
1

Outsourced Symmetric
Private Information Retrieval

=

Searchable Encryption
in Multi-Client Setting

David Cash, Stanislaw Jarecki, Charanjit Jutla,

Hugo Krawczyk, Marcel Rosu, Michael Steiner

Supported by US IARPA SPAR Program

CRYPTO’13, CCS’13, on-going (submission/preparation)

Talk Plan

 Encrypted Cloud Storage and Searchable Encryption

 The IARPA SPAR Searchable Encryption Project

 Technical Overview

(conjunctive search on encrypted data)

 Research Challenges

2

The Data-in-the-Cloud Conundrum

 Our data in the cloud: email, file backups, financial info, etc.

 Data is visible to the cloud server (hopefully encrypted but with

their keys), and to anyone with access to that server

 Q: Why not encrypt it with your (data owner) own keys?

 A: Because we want the cloud to search the data (e.g. gmail)

 Can we keep the data encrypted and search it too?

3

Encrypted Search I (SSE)

 DB owner outsources its data to a cloud server such that:

 Data Owner:

 pre-processes data, outsources to cloud server, keeps only a cryptographic

key, later runs queries to retrieve/decrypt matching documents

 Cloud Server:

 gets index information (metadata) in encrypted form

 responds to read queries by returning matching encrypted records

 does not learn the searched terms or DB plaintext information

(but assume that some leakage on data-access and query patterns allowed)

4

 gets all DB documents in encrypted form

Encrypted Search II (Multi-Client SSE)

 Data Owner outsources DB to cloud server which (as before):

 keeps all records and index information in encrypted form

 responds to read queries by returning matching encrypted records

 does not learn the searched terms or any plaintext information on the DB

(although some access-pattern leakage allowed)

 While Data Owner:

 can delegate search to third-party clients (via search tokens)

 such that clients can search through authorized queries

but learn nothing about data not matching the authorized queries

 multiple and adversarial clients (fully malicious in our solutions)

5

Encrypted Search III (PIR-SSE)

 As scenario II

 PLUS

 Data Owner can authorize clients to perform queries according to

some prescribed policy

(i.e., determine the query compliance and provide the corresponding tokens)

 ... but she has to do so without learning the searched terms

 Data Owner and Cloud Server do not collude

(otherwise strong performance limitations of PIR)

6

PIR-SSE by Example: Medical DB

Preprocessing

DB owner h
o
s
p
i
t
a
l

EncD(DB*)

Cloud
Server

7

Client

PIR-SSE by Example: Medical DB

Preprocessing

query := “zip=10598” &

“age=(22,50)” &

“condition=diabetes”

DB owner h
o
s
p
i
t
a
l

EncD(DB*)

Cloud
Server

8

5: decrypts matching records

SSE Application Examples

 Commercial examples

 Data repositories (file system backup, email, databases)

 Outsourced data service (e.g., processed census data, patents, research)

 Regulatory/liability (e.g. medical records, commercial records)

 Judicial and intelligence examples (next…)

9

IARPA SPAR Program

 SPAR: Security and Privacy Assurance Research

 Very ambitious program:

 PIR-SSE privacy requirements

 Complex authorization scenarios (e.g. authorizing queries w/o learning them)

 Wide range of query types: conjunctions, Boolean, range, substrings,…

 Dynamic databases (support additions, deletions, modifications, caching)

 Huge databases

 Any Boolean query on 100,000,000 records, each w/ 300 searchable keywords

 That’s any Boolean query on 3*1010 = 30,000,000,000 record-keyword pairs…

 Orders of magnitude above full Wikipedia encrypted search (which we do too)

 Formal analysis and proofs a MUST

10

IARPA SPAR Motivating Applications (?)

