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Talk Plan 

 Encrypted Cloud Storage and Searchable Encryption 

 The IARPA SPAR Searchable Encryption Project 

 Technical Overview             

(conjunctive search on encrypted data) 

 Research Challenges 
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The Data-in-the-Cloud Conundrum 

 Our data in the cloud: email, file backups, financial info, etc. 

 Data is visible to the cloud server (hopefully encrypted but with  

their keys), and to anyone with access to that server  

 

 Q: Why not encrypt it with your (data owner) own keys? 

 A: Because we want the cloud to search the data (e.g. gmail) 

 Can we keep the data encrypted and search it too? 
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Encrypted Search I (SSE) 

 DB owner outsources its data to a cloud server such that: 

 Data Owner: 

 pre-processes data, outsources to cloud server, keeps only a cryptographic 

key, later runs queries to retrieve/decrypt matching documents 

 Cloud Server: 

 

 gets index information (metadata) in encrypted form 

 responds to read queries by returning matching encrypted records 

 does not learn the searched terms or DB plaintext information                    

(but assume that some leakage on data-access and query patterns allowed) 
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 gets all DB documents in encrypted form 



Encrypted Search II (Multi-Client SSE) 

 Data Owner outsources DB to cloud server which (as before): 

 keeps all records and index information in encrypted form  

 responds to read queries by returning matching encrypted records 

 does not learn the searched terms or any plaintext information on the DB 

(although some access-pattern leakage allowed) 

 While Data Owner: 

 can delegate search to third-party clients  (via search tokens) 

 such that clients can search through authorized queries     

but learn nothing about data not matching the authorized queries 

 multiple and adversarial clients (fully malicious in our solutions) 
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Encrypted Search III (PIR-SSE) 

 As scenario II    

 PLUS 

 Data Owner can authorize clients to perform queries according to 

some prescribed policy  

(i.e., determine the query compliance and provide the corresponding tokens) 

   ... but she has to do so without learning the searched terms 

 

 Data Owner and Cloud Server do not collude       

(otherwise strong performance limitations of PIR) 
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PIR-SSE by Example: Medical DB 

Preprocessing  

DB owner h
o
s
p
i
t
a
l 

EncD(DB*) 

Cloud 
Server 
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Client 

PIR-SSE by Example: Medical DB 

Preprocessing  

query := “zip=10598” & 

“age=(22,50)” & 

“condition=diabetes” 

DB owner h
o
s
p
i
t
a
l 

EncD(DB*) 

Cloud 
Server 
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5: decrypts matching records 



SSE Application Examples 

 Commercial examples 

 Data repositories (file system backup, email, databases) 

 Outsourced data service (e.g., processed census data, patents, research)  

 Regulatory/liability (e.g. medical records, commercial records) 

 

 Judicial and intelligence examples (next…) 
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IARPA SPAR Program 

 SPAR: Security and Privacy Assurance Research 

 Very ambitious program: 

 PIR-SSE privacy requirements 

 Complex authorization scenarios (e.g. authorizing queries w/o learning them) 

 Wide range of query types: conjunctions, Boolean, range, substrings,… 

 Dynamic databases (support additions, deletions, modifications, caching) 

 Huge databases    

 Any Boolean query on 100,000,000 records, each w/ 300 searchable keywords 

 That’s any Boolean query on 3*1010 = 30,000,000,000 record-keyword pairs… 

 Orders of magnitude above full Wikipedia encrypted search (which we do too) 

 Formal analysis and proofs a MUST  

10 



IARPA SPAR Motivating Applications (?) 

 Searching for suspect in airline/hotel/IRS records 

 data owner should limit access but without learning who is being searched 

 CIA accessing FBI records for targeted information  

 political/regulatory limits on what FBI/CIA can learn about each other 

 reduce agencies‘ reluctance to share information (9/11, Boston bombing) 

 Recent news of US security agencies accessing phone/email DBs… 

 incentive for security agencies to enabling (preserving?) access    

while providing demonstrable privacy & accountability assurances 
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SSE State of the Art 
(Generic Solutions) 

 Impractical 

 Send all data back to owner to decrypt and search 

 Use fully homomorphic encryption and send back only the encrypted 

result set 

 Semi-practical  

 Run a search algorithm under an Oblivious RAM (ORAM) compiler  

 recent ORAM advances makes this less impractical than in the past, 
yet confined to relatively small DB’s   
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SSE State of the Art 
(Single-Keyword SSE) 

 Efficient SSE mechanisms known only for single-keyword search  

 Keyword search: Given one keyword return all documents that contain 

that keyword (e.g. find email containing “crypto”, records with name “Bob”, etc.) 

