

Workshop on Trustworthy Clouds, Egham

Towards Practical Secure Computation
Handling sensitive data on untrusted machines

Stefan Katzenbeisser
Security Engineering Group
Technische Universität Darmstadt & CASED
skatzenbeisser@acm.org

Joint work with:
Martin Franz (Deutsche Bank), Andreas Holzer (TU Wien),
Helmut Veith (TU Wien)

Handling private data:
Does it work?

Computing with critical data:
The traditional approach

 Data secrecy relies on several technical and administrative approaches:

§  Legal requirements

§  Policies

§  Audits

§  Training

§  Technical means (access control, network security, intrusion detection)

§  Physical security

Cryptography (1)

Encryption

Decryption

Cryptography (2)

Doesn’t cryptography solve
the problem?

§  Encrypted data „look random“

§  ... but usually need to be
decrypted before use.

§  How can confidentiality be
 guaranteed during use of data?

§  How can this be done on
 potentially compromised hosts?

§  Protection of outsourced data?

Encryption

Decryption

Secure Computation

§  Strike a balance between data availability and privacy

§  Paradigm: keep data encrypted, compute with encrypted data

§  Follows the principle of Privacy By Design:

 Cryptographic protocols precisely limit amount of information available

§  Cryptographic tools are available!

§  Homomorphic encryption
§  Yao’s Garbled circuits
§  Customized protocols

 (private set intersection, ...)

5 3

8

Example:
Private Face Detection

yes / no
Bob

Example:
Private Processing of Genome Data

Physician

Genom O

HMM

Bioinformatics Institute

Cryptographic Tools:
Secure Multi-Party Computation (1)

§  parties have secret inputs

§  Goal: jointly compute so that the private inputs of the
 parties are not revealed (in addition to what leaked through the function
 and the shared result

§  Special case: Secure Two-Party Computation for

§  Yao (1982): Every computable function can be computed securely
 in the two-party case

Cryptographic Tools:
Secure Multi-Party Computation (2)

§  Security notions for secure multiparty computations are non-trivial

§  At first sight, security may depend on the function

§  Some functions may inevitably leak information, since result of
 computation is known to all parties

§  SMP hides only those parts of the input that cannot be derived from

 the shared function value

§  Different solutions:
§  Yao’s Garbled Circuits
§  Homomorphic encryption
§  Secret sharing

Millionaire’s problem

§  Two millionaires want to compare their wealth

§  Both are “rich” ...

 ... both want to know who is “richer” ...
 ... but do not want to disclose wealth to each other

§  Simple instance of function to be computed in a secret way:

§  Communist Millionaire’s Problem: both parties want to check

 whether they are equally rich:

Cryptographic Tools:
Secure Multi-Party Computation (3)

Attacker Models:

§ Semi-Honest Attacker
§  “Honest But Curious”
§ Conforms to the protocol specification

§ Malicious Attacker
§ May deviate from the protocol by computing values dishonestly
§ Much more difficult to cope with
§ May require Zero-Knowledge Proofs to show validity of computation

The “Holy Grail”?
Fully Homomorphic Encryption

Secure Two-Party Computation
Yao’s Garbled Circuits (1)

“Garbled” circuit construction:
1.  Represent function to be

computed as Boolean circuit

f

Outputs

Inputs A Inputs B

Secure Two-Party Computation
Yao’s Garbled Circuits (2)

“Garbled” circuit construction:
1.  Represent function to be

computed as Boolean circuit
2.  Choose 2 keys for each “wire”

in the circuit
3.  For each gate in the circuit,

construct a “garbled” version
(encrypted & permuted)

4.  Output wires from output gates
are not garbled

AND

Secure Two-Party Computation
Yao’s Garbled Circuits (3)

5.  Party A generates garbled
circuits and gives it to B,
including the “input keys”
corresponding to its own input

6.  Party B runs (together with A)
“Oblivious Transfer” to obtain
keys corresponding to B’s
input

7.  Party B evaluates the circuit,
announces the result

AND

Nice approach, but is it ready for practice?

§  Cryptographic frameworks are ready, but tedious to use

§  Lack of a good tool chain that a programmer can use

§  Research prototypes are available:
§  Fairplay, FairplayMP, Sharemind, Tasty

§  Fast GC frameworks (implementation support for Java)

§  We need “usable” compilers that helps a programmer implement
 secure computation!

Required Toolchain

f

Outputs

Inputs A Inputs B
void millionaires() {!

int INPUT_A_mila;!

int INPUT_B_milb;!

int OUTPUT_res;!

!

if (INPUT_A_mila >  

 INPUT_B_milb)!

 OUTPUT_res = 1;!

else!

 OUTPUT_res = 0;!

}!

f

CBMC-GC

Central idea: transforms ANSI C code to circuit useable for
secure computation using Yao’s Garbled Circuits

ANSI C Program

Netlist of circuit
http://forsyte.at/software/cbmc-gc/!

Basis for CBMC-GC:
Bit-precise Model Checker CBMC

§  Checks violations of assertions in
 ANSI C programs

Bounded Model Checker:

§  “Bit-precise” transformation of C program into a Boolean formula

§  Boolean formula consists of program model and negated assertions

§  SAT solver checks for solution indicating a violated assertion

§  We use in CBMC-GC the transformation of an ANSI C program to
 a Boolean formula

http://www.cprover.org!