 Searching for suspect in airline/hotel/IRS records

 data owner should limit access but without learning who is being searched

 CIA accessing FBI records for targeted information

 political/regulatory limits on what FBI/CIA can learn about each other

 reduce agencies‘ reluctance to share information (9/11, Boston bombing)

 Recent news of US security agencies accessing phone/email DBs…

 incentive for security agencies to enabling (preserving?) access

while providing demonstrable privacy & accountability assurances

11

SSE State of the Art
(Generic Solutions)

 Impractical

 Send all data back to owner to decrypt and search

 Use fully homomorphic encryption and send back only the encrypted

result set

 Semi-practical

 Run a search algorithm under an Oblivious RAM (ORAM) compiler

 recent ORAM advances makes this less impractical than in the past,
yet confined to relatively small DB’s

12

SSE State of the Art
(Single-Keyword SSE)

 Efficient SSE mechanisms known only for single-keyword search

 Keyword search: Given one keyword return all documents that contain

that keyword (e.g. find email containing “crypto”, records with name “Bob”, etc.)

 Server allowed to learn the set of encrypted matching documents but not

the keyword or plaintext data

 Several works [SWP’00, Goh’03, CGKO’06, ChaKam’10, …] achieve:

 “privacy optimal" (server learns DB size and encrypted result sets),

 lots of room for implementation/performance improvement
(small DBs restricted to RAM size, static data, inefficient adaptive solutions)

 Some recent improvements on adaptive solutions and dynamic data for single-
keyword search [KPR’12, KP’13, our work (in submission), …]

13

SSE State of the Art
(Conjunctive SSE)

 Beyond Single-Keyword Search: Very little known

 Conjunctions: Find all documents containing n keywords: w1, …, wn

 Existing solutions to conjunctive queries are either

 “brute force”: Do n single-keyword searches, compute the intersection
(inefficient and very leaky…)

 linear in the number of documents [GSW’04, BKM’05, BLL’06, PRVBM’11]

14

Crypto’13: SSE for Boolean Queries

 Practical Searchable Symmetric Encryption (SSE) with:

 Support for any Boolean expression on keywords

 Example: Search for messages with Alice as Recipient, not sent by Bob,
and containing at least two of the words {searchable, symmetric, encryption}

 Applies to both relational DBs (attribute-value) and free text (e.g. English)

 Efficient for a large class of expressions

 w1 AND B(w2,…,wn) for any Boolean expression B (including negations)

 in particular, conjunctions on any number of terms

 … and complex examples as above (w1 = “Alice as Recipient”)

 Any disjunction of above expressions

15

Highly Scalable System

 Search proportional to # documents matching the least frequent term

 Preprocessing scales linearly with DB size

 Validated on synthetic census data: 10Terabytes, 100 million records,

> 100,000,000,000 indexed record-keyword pairs !

 Equivalent to a DB with one record for each American and 400 keywords

in each record (including textual fields)

 Other DB’s: Enron email repository, ClueWeb (>> English Wikipedia)

 Query response time: Competitive w/ plaintext queries on indexed DB

16

Security

 Security-Performance trade-offs:

 Leakage on (DB,query) information to the Cloud Server in the form of:

 data access patterns (e.g. repeated retrieval)

 query patters (repeated queries)

 + additional leakage (more complex functions of DB and query history)

 Can lead to statistical inference based on side information on data

(application dependent), can be alleviated by masking techniques

 No plaintext DB data or query ever revealed

(other than via statistical inference)

 Security proofs: formal model and precise provable leakage profile

 Leakage profile: provides upper bounds on what is learned by the server

17

Security Formalism

 Based on the simulation-based definitions given for SKS [CGKO,CK].

 There is an attacker S (cloud server), a simulator SIM, and a leakage
function L(DB, queries):

 Real: Attacker S chooses DB and queries (adaptively), gets encrypted DB

and interacts with client running queries chosen by S

 Ideal: Attacker S chooses DB and queries (adaptively), gets the output of

SIM(L(DB,queries))

A SSE scheme is semantically secure with leakage L if for all

attackers S, there is a simulator SIM such that S’s view in both

experiments are indistinguishable

 Server learns nothing beyond the specified leakage L even if it knows

(and even if it chooses adaptively) the plaintext DB and queries

18

Crypto’13: Boolean Query SSE
(basic ideas)

 Assume a conjunctive query w1, …, wn (extends to Boolean queries)

1. choose the least frequent conjunctive term (“s-term”), say w1

2. find encrypted indexes of all records containing w1 (w/o revealing w1)

 Based on a pre-computed encrypted index stored at server

 PRFk(w)  Enc(ind1), Enc(ind2), … , Enc(indk)

 Non-trivial: Space-efficient storage of encrypted files whose length

should be hidden from the server

 Even less trivial: what if files range from 100B to 100MB, what if you need to
update them and the daily update rate is a significant fraction of the DB?

