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Handling private data: 
Does it work? 



 
 

Computing with critical data: 
The traditional approach 

 Data secrecy relies on several technical and administrative approaches: 

 

§  Legal requirements 

§  Policies 

§  Audits 

§  Training 

§  Technical means (access control, network security, intrusion detection) 

§  Physical security 



 
 

Cryptography (1) 

 
 

Encryption 

Decryption 



 
 

Cryptography (2) 

 
 

Doesn’t cryptography solve  
the problem? 

 

§   Encrypted data „look random“ 

§   ... but usually need to be  
decrypted before use. 

§   How can confidentiality be 
 guaranteed during use of data?  

§   How can this be done on 
 potentially compromised hosts? 

§   Protection of outsourced data? 

 

Encryption 

Decryption 



 
 

Secure Computation 

§   Strike a balance between data availability and privacy 
 
§   Paradigm: keep data encrypted, compute with encrypted data 
 
§   Follows the principle of Privacy By Design:  

 Cryptographic protocols precisely limit amount of information available 
 

  
 
§   Cryptographic tools are available! 

§   Homomorphic encryption 
§   Yao’s Garbled circuits 
§   Customized protocols  

 (private set intersection, ...) 
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Example: 
Private Face Detection 

yes / no 
Bob 



 
 

Example: 
Private Processing of Genome Data 

 
 

Physician 

Genom O 

HMM 

Bioinformatics Institute 



Cryptographic Tools: 
Secure Multi-Party Computation (1) 

§         parties have secret inputs  

§   Goal: jointly compute                             so that the private inputs of the 
 parties are not revealed (in addition to what leaked through the function 
 and the shared result 

§   Special case: Secure Two-Party Computation for  

§   Yao (1982): Every computable function can be computed securely 
 in the two-party case 



Cryptographic Tools: 
Secure Multi-Party Computation (2) 

§   Security notions for secure multiparty computations are non-trivial 
 
§   At first sight, security may depend on the function 

§   Some functions may inevitably leak information, since result of 
 computation is known to all parties 

 
§   SMP hides only those parts of the input that cannot be derived from 

 the shared function value 

§   Different solutions: 
§   Yao’s Garbled Circuits 
§   Homomorphic encryption 
§   Secret sharing 

 

 
 



Millionaire’s problem 

§   Two millionaires want to compare their wealth 
 
§   Both are “rich” ... 

 ... both want to know who is “richer” ... 
 ... but do not want to disclose wealth to each other 

§   Simple instance of function to be computed in a secret way: 

 
 
§   Communist Millionaire’s Problem: both parties want to check 

 whether they are equally rich: 

 



Cryptographic Tools: 
Secure Multi-Party Computation (3) 

Attacker Models: 

§ Semi-Honest Attacker 
§  “Honest But Curious” 
§ Conforms to the protocol specification 

§ Malicious Attacker 
§ May deviate from the protocol by computing values dishonestly 
§ Much more difficult to cope with 
§ May require Zero-Knowledge Proofs to show validity of computation 

 



The “Holy Grail”? 
Fully Homomorphic Encryption 



Secure Two-Party Computation 
Yao’s Garbled Circuits (1) 

“Garbled” circuit construction: 
1.  Represent function to be 

computed as Boolean circuit 

f

Outputs 

Inputs A  Inputs B  



Secure Two-Party Computation 
Yao’s Garbled Circuits (2) 

“Garbled” circuit construction: 
1.  Represent function to be 

computed as Boolean circuit 
2.  Choose 2 keys for each “wire” 

in the circuit 
3.  For each gate in the circuit, 

construct a “garbled” version 
(encrypted & permuted) 

4.  Output wires from output gates 
are not garbled 

AND 



Secure Two-Party Computation 
Yao’s Garbled Circuits (3) 

5.  Party A generates garbled 
circuits and gives it to B, 
including the “input keys” 
corresponding to its own input 

6.   Party B runs (together with A) 
“Oblivious Transfer” to obtain 
keys corresponding to B’s 
input 

7.  Party B evaluates the circuit, 
announces the result 

AND 



 
 

Nice approach, but is it ready for practice? 

§   Cryptographic frameworks are ready, but tedious to use 

§   Lack of a good tool chain that a programmer can use 

§   Research prototypes are available: 
§   Fairplay, FairplayMP, Sharemind, Tasty 

§   Fast GC frameworks (implementation support for Java) 

§   We need “usable” compilers that helps a programmer implement 
 secure computation! 



 
 

Required Toolchain 

f

Outputs 

Inputs A  Inputs B  
void millionaires() {!

int INPUT_A_mila;!

int INPUT_B_milb;!

int OUTPUT_res;!

!

if (INPUT_A_mila >  

  INPUT_B_milb)!

   OUTPUT_res = 1;!

else!

   OUTPUT_res = 0;!

}!

f



 
 

CBMC-GC 

Central idea: transforms ANSI C code to circuit useable for 
secure computation using Yao’s Garbled Circuits 

 
ANSI C Program 

Netlist of circuit 
http://forsyte.at/software/cbmc-gc/!



 
 

Basis for CBMC-GC: 
Bit-precise Model Checker CBMC 

§   Checks violations of assertions in  
 ANSI C programs 

 

Bounded Model Checker: 

§   “Bit-precise” transformation of C program into a Boolean formula 

§   Boolean formula consists of program model and negated assertions 

§   SAT solver checks for solution indicating a violated assertion 

§   We use in CBMC-GC the transformation of an ANSI C program to 
 a Boolean formula 

http://www.cprover.org!