CBMC-GC
Preprocessing

ANSI C Program

§  Loop unrolling to
 è remove all for/while loops
 è create a flat program

§  Bounds for loops need to be determined
 è constant propagation
 è manual specification if necessary

§  Array handling requires MUX circuits
 è optimizations for performance

CBMC-GC
Circuit Synthesis

§  Use core CBMC engine to generate
 Boolean circuit from unrolled program
 è code “evolution” of memory
 è yields “sparse” formula

§  Rewriting formula as circuit

§  Placeholder gates: highl-level representation
 of certain basic operations
 è to be optimized at later stage

CBMC-GC
Circuit Optimization

§  Instantiation of placeholder gates
 è choose “most optimal” circuits
 è many XOR gates good for performance

§  Output in the form of netlist

§  Circuit can be executed in any framework
 implementing Yao’s Garbled Circuits

Netlist of circuit

CBMC-GC:
Example, Yao’s Millionaires

void millionaires() {!

int INPUT_A_mila;!

int INPUT_B_milb;!

int OUTPUT_res;!

!

if (INPUT_A_mila > INPUT_B_milb)!

 OUTPUT_res = 1;!

else!

 OUTPUT_res = 0;!

}!

Local variables code
inputs and outputs

Computations
specified as C program

CBMC-GC: A bigger example
Matrix multiplication

#define S 8 // size of matrices!

int INPUT_A_a[S][S];!

int INPUT_B_b[S][S];!

int OUTPUT_c[S][S];!

void multiply()!

{!

 int i, j, k;!

 for (i = 0; i < S; i++) !

 for (j = 0; j < S; j++) !

 for (k = 0; k < S; k++) !

 OUTPUT_c[i][j] += INPUT_A_a[i][k] * INPUT_B_b[k][j];!

}!

(Limited) support for
pointer arithmetic

More complex data types
like arrays, structs, enums

Current Limitations

CBMC-GC inherits limits from model checker CBMC:

§  Bounded programs: bounds for all loops must be known
 è in practice no problem, as we use terminating programs anyway

§  No support for floating point arithmetic

§  No support for library functions (yet)

§  Limited pointer arithmetic

§  Integer data types of fixed size
 è limits efficiency in secure computations

CBMC-GC: More examples
Median computation using Bubblesort

#define K 11 // length of array!

#define MEDIAN 5 // position of median!

int INPUT_A_a[K];!

int OUTPUT_median;!

void median_bubblesort() {!

 int i, j, tmp, tmp1, tmp2;!

 for (i = K - 1; i > 0; i--) {!

 for (j = 0; j < i; j++) {!

 tmp1 = INPUT_A_a[j]; tmp2 = INPUT_A_a[j + 1];!

 if (tmp1 > tmp2) {!

 INPUT_A_a[j] = tmp2; INPUT_A_a[j + 1] = tmp1;!

 }!

 }!

 }!

 OUTPUT_median = INPUT_A_a[MEDIAN];!

}!

CBMC can determine
loop bounds by static analysis

CBMC-GC supports recursion
Example: Mergesort
int b[K]; // temporary array for mergesort!

void mergesort(int l, int r) {!

 int i, j, k, m;!

 if (r > l) {!

 m = (r + l)/2; mergesort(l, m); mergesort(m + 1, r);!

 for (i = m + 1; i > l; i--) !

 b[i - 1] = INPUT_A_a[i - 1];!

 for (j = m; j < r; j++) !

 b[r + m - j] = INPUT_A_a[j + 1];!

 for (k = l; k <= r; k++) {!

 if (b[i] < b[j])!

 INPUT_A_a[k] = b[i]; i++;!

 else!

 INPUT_A_a[k] = b[j]; j--;!

 }!

 }!

}!

Recursion: CBMC can determine
bounds by static analysis

Toolchain

f

Outputs

Inputs A Inputs B
void millionaires() {!

int INPUT_A_mila;!

int INPUT_B_milb;!

int OUTPUT_res;!

!

if (INPUT_A_mila >  

 INPUT_B_milb)!

 OUTPUT_res = 1;!

else!

 OUTPUT_res = 0;!

}!

fCBMC-GC

Experimental results

 We used CBMC-GC in conjunction with framework for
execution of garbled circuits by Huang et al (USENIX 2011)

Experiment Number of

gates
Execution time,
preprocessing

Execution time,
circuit evaluation

3000 random arithmetic
operations

2,298,441
(608,668)

970 ms 9,774 ms

8x8 matrix multiplication 3,257,345
(905,728)

680 ms 18,173 ms

Median, bubble sort, 31
elements

149,040
(45,120)

733 ms 1,644 ms

Median, merge sort, 31
elements

1,339,084
(436,916)

660 ms 3,790 ms

Future Release of CBMC-GC

Next release (under preparation) will feature:

§  More precise heuristics for loop unrolling

§  Optimized circuits for basic operations

§  Automatic optimization engine for
 Boolean circuits

§  Automatic bit-width selection for
 integers

§  Test framework for circuits

Functionality Factor
Addition 1
Multiplication ≈1
Millionaire’s Problem ≈2
Hamming Distance ≈3.5
Bitwise AND ≈2
Bit shifts ≈32

Conclusions

§  Protection of sensitive data requires technical means

§  We should not rely (entirely) on administrative measures!

§  Secure computation can be practical already, despite lack of

 efficient FHE!

§  “Usable” compilers exist

§  Integration in software
 engineering pipeline
 required…

32
 http://forsyte.at/software/cbmc-gc/!

