form  

 responds to read queries by returning matching encrypted records 

 does not learn the searched terms or any plaintext information on the DB 

(although some access-pattern leakage allowed) 

 While Data Owner: 

 can delegate search to third-party clients  (via search tokens) 

 such that clients can search through authorized queries     

but learn nothing about data not matching the authorized queries 

 multiple and adversarial clients (fully malicious in our solutions) 

5 



Encrypted Search III (PIR-SSE) 

 As scenario II    

 PLUS 

 Data Owner can authorize clients to perform queries according to 

some prescribed policy  

(i.e., determine the query compliance and provide the corresponding tokens) 

   ... but she has to do so without learning the searched terms 

 

 Data Owner and Cloud Server do not collude       

(otherwise strong performance limitations of PIR) 

 

6 



PIR-SSE by Example: Medical DB 

Preprocessing  

DB owner h
o
s
p
i
t
a
l 

EncD(DB*) 

Cloud 
Server 

7 



Client 

PIR-SSE by Example: Medical DB 

Preprocessing  

query := “zip=10598” & 

“age=(22,50)” & 

“condition=diabetes” 

DB owner h
o
s
p
i
t
a
l 

EncD(DB*) 

Cloud 
Server 

8 

5: decrypts matching records 



SSE Application Examples 

 Commercial examples 

 Data repositories (file system backup, email, databases) 

 Outsourced data service (e.g., processed census data, patents, research)  

 Regulatory/liability (e.g. medical records, commercial records) 

 

 Judicial and intelligence examples (next…) 

9 



IARPA SPAR Program 

 SPAR: Security and Privacy Assurance Research 

 Very ambitious program: 

 PIR-SSE privacy requirements 

 Complex authorization scenarios (e.g. authorizing queries w/o learning them) 

 Wide range of query types: conjunctions, Boolean, range, substrings,… 

 Dynamic databases (support additions, deletions, modifications, caching) 

 Huge databases    

 Any Boolean query on 100,000,000 records, each w/ 300 searchable keywords 

 That’s any Boolean query on 3*1010 = 30,000,000,000 record-keyword pairs… 

 Orders of magnitude above full Wikipedia encrypted search (which we do too) 

 Formal analysis and proofs a MUST  

10 



IARPA SPAR Motivating Applications (?) 

 Searching for suspect in airline/hotel/IRS records 

 data owner should limit access but without learning who is being searched 

 CIA accessing FBI records for targeted information  

 political/regulatory limits on what FBI/CIA can learn about each other 

 reduce agencies‘ reluctance to share information (9/11, Boston bombing) 

 Recent news of US security agencies accessing phone/email DBs… 

 incentive for security agencies to enabling (preserving?) access    

while providing demonstrable privacy & accountability assurances 

11 



SSE State of the Art 
(Generic Solutions) 

 Impractical 

 Send all data back to owner to decrypt and search 

 Use fully homomorphic encryption and send back only the encrypted 

result set 

 Semi-practical  

 Run a search algorithm under an Oblivious RAM (ORAM) compiler  

 recent ORAM advances makes this less impractical than in the past, 
yet confined to relatively small DB’s   

12 



SSE State of the Art 
(Single-Keyword SSE) 

 Efficient SSE mechanisms known only for single-keyword search  

 Keyword search: Given one keyword return all documents that contain 

that keyword (e.g. find email containing “crypto”, records with name “Bob”, etc.) 

 Server allowed to learn the set of encrypted matching documents but not 

the keyword or plaintext data  

 Several works [SWP’00, Goh’03, CGKO’06, ChaKam’10, …] achieve: 

 “privacy optimal" (server learns DB size and encrypted result sets),  

 lots of room for implementation/performance improvement                                   
(small DBs restricted to RAM size, static data, inefficient adaptive solutions) 

 Some recent improvements on adaptive  solutions and dynamic data for single-
keyword search [KPR’12, KP’13, our work (in submission), …]  

13 



SSE State of the Art 
(Conjunctive SSE) 

 Beyond Single-Keyword Search: Very little known 

 Conjunctions: Find all documents containing n keywords:  w1, …, wn 

 Existing solutions to conjunctive queries are either 

 “brute force”: Do n single-keyword searches, compute the intersection 
(inefficient and very leaky…)  

 linear in the number of documents [GSW’04, BKM’05, BLL’06, PRVBM’11] 

14 



Crypto’13: SSE for Boolean Queries 

 Practical Searchable Symmetric Encryption (SSE) with: 

 Support for any Boolean expression on keywords 

 Example: Search for messages with Alice as Recipient, not sent by Bob,        
and containing at least two of the words {searchable, symmetric, encryption} 

 Applies to both relational DBs (attribute-value) and free text (e.g. English) 

 Efficient for a large class of expressions  

 w1 AND B(w2,…,wn) for any Boolean expression B (including negations) 

 in particular, conjunctions on any number of terms 

 … and complex examples as above (w1 = “Alice as Recipient”) 

 Any disjunction of above expressions 

15 



Highly Scalable System 

 Search proportional to # documents matching the least frequent term 

 Preprocessing scales linearly with DB size 

 Validated on synthetic census data: 10Terabytes, 100 million records,                  

> 100,000,000,000 indexed record-keyword pairs ! 

 Equivalent to a DB with one record for each American and 400 keywords  

in each record (including textual fields) 

 Other DB’s: Enron email repository, ClueWeb (>> English Wikipedia) 

 Query response time: Competitive w/ plaintext queries on indexed DB 

 

 

16 



Security 

 Security-Performance trade-offs: 

 Leakage on (DB,query) information to the Cloud Server in the form of: 

 data access patterns (e.g. repeated retrieval) 

 query patters (repeated queries)  

 + additional leakage (more complex functions of DB and query history) 

 Can lead to statistical inference based on side information on data 

(application dependent),  can be alleviated by masking techniques 

 No plaintext DB data or query ever revealed                  

(other than via statistical inference) 

 Security proofs: formal model and precise provable leakage profile 

 Leakage profile: provides upper bounds on what is learned by the server 

17 



Security Formalism 

 Based on the simulation-based definitions given for SKS [CGKO,CK].  