 
 

CBMC-GC 
Preprocessing 

ANSI C Program 

§   Loop unrolling to 
   è remove all for/while loops 
   è create a flat program 

§   Bounds for loops need to be determined 
   è constant propagation 
   è manual specification if necessary 

§   Array handling requires MUX circuits 
   è optimizations for performance 



 
 

CBMC-GC 
Circuit Synthesis 

§   Use core CBMC engine to generate 
 Boolean circuit from unrolled program 
   è code “evolution” of memory 
   è yields “sparse” formula 

§   Rewriting formula as circuit 

§   Placeholder gates: highl-level representation 
 of certain basic operations 
   è to be optimized at later stage 
 



 
 

CBMC-GC 
Circuit Optimization 

§   Instantiation of placeholder gates 
   è choose “most optimal” circuits 
   è many XOR gates good for performance 

§   Output in the form of netlist 

§   Circuit can be executed in any framework 
 implementing Yao’s Garbled Circuits 
 

Netlist of circuit 



 
 

CBMC-GC: 
Example, Yao’s Millionaires 

void millionaires() {!

int INPUT_A_mila;!

int INPUT_B_milb;!

int OUTPUT_res;!

!

if (INPUT_A_mila > INPUT_B_milb)!

   OUTPUT_res = 1;!

else!

   OUTPUT_res = 0;!

}!

Local variables code 
inputs and outputs 

Computations 
specified as C program 



 
 

CBMC-GC: A bigger example 
Matrix multiplication 

#define S 8 // size of matrices!

int INPUT_A_a[S][S];!

int INPUT_B_b[S][S];!

int OUTPUT_c[S][S];!

void multiply()!

{!

  int i, j, k;!

  for (i = 0; i < S; i++) !

    for (j = 0; j < S; j++) !

      for (k = 0; k < S; k++) !

        OUTPUT_c[i][j] += INPUT_A_a[i][k] * INPUT_B_b[k][j];!

}!

(Limited) support for 
pointer arithmetic 

More complex data types 
like arrays, structs, enums 



 
 

Current Limitations 

CBMC-GC inherits limits from model checker CBMC: 

 

§   Bounded programs: bounds for all loops must be known 
  è in practice no problem, as we use terminating programs anyway 

§   No support for floating point arithmetic 

§   No support for library functions (yet) 

§   Limited pointer arithmetic 

§   Integer data types of fixed size 
  è limits efficiency in secure computations 

 



 
 

CBMC-GC: More examples 
Median computation using Bubblesort 

#define K 11 // length of array!

#define MEDIAN 5 // position of median!

int INPUT_A_a[K];!

int OUTPUT_median;!

void median_bubblesort() {!

  int i, j, tmp, tmp1, tmp2;!

  for (i = K - 1; i > 0; i--) {!

    for (j = 0; j < i; j++) {!

      tmp1 = INPUT_A_a[j]; tmp2 = INPUT_A_a[j + 1];!

      if (tmp1 > tmp2) {!

        INPUT_A_a[j] = tmp2; INPUT_A_a[j + 1] = tmp1;!

      }!

    }!

  }!

  OUTPUT_median = INPUT_A_a[MEDIAN];!

}!

CBMC can determine 
loop bounds by static analysis 



 
 

CBMC-GC supports recursion 
Example: Mergesort 
int b[K]; // temporary array for mergesort!

void mergesort(int l, int r) {!

  int i, j, k, m;!

  if (r > l) {!

    m = (r + l)/2; mergesort(l, m); mergesort(m + 1, r);!

    for (i = m + 1; i > l; i--) !

      b[i - 1] = INPUT_A_a[i - 1];!

    for (j = m; j < r; j++) !

      b[r + m - j] = INPUT_A_a[j + 1];!

    for (k = l; k <= r; k++) {!

      if (b[i] < b[j])!

        INPUT_A_a[k] = b[i]; i++;!

      else!

        INPUT_A_a[k] = b[j]; j--;!

    }!

  }!

}!

Recursion: CBMC can determine 
bounds by static analysis 



 
 

Toolchain 

f

Outputs 

Inputs A  Inputs B  
void millionaires() {!

int INPUT_A_mila;!

int INPUT_B_milb;!

int OUTPUT_res;!

!

if (INPUT_A_mila >  

  INPUT_B_milb)!

   OUTPUT_res = 1;!

else!

   OUTPUT_res = 0;!

}!

fCBMC-GC 



 
 

Experimental results 

  We used CBMC-GC in conjunction with framework for 
execution of garbled circuits by Huang et al (USENIX 2011) 

 
Experiment Number of 

gates 
Execution time, 
preprocessing 

Execution time, 
circuit evaluation 

3000 random arithmetic 
operations 

2,298,441 
(608,668) 

970 ms 9,774 ms 

8x8 matrix multiplication 3,257,345 
(905,728) 

680 ms 18,173 ms 

Median, bubble sort, 31 
elements 

149,040 
(45,120) 

733 ms 1,644 ms 

Median, merge sort, 31 
elements 

1,339,084 
(436,916) 

660 ms 3,790 ms 



 
 

Future Release of CBMC-GC 

Next release (under preparation) will feature: 

 

§   More precise heuristics for loop unrolling 

§   Optimized circuits for basic operations 

§   Automatic optimization engine for  
 Boolean circuits 

§   Automatic bit-width selection for 
 integers 

§   Test framework for circuits 

 

Functionality Factor 
Addition 1 
Multiplication ≈1 
Millionaire’s Problem ≈2 
Hamming Distance ≈3.5 
Bitwise AND ≈2 
Bit shifts ≈32 



Conclusions 

§   Protection of sensitive data requires technical means 

§   We should not rely (entirely) on administrative measures! 
 
§   Secure computation can be practical already, despite lack of 

 efficient FHE! 
 
§   “Usable” compilers exist 

§   Integration in software 
 engineering pipeline 
 required… 

32 
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