 Server allowed to learn the set of encrypted matching documents but not 

the keyword or plaintext data  

 Several works [SWP’00, Goh’03, CGKO’06, ChaKam’10, …] achieve: 

 “privacy optimal" (server learns DB size and encrypted result sets),  

 lots of room for implementation/performance improvement                                   
(small DBs restricted to RAM size, static data, inefficient adaptive solutions) 

 Some recent improvements on adaptive  solutions and dynamic data for single-
keyword search [KPR’12, KP’13, our work (in submission), …]  
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SSE State of the Art 
(Conjunctive SSE) 

 Beyond Single-Keyword Search: Very little known 

 Conjunctions: Find all documents containing n keywords:  w1, …, wn 

 Existing solutions to conjunctive queries are either 

 “brute force”: Do n single-keyword searches, compute the intersection 
(inefficient and very leaky…)  

 linear in the number of documents [GSW’04, BKM’05, BLL’06, PRVBM’11] 
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Crypto’13: SSE for Boolean Queries 

 Practical Searchable Symmetric Encryption (SSE) with: 

 Support for any Boolean expression on keywords 

 Example: Search for messages with Alice as Recipient, not sent by Bob,        
and containing at least two of the words {searchable, symmetric, encryption} 

 Applies to both relational DBs (attribute-value) and free text (e.g. English) 

 Efficient for a large class of expressions  

 w1 AND B(w2,…,wn) for any Boolean expression B (including negations) 

 in particular, conjunctions on any number of terms 

 … and complex examples as above (w1 = “Alice as Recipient”) 

 Any disjunction of above expressions 
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Highly Scalable System 

 Search proportional to # documents matching the least frequent term 

 Preprocessing scales linearly with DB size 

 Validated on synthetic census data: 10Terabytes, 100 million records,                  

> 100,000,000,000 indexed record-keyword pairs ! 

 Equivalent to a DB with one record for each American and 400 keywords  

in each record (including textual fields) 

 Other DB’s: Enron email repository, ClueWeb (>> English Wikipedia) 

 Query response time: Competitive w/ plaintext queries on indexed DB 
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Security 

 Security-Performance trade-offs: 

 Leakage on (DB,query) information to the Cloud Server in the form of: 

 data access patterns (e.g. repeated retrieval) 

 query patters (repeated queries)  

 + additional leakage (more complex functions of DB and query history) 

 Can lead to statistical inference based on side information on data 

(application dependent),  can be alleviated by masking techniques 

 No plaintext DB data or query ever revealed                  

(other than via statistical inference) 

 Security proofs: formal model and precise provable leakage profile 

 Leakage profile: provides upper bounds on what is learned by the server 
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Security Formalism 

 Based on the simulation-based definitions given for SKS [CGKO,CK].  

 There is an attacker S (cloud server), a simulator SIM, and a leakage 
function L(DB, queries): 

 Real: Attacker S chooses DB and queries (adaptively), gets encrypted DB 

and interacts with client running queries chosen by S 

 Ideal: Attacker S chooses DB and queries (adaptively), gets the output of 

SIM( L(DB,queries) ) 

A SSE scheme is semantically secure with leakage L if for all 

attackers S,  there is a simulator SIM such that S’s view in both 

experiments are indistinguishable 

 Server learns nothing beyond the specified leakage L even if it knows 

(and even if it chooses adaptively) the plaintext DB and queries 
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Crypto’13: Boolean Query SSE 
(basic ideas) 

 Assume a conjunctive query w1, …, wn   (extends to Boolean queries)  

1. choose the least frequent conjunctive term (“s-term”), say w1 

2. find encrypted indexes of all records containing w1 (w/o revealing w1) 

 Based on a pre-computed encrypted index stored at server 

 PRFk(w)  Enc(ind1), Enc(ind2), … , Enc(indk) 

 Non-trivial:  Space-efficient storage of encrypted files whose length 

should be hidden from the server 

 Even less trivial:  what if files range from 100B to 100MB, what if you need to 
update them and the daily update rate is a significant fraction of the DB? 