 There is an attacker S (cloud server), a simulator SIM, and a leakage 
function L(DB, queries): 

 Real: Attacker S chooses DB and queries (adaptively), gets encrypted DB 

and interacts with client running queries chosen by S 

 Ideal: Attacker S chooses DB and queries (adaptively), gets the output of 

SIM( L(DB,queries) ) 

A SSE scheme is semantically secure with leakage L if for all 

attackers S,  there is a simulator SIM such that S’s view in both 

experiments are indistinguishable 

 Server learns nothing beyond the specified leakage L even if it knows 

(and even if it chooses adaptively) the plaintext DB and queries 

   
18 



Crypto’13: Boolean Query SSE 
(basic ideas) 

 Assume a conjunctive query w1, …, wn   (extends to Boolean queries)  

1. choose the least frequent conjunctive term (“s-term”), say w1 

2. find encrypted indexes of all records containing w1 (w/o revealing w1) 

 Based on a pre-computed encrypted index stored at server 

 PRFk(w)  Enc(ind1), Enc(ind2), … , Enc(indk) 

 Non-trivial:  Space-efficient storage of encrypted files whose length 

should be hidden from the server 

 Even less trivial:  what if files range from 100B to 100MB, what if you need to 
update them and the daily update rate is a significant fraction of the DB? 

Q1:  How to compute PRF values obliviously? 

Q2: How to determine indexes satisfying w1 & … & wn , and not just  w1 ? 

19 



20 

Oblivious PRF Computation (OPRF) 
[NR’04,FIPR’05]  

 Multiple instantiations ([Yao’82], [FIPR’01], [JL’09], [JL’10], …) 

 Fastest (2 exp’s/party) is Hashed-DH PRF:    Fk(x)=[H(x)]k 

 Oblivious computation via “Blind DH Computation”: 

 (C sends a = [H(x)] r to S, S replies with b = ak, C computes Fk(x) as b 1/r) 

 OPRF with enforcing access policy on query x:  extensions… 

 

S(k) C(x) 

fk(x) 丄 

fk(x) is a Pseudo-Random 
Function (PRF) if  

         OPRF protocol 

x 

fk(x) or $ 
fk-or-$ Adv 

? 



Standard Conjunctive Search 
on query = w1 & w2 & … & wn 

21 

indi 

? ? ? 

indt ind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2             w3      …    wn 
w2             w3      …    wn 

return indi iff W(indi) contains all w2,…,wn 

 Pre-computation: Build set xSet of hash values: 

If record indexed at ind contains keyword w then add H(w,ind) to xSet 

  record(ind) contains keyword w    iff   H(w,ind) ∈ xSet 

 Retrieval: 

Return a tuple corresponding to ind  iff  H(w,ind) ∈ xSet, for j=2,…,n 

inverted look-up 

forward look-up 



SSE Conjunction Handling 
on query = w1 & w2 & … & wn 

22 

indi 

? ? ? 

indt ind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2             w3      …    wn 
w2             w3      …    wn 

return indi iff W(indi) contains all w2,…,wn 

 Implementation: Build set xSet of hash values: 

For each record index ind and each w in W(ind):  add H(w,ind) to xSet 

  keyword w ∈ W(ind)  iff  H(w,ind) ∈ xSet 

 EDB, during retrieval: 

Return a tuple corresponding to ind  iff  H(w,ind) ∈ xSet, for j=2,…,n 

inverted look-up 

forward look-up 

PRFk(w1) 
E(indi) 

return indi iff H( wj , indi )  ∈  xSet for all wj 



ESPADA Conjunction Handling 
on query = w1 & w2 & … & wn 

23 

indi 

? ? ? 

indt ind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2             w3      …    wn 
w2             w3      …    wn 

return indi iff W(indi) contains all w2,…,wn 

Heart of the Crypto’13 conjunctive SSE: 

Secure 2-Party Computation of value: H(w,ind) 

 Server’s input: E(ind) 

 Client’s input: PRFk(w)    
   [+ decryption key for E] 

inverted look-up 

forward look-up 

PRFk(w1) 
E(indi) 

return indi iff H( wj , indi )  ∈  xSet for all wj 



Crypto’13 Conjunctive SSE Leakage 

 Index size = upper bound on i |DB(wi)| 

 Number of terms in each conjunction 

 Size of s-term set |Rec(w1)|   (unavoidable?)  

 Repeated usage of the s-term 

 Size of Rec(w1wj) for j=2,…, n 

 More, because function H(w,ind) is deterministic: 

 Leaks repeated usage of x-terms in two conjunctive queries               

if their s-terms have a non-empty intersection      

[   repeat in the (w,ind) argument to the (deterministic) H function ! ] 

24 



Subsequent/Ongoing Work 

 Upcoming in CCS’2013:  Oblivious delegation to third-party clients 

 OPRF’s with blinding factors which prevent mix-and-match of search 

terms across  multiple queries 

 Dynamic DBs’: Support for data additions/deletions/modifications 

 Richer queries: Range, substring, wildcards, … 

25 



SSE Challenges 

 Leakage:  

 how to characterize it? 

 how to evaluate it? 

 Tradeoffs: interplay security-performance (asymptotic & concrete) 

 functionality / privacy / (pre-)computation / space 

 Close engineering-theory interaction 

 can't just throw a heavy weapon on the problem  

 Provable security          

(especially if you are going to build/use the system) 

26 