Q1: How to compute PRF values obliviously?

Q2: How to determine indexes satisfying w1 & … & wn , and not just w1 ?

19

20

Oblivious PRF Computation (OPRF)
[NR’04,FIPR’05]

 Multiple instantiations ([Yao’82], [FIPR’01], [JL’09], [JL’10], …)

 Fastest (2 exp’s/party) is Hashed-DH PRF: Fk(x)=[H(x)]k

 Oblivious computation via “Blind DH Computation”:

 (C sends a = [H(x)] r to S, S replies with b = ak, C computes Fk(x) as b 1/r)

 OPRF with enforcing access policy on query x: extensions…

S(k) C(x)

fk(x) 丄

fk(x) is a Pseudo-Random
Function (PRF) if

 OPRF protocol

x

fk(x) or $
fk-or-$ Adv

?

Standard Conjunctive Search
on query = w1 & w2 & … & wn

21

indi

? ? ?

indt ind1 … 

? ? ? ? ? ?

w1  … 

w2 w3 … wn w2 w3 … wn
w2 w3 … wn

return indi iff W(indi) contains all w2,…,wn

 Pre-computation: Build set xSet of hash values:

If record indexed at ind contains keyword w then add H(w,ind) to xSet

  record(ind) contains keyword w iff H(w,ind) ∈ xSet

 Retrieval:

Return a tuple corresponding to ind iff H(w,ind) ∈ xSet, for j=2,…,n

inverted look-up

forward look-up

SSE Conjunction Handling
on query = w1 & w2 & … & wn

22

indi

? ? ?

indt ind1 … 

? ? ? ? ? ?

w1  … 

w2 w3 … wn w2 w3 … wn
w2 w3 … wn

return indi iff W(indi) contains all w2,…,wn

 Implementation: Build set xSet of hash values:

For each record index ind and each w in W(ind): add H(w,ind) to xSet

  keyword w ∈ W(ind) iff H(w,ind) ∈ xSet

 EDB, during retrieval:

Return a tuple corresponding to ind iff H(w,ind) ∈ xSet, for j=2,…,n

inverted look-up

forward look-up

PRFk(w1)
E(indi)

return indi iff H(wj , indi) ∈ xSet for all wj

ESPADA Conjunction Handling
on query = w1 & w2 & … & wn

23

indi

? ? ?

indt ind1 … 

? ? ? ? ? ?

w1  … 

w2 w3 … wn w2 w3 … wn
w2 w3 … wn

return indi iff W(indi) contains all w2,…,wn

Heart of the Crypto’13 conjunctive SSE:

Secure 2-Party Computation of value: H(w,ind)

 Server’s input: E(ind)

 Client’s input: PRFk(w)
 [+ decryption key for E]

inverted look-up

forward look-up

PRFk(w1)
E(indi)

return indi iff H(wj , indi) ∈ xSet for all wj

Crypto’13 Conjunctive SSE Leakage

 Index size = upper bound on i |DB(wi)|

 Number of terms in each conjunction

 Size of s-term set |Rec(w1)| (unavoidable?)

 Repeated usage of the s-term

 Size of Rec(w1wj) for j=2,…, n

 More, because function H(w,ind) is deterministic:

 Leaks repeated usage of x-terms in two conjunctive queries

if their s-terms have a non-empty intersection

[ repeat in the (w,ind) argument to the (deterministic) H function !]

24

Subsequent/Ongoing Work

 Upcoming in CCS’2013: Oblivious delegation to third-party clients

 OPRF’s with blinding factors which prevent mix-and-match of search

terms across multiple queries

 Dynamic DBs’: Support for data additions/deletions/modifications

 Richer queries: Range, substring, wildcards, …

25

SSE Challenges

 Leakage:

 how to characterize it?

 how to evaluate it?

 Tradeoffs: interplay security-performance (asymptotic & concrete)

 functionality / privacy / (pre-)computation / space

 Close engineering-theory interaction

 can't just throw a heavy weapon on the problem

 Provable security

(especially if you are going to build/use the system)

26