Q1:  How to compute PRF values obliviously? 

Q2: How to determine indexes satisfying w1 & … & wn , and not just  w1 ? 
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Oblivious PRF Computation (OPRF) 
[NR’04,FIPR’05]  

 Multiple instantiations ([Yao’82], [FIPR’01], [JL’09], [JL’10], …) 

 Fastest (2 exp’s/party) is Hashed-DH PRF:    Fk(x)=[H(x)]k 

 Oblivious computation via “Blind DH Computation”: 

 (C sends a = [H(x)] r to S, S replies with b = ak, C computes Fk(x) as b 1/r) 

 OPRF with enforcing access policy on query x:  extensions… 

 

S(k) C(x) 

fk(x) 丄 

fk(x) is a Pseudo-Random 
Function (PRF) if  

         OPRF protocol 

x 

fk(x) or $ 
fk-or-$ Adv 
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Standard Conjunctive Search 
on query = w1 & w2 & … & wn 

21 

indi 

? ? ? 

indt ind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2             w3      …    wn 
w2             w3      …    wn 

return indi iff W(indi) contains all w2,…,wn 

 Pre-computation: Build set xSet of hash values: 

If record indexed at ind contains keyword w then add H(w,ind) to xSet 

  record(ind) contains keyword w    iff   H(w,ind) ∈ xSet 

 Retrieval: 

Return a tuple corresponding to ind  iff  H(w,ind) ∈ xSet, for j=2,…,n 

inverted look-up 

forward look-up 



SSE Conjunction Handling 
on query = w1 & w2 & … & wn 
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indi 

? ? ? 

indt ind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2             w3      …    wn 
w2             w3      …    wn 

return indi iff W(indi) contains all w2,…,wn 

 Implementation: Build set xSet of hash values: 

For each record index ind and each w in W(ind):  add H(w,ind) to xSet 

  keyword w ∈ W(ind)  iff  H(w,ind) ∈ xSet 

 EDB, during retrieval: 

Return a tuple corresponding to ind  iff  H(w,ind) ∈ xSet, for j=2,…,n 

inverted look-up 

forward look-up 

PRFk(w1) 
E(indi) 

return indi iff H( wj , indi )  ∈  xSet for all wj 



ESPADA Conjunction Handling 
on query = w1 & w2 & … & wn 
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indi 

? ? ? 

indt ind1 …  

? ? ? ? ? ? 

w1    …  

w2             w3      …    wn w2             w3      …    wn 
w2             w3      …    wn 

return indi iff W(indi) contains all w2,…,wn 

Heart of the Crypto’13 conjunctive SSE: 

Secure 2-Party Computation of value: H(w,ind) 

 Server’s input: E(ind) 

 Client’s input: PRFk(w)    
   [+ decryption key for E] 

inverted look-up 

forward look-up 

PRFk(w1) 
E(indi) 

return indi iff H( wj , indi )  ∈  xSet for all wj 



Crypto’13 Conjunctive SSE Leakage 

 Index size = upper bound on i |DB(wi)| 

 Number of terms in each conjunction 

 Size of s-term set |Rec(w1)|   (unavoidable?)  

 Repeated usage of the s-term 

 Size of Rec(w1wj) for j=2,…, n 

 More, because function H(w,ind) is deterministic: 

 Leaks repeated usage of x-terms in two conjunctive queries               

if their s-terms have a non-empty intersection      

[   repeat in the (w,ind) argument to the (deterministic) H function ! ] 
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Subsequent/Ongoing Work 

 Upcoming in CCS’2013:  Oblivious delegation to third-party clients 

 OPRF’s with blinding factors which prevent mix-and-match of search 

terms across  multiple queries 

 Dynamic DBs’: Support for data additions/deletions/modifications 

 Richer queries: Range, substring, wildcards, … 
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SSE Challenges 

 Leakage:  

 how to characterize it? 

 how to evaluate it? 

 Tradeoffs: interplay security-performance (asymptotic & concrete) 

 functionality / privacy / (pre-)computation / space 

 Close engineering-theory interaction 

 can't just throw a heavy weapon on the problem  

 Provable security          

(especially if you are going to build/use the system) 
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